
Modelarts

Usermanual

Date 2024-04-30

Contents

1 Service Overview... 1
1.1 Infographics... 1
1.1.1 What Is ModelArts...2
1.2 What Is ModelArts?.. 4
1.3 Functions.. 5
1.4 Basic Knowledge.. 6
1.4.1 Introduction to the AI Development Lifecycle... 6
1.4.2 Basic Concepts of AI Development.. 7
1.4.3 Common Concepts of ModelArts... 9
1.4.4 Introduction to Development Tools.. 10
1.5 AI frameworks supported by ModelArts... 12
1.6 Related Services... 18
1.7 How Do I Access ModelArts?.. 18

2 Preparations..20
2.1 Configuring Access Authorization (Global Configuration)... 20
2.2 Creating an OBS Bucket... 25

3 ExeML... 27
3.1 Introduction to ExeML...27
3.2 Image Classification... 28
3.2.1 Preparing Data... 28
3.2.2 Creating a Project.. 29
3.2.3 Labeling Data..32
3.2.4 Training a Model.. 35
3.2.5 Deploying a Model as a Service... 37
3.3 Object Detection... 39
3.3.1 Preparing Data... 39
3.3.2 Creating a Project.. 42
3.3.3 Labeling Data..45
3.3.4 Training a Model.. 48
3.3.5 Deploying a Model as a Service... 50
3.4 Predictive Analytics...52
3.4.1 Preparing Data... 52

Modelarts
Usermanual Contents

2024-04-30 ii

3.4.2 Creating a Project.. 55
3.4.3 Training a Model.. 59
3.4.4 Deploying a Model as a Service... 60
3.5 Tips... 62
3.5.1 How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?.................................... 63
3.5.2 Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?...................63

4 Workflow...65
4.1 MLOps Overview... 65
4.2 What Is Workflow?... 67
4.3 How to Use a Workflow?... 69
4.3.1 Using a Workflow Subscribed to From AI Hub... 69
4.3.2 Configuring a Workflow..69
4.3.2.1 Configuration Entries.. 69
4.3.2.2 Runtime Configurations... 70
4.3.2.3 Resource Configurations.. 71
4.3.2.4 Tab Configuration.. 71
4.3.2.5 Input and Output Configurations... 72
4.3.2.6 Phase Parameters...72
4.3.2.7 Saving Configurations...73
4.3.3 Starting, Stopping, Searching for, Copying, or Deleting a Workflow.. 73
4.3.4 Viewing Workflow Execution Records.. 76
4.3.5 Retrying, Stopping, or Proceeding a Phase...78
4.3.6 Partial Execution.. 78

5 Data Management.. 80
5.1 Introduction to Data Preparation.. 80
5.2 Getting Started.. 81
5.3 Introduction to Data Preparation.. 86
5.4 Creating a Dataset..87
5.4.1 Dataset Overview.. 87
5.4.2 Creating a Dataset.. 90
5.4.3 Modifying a Dataset... 95
5.5 Importing Data.. 96
5.5.1 Introduction to Data Importing.. 96
5.5.2 Importing Data from OBS.. 98
5.5.2.1 Introduction to Importing Data from OBS.. 98
5.5.2.2 Importing Data from an OBS Path..100
5.5.2.3 Specifications for Importing Data from an OBS Directory..103
5.5.2.4 Importing a Manifest File... 108
5.5.2.5 Specifications for Importing a Manifest File.. 110
5.5.3 Importing Data from Local Files.. 127
5.6 Data Analysis and Preview.. 128
5.6.1 Processing Data... 129

Modelarts
Usermanual Contents

2024-04-30 iii

5.6.2 Auto Grouping..129
5.6.3 Data Filtering..131
5.6.4 Data Feature Analysis.. 131
5.7 Labeling Data...137
5.8 Publishing Data... 138
5.8.1 Introduction to Data Publishing...138
5.8.2 Publishing a Data Version.. 138
5.8.3 Managing Data Versions.. 141
5.9 Exporting Data.. 142
5.9.1 Introduction to Exporting Data.. 142
5.9.2 Exporting Data to a New Dataset... 142
5.9.3 Exporting Data to OBS.. 143
5.10 Introduction to Data Labeling... 143
5.11 Manual Labeling...145
5.11.1 Creating a Labeling Job.. 146
5.11.2 Image Labeling.. 153
5.11.2.1 Image Classification... 153
5.11.2.2 Object Detection..159
5.11.2.3 Image Segmentation..170
5.11.3 Text Labeling.. 178
5.11.3.1 Text Classification..178
5.11.3.2 Named Entity Recognition... 183
5.11.3.3 Text Triplet... 187
5.11.4 Audio Labeling... 191
5.11.4.1 Sound Classification... 191
5.11.4.2 Speech Labeling... 195
5.11.4.3 Speech Paragraph Labeling... 198
5.11.5 Video Labeling... 202
5.11.6 Viewing Labeling Jobs... 206
5.11.6.1 Viewing My Created Labeling Jobs... 206
5.11.6.2 Viewing My Participated Labeling Jobs... 208
5.12 Auto Labeling.. 208
5.12.1 Creating an Auto Labeling Job...209
5.13 Team Labeling... 212
5.13.1 Team Labeling Overview..212
5.13.2 Creating and Managing Teams..212
5.13.2.1 Managing Teams... 212
5.13.2.2 Managing Team Members... 213
5.13.3 Creating a Team Labeling Job.. 214
5.13.4 Logging In to ModelArts.. 217
5.13.5 Starting a Team Labeling Job... 218
5.13.6 Reviewing Team Labeling Results... 219

Modelarts
Usermanual Contents

2024-04-30 iv

5.13.7 Accepting Team Labeling Results..220

6 Devenviron..223
6.1 Introduction to DevEnviron... 223
6.2 Application Scenarios.. 226
6.3 Managing Notebook Instances..226
6.3.1 Creating a Notebook Instance.. 226
6.3.2 Accessing a Notebook Instance... 229
6.3.3 Searching for, Starting, Stopping, or Deleting a Notebook Instance.. 230
6.3.4 Changing a Notebook Instance Image.. 231
6.3.5 Changing the Flavor of a Notebook Instance... 231
6.3.6 Selecting Storage in DevEnviron.. 232
6.3.7 Dynamically Expanding EVS Disk Capacity..235
6.3.8 Modifying the SSH Configuration for a Notebook Instance.. 236
6.3.9 Viewing the Notebook Instances of All IAM Users Under One Tenant Account...................................... 238
6.4 JupyterLab... 239
6.4.1 Operation Process in JupyterLab... 240
6.4.2 JupyterLab Overview and Common Operations.. 240
6.4.3 Code Parametrization Plug-in...246
6.4.4 Using ModelArts SDK.. 248
6.4.5 Using the Git Plug-in... 249
6.4.6 Visualized Model Training.. 255
6.4.6.1 Introduction to Training Job Visualization.. 255
6.4.6.2 MindInsight Visualization Jobs..256
6.4.6.3 TensorBoard Visualization Jobs...262
6.4.7 Uploading and Downloading Data in Notebook... 268
6.4.7.1 Uploading Files to JupyterLab... 268
6.4.7.1.1 Scenarios... 268
6.4.7.1.2 Uploading Files from a Local Path to JupyterLab...268
6.4.7.1.3 Cloning an Open-Source Repository in GitHub... 276
6.4.7.1.4 Uploading OBS Files to JupyterLab..279
6.4.7.1.5 Uploading Remote Files to JupyterLab...282
6.4.7.2 Downloading a File from JupyterLab to a Local Path.. 284
6.5 Local IDE.. 286
6.5.1 Operation Process in a Local IDE...286
6.5.2 Local IDE (PyCharm)..286
6.5.2.1 Connecting to a Notebook Instance Through PyCharm Toolkit..286
6.5.2.1.1 PyCharm Toolkit... 286
6.5.2.1.2 Downloading and Installing PyCharm Toolkit..287
6.5.2.1.3 Connecting to a Notebook Instance Through PyCharm Toolkit.. 288
6.5.2.2 Manually Connecting to a Notebook Instance Through PyCharm.. 295
6.5.2.3 Submitting a Training Job Using PyCharm Toolkit...301
6.5.2.3.1 Submitting a Training Job (New Version)..301

Modelarts
Usermanual Contents

2024-04-30 v

6.5.2.3.2 Stopping a Training Job..305
6.5.2.3.3 Viewing Training Logs...305
6.5.2.4 Uploading Data to a Notebook Instance Using PyCharm...306
6.5.3 Local IDE (VS Code)... 307
6.5.3.1 Connecting to a Notebook Instance Through VS Code..307
6.5.3.2 Installing VS Code... 308
6.5.3.3 Connecting to a Notebook Instance Through VS Code with One Click... 308
6.5.3.4 Connecting to a Notebook Instance Through VS Code Toolkit... 314
6.5.3.5 Manually Connecting to a Notebook Instance Through VS Code..321
6.5.3.6 Remotely Debugging in VS Code... 327
6.5.3.7 Uploading and Downloading Files in VS Code..329
6.5.4 Local IDE (Accessed Using SSH).. 331
6.6 Using Notebook to Develop Ascend Operators... 337
6.7 ModelArts CLI Command Reference.. 344
6.7.1 ModelArts CLI Overview... 344
6.7.2 (Optional) Installing ma-cli Locally.. 346
6.7.3 Autocompletion for ma-cli Commands... 347
6.7.4 ma-cli Authentication.. 348
6.7.5 ma-cli Image Building Command... 350
6.7.5.1 ma-cli Image Building Command.. 350
6.7.5.2 Obtaining an Image Creation Template.. 351
6.7.5.3 Loading an Image Creation Template.. 352
6.7.5.4 Obtaining Registered ModelArts Images.. 353
6.7.5.5 Creating an Image in ModelArts Notebook... 355
6.7.5.6 Obtaining Image Creation Caches in ModelArts Notebook... 357
6.7.5.7 Clearing Image Creation Caches in ModelArts Notebook...358
6.7.5.8 Registering SWR Images with ModelArts Image Management.. 359
6.7.5.9 Deregistering a Registered Image from ModelArts Image Management... 361
6.7.5.10 Debugging an SWR Image on an ECS... 361
6.7.6 Using the ma-cli ma-job Command to Submit a ModelArts Training Job.. 362
6.7.6.1 ma-cli ma-job Command Overview.. 362
6.7.6.2 Obtaining ModelArts Training Jobs... 363
6.7.6.3 Submitting a ModelArts Training Job... 365
6.7.6.4 Obtaining ModelArts Training Job Logs...370
6.7.6.5 Obtaining ModelArts Training Job Events... 371
6.7.6.6 Obtaining ModelArts AI Engines for Training.. 372
6.7.6.7 Obtaining ModelArts Resource Specifications for Training...373
6.7.6.8 Stopping a ModelArts Training Job... 374
6.7.7 Using ma-cli to Copy OBS Data... 375

7 Training Management... 377
7.1 Introduction to Model Development... 377
7.2 Preparing Data.. 378

Modelarts
Usermanual Contents

2024-04-30 vi

7.3 Preparing Algorithms.. 380
7.3.1 Introduction to Algorithm Preparation.. 380
7.3.2 Using a Preset Image (Custom Script).. 381
7.3.2.1 Overview... 381
7.3.2.2 Developing a Custom Script...382
7.3.2.3 Creating an Algorithm... 384
7.3.3 Using Custom Images..388
7.3.4 Viewing Algorithm Details... 391
7.3.5 Searching for an Algorithm... 392
7.3.6 Deleting an Algorithm...392
7.4 Performing a Training... 392
7.4.1 Creating a Training Job... 393
7.4.2 Viewing Training Job Details... 407
7.4.3 Viewing Training Job Events.. 409
7.4.4 Training Job Logs...411
7.4.4.1 Introduction to Training Job Logs.. 411
7.4.4.2 Common Logs... 412
7.4.4.3 Ascend Logs... 413
7.4.4.4 Viewing Training Job Logs.. 417
7.4.4.5 Locating Faults by Analyzing Training Logs... 418
7.4.5 Cloud Shell.. 419
7.4.5.1 Logging In to a Training Container Using Cloud Shell... 419
7.4.5.2 Keeping a Training Job Running... 421
7.4.5.3 Preventing Cloud Shell Session from Disconnection... 422
7.4.5.4 Analyzing the Call Stack of the Suspended Process Using the py-spy Tool and Locating the
Suspended Problem By Analyzing Code.. 422
7.4.6 Viewing the Resource Usage of a Training Job...423
7.4.7 Evaluation Results...424
7.4.8 Viewing Fault Recovery Details.. 429
7.4.9 Viewing Environment Variables of a Training Container.. 429
7.4.10 Stopping, Rebuilding, or Searching for a Training Job...433
7.4.11 Releasing Training Job Resources..434
7.5 Training Experiment...434
7.5.1 Introduction to Experiment... 434
7.5.2 Adding a Training Job to an Experiment...434
7.5.3 Viewing an Experiment... 436
7.5.4 Deleting an Experiment.. 437
7.6 Advanced Training Operations... 437
7.6.1 Selecting a Training Mode... 437
7.6.2 Automatic Recovery from a Training Fault.. 440
7.6.2.1 Training Fault Tolerance Check... 440
7.6.2.2 Fault Dying Gasp... 444
7.6.3 Resumable Training and Incremental Training... 446

Modelarts
Usermanual Contents

2024-04-30 vii

7.6.4 Detecting Training Job Suspension... 447
7.6.5 Priority of a Training Job.. 448
7.6.6 Permission to Set the Highest Job Priority... 449
7.7 Distributed Training... 450
7.7.1 Distributed Training..450
7.7.2 Single-Node Multi-Card Training Using DataParallel...451
7.7.3 Multi-Node Multi-Card Training Using DistributedDataParallel ... 453
7.7.4 Distributed Debugging Adaptation and Code Example.. 454
7.7.5 Sample Code of Distributed Training... 458

8 Inference Deployment..465
8.1 Introduction to Inference... 465
8.2 Managing AI Applications... 466
8.2.1 Introduction to AI Application Management.. 466
8.2.2 Creating an AI Application... 467
8.2.2.1 Importing a Meta Model from a Training Job... 468
8.2.2.2 Importing a Meta Model from OBS.. 470
8.2.2.3 Importing a Meta Model from a Container Image..473
8.2.3 Viewing the AI Application List.. 477
8.2.4 Viewing Details About an AI Application... 479
8.2.5 Managing AI Application Versions.. 481
8.2.6 Viewing Events of an AI Application.. 482
8.3 Deploying an AI Application as a Service.. 487
8.3.1 Deploying AI Applications as Real-Time Services.. 487
8.3.1.1 Deploying as a Real-Time Service..487
8.3.1.2 Viewing Service Details..492
8.3.1.3 Testing the Deployed Service...498
8.3.1.4 Accessing Real-Time Services.. 499
8.3.1.4.1 Accessing a Real-Time Service...499
8.3.1.4.2 Authentication Mode.. 500
8.3.1.4.3 Access Mode.. 503
8.3.1.4.4 Accessing a Real-Time Service Through WebSocket..510
8.3.1.4.5 Server-Sent Events... 513
8.3.1.5 Cloud Shell... 514
8.3.2 Deploying AI Applications as Batch Services... 515
8.3.2.1 Deploying as a Batch Service.. 515
8.3.2.2 Viewing the Batch Service Prediction Result.. 521
8.3.3 Deploying AI Applications as Edge Services.. 521
8.3.3.1 Deploying an Edge Service... 521
8.3.3.2 Accessing an Edge Service Deployed on IEF Edge Nodes..524
8.3.3.3 Accessing an Edge Service Deployed in a ModelArts Edge Resource Pool..527
8.3.3.4 Load Balancing... 529
8.3.3.5 Installing and Configuring NFS...532

Modelarts
Usermanual Contents

2024-04-30 viii

8.3.4 Upgrading a Service... 534
8.3.5 Starting, Stopping, Deleting, or Restarting a Service... 536
8.3.6 Viewing Service Events.. 537
8.4 Edge Resource Pool... 540
8.4.1 Overview.. 540
8.4.2 Node.. 541
8.4.3 Resource Pool... 548
8.4.4 Enabling LTS..551
8.5 Inference Specifications.. 552
8.5.1 Model Package Specifications.. 553
8.5.1.1 Introduction to Model Package Specifications.. 553
8.5.1.2 Specifications for Editing a Model Configuration File ... 554
8.5.1.3 Specifications for Writing Model Inference Code ..570
8.5.2 Examples of Custom Scripts.. 576
8.5.2.1 TensorFlow... 576
8.6 ModelArts Monitoring on Cloud Eye... 582
8.6.1 ModelArts Metrics...582
8.6.2 Setting Alarm Rules..584
8.6.3 Viewing Monitoring Metrics.. 586

9 Resource Management.. 588
9.1 Resource Pool...588
9.2 Elastic Cluster...589
9.2.1 Comprehensive Upgrades to ModelArts Resource Pool Management Functions.................................... 589
9.2.2 Creating a Resource Pool... 591
9.2.3 Viewing Details About a Resource Pool.. 594
9.2.4 Resizing a Resource Pool.. 597
9.2.5 Migrating the Workspace... 599
9.2.6 Changing Job Types Supported by a Resource Pool... 599
9.2.7 Upgrading a Resource Pool Driver.. 600
9.2.8 Deleting a Resource Pool... 600
9.2.9 Abnormal Status of a Dedicated Resource Pool.. 601
9.2.10 ModelArts Network... 606
9.3 Elastic Server.. 608
9.3.1 Overview.. 608
9.3.2 Preparations.. 609
9.3.3 Getting Started.. 611
9.3.4 Managing an Elastic Server... 614
9.3.4.1 Creating an Elastic Server... 615
9.3.4.2 Viewing Instance Details... 616
9.3.4.3 Using SSH to Remotely Log In to an Instance.. 617
9.3.4.4 Starting or Stopping an Instance... 619
9.3.4.5 Synchronizing the Status of an Elastic Server... 620

Modelarts
Usermanual Contents

2024-04-30 ix

9.3.4.6 Deleting an Instance...620
9.3.5 Configuring the Network as an Administrator... 620
9.4 Monitoring Resources... 621
9.4.1 Overview.. 621
9.4.2 Using Grafana to View AOM Monitoring Metrics... 622
9.4.2.1 Procedure..622
9.4.2.2 Installing and Configuring Grafana...622
9.4.2.2.1 Installing and Configuring Grafana on Windows... 622
9.4.2.2.2 Installing and Configuring Grafana on Linux... 623
9.4.2.2.3 Installing and Configuring Grafana on a Notebook Instance...626
9.4.2.3 Configuring a Grafana Data Source.. 630
9.4.2.4 Using Grafana to Configure Dashboards and View Metric Data.. 635
9.4.3 Viewing All ModelArts Monitoring Metrics on the AOM Console... 642

10 AI Hub..679
10.1 AI Hub.. 679
10.2 Registering with AI Hub...680
10.3 Management Center... 680
10.4 Subscription & Use.. 681
10.4.1 Searching for and Adding an Asset to Favorites..682
10.4.2 Subscribing to an Algorithm... 683
10.4.3 Subscribing to a Model...686
10.4.4 Downloading Datasets..688
10.4.5 Subscribing to a Workflow.. 690
10.5 Publish & Share...693
10.5.1 Publishing an Algorithm...693
10.5.2 Publishing a Model.. 697
10.5.3 Publishing Data... 702

11 Custom Images.. 707
11.1 Image Management..707
11.2 Introduction to Preset Images (Mainstream Images)... 709
11.2.1 Preset Images... 709
11.2.2 Preset MindSpore Images on Arm.. 711
11.2.3 Preset TensorFlow Images on Arm... 716
11.2.4 Preset PyTorch Images on Arm.. 719
11.3 Using Custom Images in Notebook Instances... 720
11.3.1 Registering an Image in ModelArts..720
11.3.2 Creating a Custom Image.. 721
11.3.3 Saving a Notebook Instance as a Custom Image..721
11.3.3.1 Saving a Notebook Environment Image... 721
11.3.3.2 Using a Custom Image to Create a Notebook Instance.. 722
11.3.4 Creating and Using a Custom Image in Notebook...722
11.3.4.1 Application Scenarios and Process.. 722

Modelarts
Usermanual Contents

2024-04-30 x

11.3.4.2 Step 1 Creating a Custom Image...723
11.3.4.3 Step 2 Registering a New Image... 725
11.3.4.4 Step 3 Using a New Image to Create a Development Environment...726
11.4 Using a Custom Image to Train Models (Model Training).. 728
11.4.1 Overview.. 728
11.4.2 Example: Creating a Custom Image for Training...730
11.4.2.1 Example: Creating a Custom Image for Development and Training (MindSpore + Ascend)......... 730
11.4.2.1.1 Scenarios... 731
11.4.2.1.2 Step 1 Creating an OBS Bucket and Folder.. 731
11.4.2.1.3 Step 2 Preparing Script Files and Uploading Them to OBS.. 732
11.4.2.1.4 Step 3 Creating a Custom Image... 742
11.4.2.1.5 Step 4 Uploading the Image to SWR.. 745
11.4.2.1.6 Step 5 Creating and Debugging a Notebook Instance on ModelArts...747
11.4.2.1.7 Step 6 Creating a Training Job on ModelArts.. 747
11.4.3 Preparing a Training Image...748
11.4.3.1 Specifications for Custom Images for Training Jobs..748
11.4.3.2 Migrating an Image to ModelArts Training... 749
11.4.3.3 Using a Base Image to Create a Training Image..750
11.4.4 Creating an Algorithm Using a Custom Image.. 751
11.4.5 Using a Custom Image to Create a CPU- or GPU-based Training Job... 755
11.4.6 Using a Custom Image to Create an Ascend-based Training Job.. 760
11.4.7 Troubleshooting Process...762
11.5 Using a Custom Image to Create AI applications for Inference Deployment... 763
11.5.1 Custom Image Specifications for Creating AI Applications..763
11.5.2 Creating a Custom Image and Using It to Create an AI Application..765
11.6 FAQs..769
11.6.1 How Can I Log In to SWR and Upload Images to It?.. 769
11.6.2 How Do I Configure Environment Variables for an Image?.. 771
11.6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?..771
11.6.4 How Do I Configure a Conda Source in a Notebook Development Environment?............................... 772
11.6.5 What Are Supported Software Versions for a Custom Image?.. 773

12 Permissions Management...774
12.1 Basic Concepts...774
12.2 Permission Management Mechanisms... 780
12.2.1 IAM.. 781
12.2.2 Agencies and Dependencies... 789
12.2.3 Workspace... 810
12.3 Configuration Practices in Typical Scenarios.. 810
12.3.1 Assigning Permissions to Individual Users for Using ModelArts..811
12.3.2 Separately Assigning Permissions to Administrators and Developers..814
12.3.3 Viewing the Notebook Instances of All IAM Users Under One Tenant Account....................................821
12.3.4 Logging In to a Training Container Using Cloud Shell.. 822

Modelarts
Usermanual Contents

2024-04-30 xi

12.3.5 Prohibiting a User from Using a Public Resource Pool..824
12.4 FAQ... 826
12.4.1 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?
... 826

13 Best Practices... 830
13.1 Migrating a Locally Developed MindSpore Model to the Cloud for Training... 830
13.2 Creating an AI Application Using a Custom Engine.. 849
13.3 Using a Large Model to Create an AI Application and Deploying a Real-Time Service..........................853
13.4 Importing a Model from OBS to Create an AI Application and Deploying a Real-Time Service.........857

14 Full-Process Development of WebSocket Real-Time Services............................... 860

15 FAQs... 866
15.1 General Issues... 866
15.1.1 What Is ModelArts?... 866
15.1.2 What Are the Relationships Between ModelArts and Other Services?..866
15.1.3 What Are the Differences Between ModelArts and DLS?.. 867
15.1.4 Which Ascend Chips Are Supported?... 867
15.1.5 How Do I Obtain an Access Key?..868
15.1.6 How Do I Upload Data to OBS?.. 868
15.1.7 What Do I Do If the System Displays a Message Indicating that the AK/SK Pair Is Unavailable?.. 868
15.1.8 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?
... 868
15.1.9 How Do I Use ModelArts to Train Models Based on Structured Data?...871
15.1.10 How Do I View All Files Stored in OBS on ModelArts?...871
15.1.11 Where Are Datasets of ModelArts Stored in a Container?.. 872
15.1.12 Which AI Frameworks Does ModelArts Support?...872
15.1.13 What Are the Functions of ModelArts Training and Inference?.. 877
15.1.14 Can AI-assisted Identification of ModelArts Identify a Specific Label?... 877
15.1.15 Why Is the Job Still Queued When Resources Are Sufficient?..877
15.2 Data Management (Old Version).. 877
15.2.1 Are There Size Limits for Images to be Uploaded?.. 877
15.2.2 What Do I Do If Images in a Dataset Cannot Be Displayed?..878
15.2.3 How Do I Integrate Multiple Object Detection Datasets into One Dataset?.. 879
15.2.4 What Do I Do If Importing a Dataset Failed?...879
15.2.5 Can a Table Dataset Be Labeled?... 879
15.2.6 What Do I Do to Import Locally Labeled Data to ModelArts?... 879
15.2.7 Why Does Data Fail to Be Imported Using the Manifest File?... 880
15.2.8 Where Are Labeling Results Stored?.. 880
15.2.9 How Do I Download Labeling Results to a Local PC?... 881
15.2.10 Why Cannot Team Members Receive Emails for a Team Labeling Task?.. 882
15.2.11 Can Two Accounts Concurrently Label One Dataset?... 882

Modelarts
Usermanual Contents

2024-04-30 xii

15.2.12 Can I Delete an Annotator from a Labeling Team with a Labeling Task Assigned? What Is the
Impact on the Labeling Result After Deletion? If the Annotator Cannot Be Deleted, Can I Separate the
Annotator's Labeling Result?... 882
15.2.13 How Do I Define a Hard Example in Data Labeling? Which Samples Are Identified as Hard
Examples?... 882
15.2.14 Can I Add Multiple Labeling Boxes to an Object Detection Dataset Image?....................................... 882
15.2.15 How Do I Merge Two Datasets?... 883
15.2.16 Does Auto Labeling Support Polygons?... 883
15.2.17 What Do the Options for Accepting a Team Labeling Task Mean?... 883
15.2.18 Why Are Images Displayed in Different Angles Under the Same Account?..883
15.2.19 Do I Need to Train Data Again If New Data Is Added After Auto Labeling Is Complete?............... 884
15.2.20 Why Does the System Display a Message Indicating My Label Fails to Save on ModelArts?........ 884
15.2.21 Can One Label By Identified Among Multiple Labels?... 884
15.2.22 Why Are Newly Added Images Not Automatically Labeled After Data Amplification Is Enabled?
... 885
15.2.23 Why Cannot Videos in a Video Dataset Be Displayed or Played?...885
15.2.24 Why All the Labeled Samples Stored in an OBS Bucket Are Displayed as Unlabeled in ModelArts
After the Data Source Is Synchronized?...885
15.2.25 How Do I Use Soft-NMS to Reduce Bounding Box Overlapping?.. 885
15.2.26 Why ModelArts Image Labels Are Lost?.. 885
15.2.27 How Do I Add Images to a Validation or Training Dataset?.. 885
15.2.28 Can I Customize Labels for an Object Detection Dataset?..886
15.2.29 What ModelArts Data Management Can Be Used for?... 886
15.2.30 Will My Old-Version Datasets Be Cleared After the Old Version Is Discontinued? The existing
datasets and the ones newly created in the old version will be retained after the old version is
discontinued.. 888
15.2.31 Why Is My New Dataset Version Unavailable in Versions?... 888
15.2.32 How Do I View the Size of a Dataset?..888
15.2.33 How Do I View Labeling Details of a New Dataset?... 888
15.2.34 How Do I Export Labeled Data?... 889
15.2.35 Why Cannot I Find My Newly Created Dataset?...889
15.2.36 What Do I Do If the Database Quota Is Incorrect?.. 889
15.2.37 How Do I Split a Dataset?...890
15.2.38 How Do I Delete a Dataset Image?... 890
15.2.39 Why Is There No Sample in the ModelArts Dataset Downloaded from AI Gallery and Then an
OBS Bucket?.. 890
15.3 Notebook (New Version).. 892
15.3.1 Constraints.. 892
15.3.1.1 Is sudo Privilege Escalation Supported?.. 892
15.3.1.2 Does ModelArts Support apt-get?...892
15.3.1.3 Is the Keras Engine Supported?..892
15.3.1.4 Does ModelArts Support the Caffe Engine?.. 893
15.3.1.5 Can I Install MoXing in a Local Environment?.. 893
15.3.1.6 Can Notebook Instances Be Remotely Logged In?..893

Modelarts
Usermanual Contents

2024-04-30 xiii

15.3.2 Data Upload or Download.. 893
15.3.2.1 How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a
Notebook Instance?.. 893
15.3.2.2 How Do I Upload Local Files to a Notebook Instance?... 895
15.3.2.3 How Do I Import Large Files to a Notebook Instance?... 895
15.3.2.4 Where Will the Data Be Uploaded to?.. 895
15.3.2.5 How Do I Download Files from a Notebook Instance to a Local Computer?..................................... 895
15.3.2.6 How Do I Copy Data from Development Environment Notebook A to Notebook B?......................896
15.3.2.7 What Can I Do If a File Fails to Be Uploaded to a Notebook Instance?..896
15.3.2.8 Failed to View the Local Mount Point of a Dynamically Mounted OBS Parallel File System in
JupyterLab of a Notebook Instance.. 897
15.3.3 Data Storage.. 898
15.3.3.1 How Do I Rename an OBS File?.. 898
15.3.3.2 Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid
a Restart?..898
15.3.3.3 How Do I Use the pandas Library to Process Data in OBS Buckets?.. 898
15.3.4 Environment Configurations... 898
15.3.4.1 How Do I Check the CUDA Version Used by a Notebook Instance?...898
15.3.4.2 How Do I Enable the Terminal Function in DevEnviron of ModelArts?...899
15.3.4.3 How Do I Install External Libraries in a Notebook Instance?.. 899
15.3.4.4 How Do I Obtain the External IP Address of My Local PC?... 900
15.3.4.5 How Can I Resolve Abnormal Font Display on a ModelArts Notebook Accessed from iOS?........ 900
15.3.4.6 Is There a Proxy for Notebook? How Do I Disable It?... 902
15.3.5 Notebook Instances... 902
15.3.5.1 What Do I Do If I Cannot Access My Notebook Instance?... 902
15.3.5.2 What Should I Do When the System Displays an Error Message Indicating that No Space Left
After I Run the pip install Command?..904
15.3.5.3 What Do I Do If "Read timed out" Is Displayed After I Run pip install?... 904
15.3.5.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message "save error"
Is Displayed?.. 905
15.3.5.5 When the SSH Tool Is Used to Connect to a Notebook Instance, Server Processes Are Cleared, but
the GPU Usage Is Still 100%..905
15.3.6 Code Execution.. 905
15.3.6.1 What Do I Do If a Notebook Instance Won't Run My Code?.. 905
15.3.6.2 Why Does the Instance Break Down When dead kernel Is Displayed During Training Code
Running?... 906
15.3.6.3 What Do I Do If cudaCheckError Occurs During Training?.. 906
15.3.6.4 What Should I Do If DevEnviron Prompts Insufficient Space?.. 907
15.3.6.5 Why Does the Notebook Instance Break Down When opencv.imshow Is Used?............................... 907
15.3.6.6 Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?
... 907
15.3.6.7 What Do I Do If Files Fail to Be Saved in JupyterLab?... 908
15.3.7 Failures to Access the Development Environment Through VS Code.. 908
15.3.7.1 What Do I Do If the VS Code Window Is Not Displayed?...908

Modelarts
Usermanual Contents

2024-04-30 xiv

15.3.7.2 What Do I Do If a Remote Connection Failed After VS Code Is Opened?.. 909
15.3.7.3 Basic Problems Causing the Failures to Access the Development Environment Through VS Code
... 912
15.3.7.4 What Do I Do If Error Message "Could not establish connection to xxx" Is Displayed During a
Remote Connection?.. 914
15.3.7.5 What Do I Do If the Connection to a Remote Development Environment Remains in "Setting up
SSH Host xxx: Downloading VS Code Server locally" State for More Than 10 Minutes?................................ 914
15.3.7.6 What Do I Do If the Connection to a Remote Development Environment Remains in the State of
"Setting up SSH Host xxx: Downloading VS Code Server locally" for More Than 10 Minutes?.................... 917
15.3.7.7 What Do I Do If the Connection to a Remote Development Environment Remains in the State of
"ModelArts Remote Connect: Connecting to instance xxx..." for More Than 10 Minutes?............................. 918
15.3.7.8 What Do I Do If a Remote Connection Is in the Retry State?... 918
15.3.7.9 What Do I Do If Error Message "The VS Code Server failed to start" Is Displayed?.........................920
15.3.7.10 What Do I Do If Error Message "Permissions for 'x:/xxx.pem' are too open" Is Displayed?........ 921
15.3.7.11 What Do I Do If Error Message "Bad owner or permissions on C:\Users\Administrator/.ssh/
config" or "Connection permission denied (publickey)" Is Displayed?...922
15.3.7.12 What Do I Do If Error Message "ssh: connect to host xxx.pem port xxxxx: Connection refused" Is
Displayed?.. 924
15.3.7.13 What Do I Do If Error Message "ssh: connect to host ModelArts-xxx port xxx: Connection timed
out" Is Displayed?.. 924
15.3.7.14 What Do I Do If Error Message "Load key "C:/Users/xx/test1/xxx.pem": invalid format" Is
Displayed?.. 925
15.3.7.15 What Do I Do If Error Message "An SSH installation couldn't be found" or "Could not establish
connection to instance xxx: 'ssh' ..." Is Displayed?... 926
15.3.7.16 What Do I Do If Error Message "no such identity: C:/Users/xx /test.pem: No such file or
directory" Is Displayed?... 928
15.3.7.17 What Do I Do If Error Message "Host key verification failed" or "Port forwarding is disabled" Is
Displayed?.. 929
15.3.7.18 What Do I Do If Error Message "Failed to install the VS Code Server" or "tar: Error is not
recoverable: exiting now" Is Displayed?.. 931
15.3.7.19 What Do I Do If Error Message "XHR failed" Is Displayed When a Remote Notebook Instance Is
Accessed Through VS Code?.. 931
15.3.7.20 What Do I Do for an Automatically Disconnected VS Code Connection If No Operation Is
Performed for a Long Time?.. 932
15.3.7.21 What Do I Do If It Takes a Long Time to Set Up a Remote Connection After VS Code Is
Automatically Upgraded?... 934
15.3.7.22 What Do I Do If Error Message "Connection reset" Is Displayed During an SSH Connection?.. 935
15.3.7.23 What Can I Do If a Notebook Instance Is Frequently Disconnected or Stuck After I Use
MobaXterm to Connect to the Notebook Instance in SSH Mode?.. 935
15.3.8 Others... 937
15.3.8.1 How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?.................................937
15.3.8.2 Why Is the Training Speed Similar When Different Notebook Flavors Are Used?............................. 938
15.3.8.3 How Do I Perform Incremental Training When Using MoXing?...938
15.3.8.4 How Do I View GPU Usage on the Notebook?.. 940
15.3.8.5 How Can I Obtain GPU Usage Through Code?.. 942
15.3.8.6 Which Real-Time Performance Indicators of an Ascend Chip Can I View?.. 944
15.3.8.7 What Are the Relationships Between Files Stored in JupyterLab, Terminal, and OBS?....................944

Modelarts
Usermanual Contents

2024-04-30 xv

15.3.8.8 How Do I Migrate Data from an Old-Version Notebook Instance to a New-Version One?...........944
15.3.8.9 How Do I Use the Datasets Created on ModelArts in a Notebook Instance?..................................... 947
15.3.8.10 pip and Common Commands...947
15.3.8.11 What Are Sizes of the /cache Directories for Different Notebook Specifications in DevEnviron?
... 948
15.3.8.12 What Is the Impact of Resource Overcommitment on Notebook Instances?................................... 948
15.4 Training Jobs.. 949
15.4.1 Functional Consulting... 949
15.4.1.1 What Are the Solutions to Underfitting?.. 949
15.4.1.2 What Are the Precautions for Switching Training Jobs from the Old Version to the New Version?
... 949
15.4.1.3 How Do I Obtain a Trained ModelArts Model?.. 951
15.4.1.4 What Is TensorBoard Used for in Model Visualization Jobs?...951
15.4.1.5 How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed Training?................................... 951
15.4.1.6 How Do I Obtain the CUDA and cuDNN Versions of a Custom Image?... 952
15.4.1.7 How Do I Obtain a MoXing Installation File?... 952
15.4.1.8 In a Multi-Node Training, the TensorFlow PS Node Functioning as a Server Will Be Continuously
Suspended. How Does ModelArts Determine Whether the Training Is Complete? Which Node Is a
Worker?... 952
15.4.1.9 How Do I Install MoXing for a Custom Image of a Training Job?... 952
15.4.2 Reading Data During Training... 952
15.4.2.1 How Do I Configure the Input and Output Data for Training Models on ModelArts?..................... 952
15.4.2.2 How Do I Improve Training Efficiency While Reducing Interaction with OBS?................................... 953
15.4.2.3 Why the Data Read Efficiency Is Low When a Large Number of Data Files Are Read During
Training?... 954
15.4.2.4 How Do I Define Path Variables When Using MoXing?.. 955
15.4.3 Compiling the Training Code.. 955
15.4.3.1 How Do I Create a Training Job When a Dependency Package Is Referenced by the Model to Be
Trained?... 955
15.4.3.2 What Is the Common File Path for Training Jobs?.. 956
15.4.3.3 How Do I Install a Library That C++ Depends on?.. 956
15.4.3.4 How Do I Check Whether a Folder Copy Is Complete During Job Training?....................................... 957
15.4.3.5 How Do I Load Some Well Trained Parameters During Job Training?... 957
15.4.3.6 How Do I Obtain Training Job Parameters from the Boot File of the Training Job?......................... 958
15.4.3.7 Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?. 958
15.4.3.8 How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?.. 958
15.4.3.9 How Do I Obtain the Dependency File Path to be Used in Training Code?... 959
15.4.3.10 What Is the File Path If a File in the model Directory Is Referenced in a Custom Python
Package?... 959
15.4.4 Creating a Training Job... 959
15.4.4.1 What Can I Do If the Message "Object directory size/quantity exceeds the limit" Is Displayed
When I Create a Training Job?.. 960
15.4.4.2 What Are Sizes of the /cache Directories for Different Resource Specifications in the Training
Environment?.. 960
15.4.4.3 Is the /cache Directory of a Training Job Secure?.. 961

Modelarts
Usermanual Contents

2024-04-30 xvi

15.4.4.4 Why Is a Training Job Always Queuing?... 961
15.4.4.5 What Determines the Hyperparameter Directory (/work or /ma-user) When Creating a Training
Job?... 961
15.4.5 Managing Training Job Versions..962
15.4.5.1 Does a Training Job Support Scheduled or Periodic Calling?...962
15.4.6 Viewing Job Details.. 962
15.4.6.1 How Do I Check Resource Usage of a Training Job?.. 962
15.4.6.2 How Do I Access the Background of a Training Job?... 962
15.4.6.3 Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a
Container?.. 963
15.4.6.4 Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be
Changed?.. 963
15.4.6.5 Can a Trained Model Be Downloaded or Migrated to Another Account? How Do I Obtain the
Download Path?... 963
15.5 Service Deployment.. 963
15.5.1 Model Management.. 963
15.5.1.1 Importing Models..964
15.5.1.1.1 How Do I Import the .h5 Model of Keras to ModelArts?.. 964
15.5.1.1.2 How Do I Edit the Installation Package Dependency Parameters in a Model Configuration File
When Importing a Model?... 964
15.5.1.1.3 What Do I Do If Error ModelArts.0107 Is Reported When I Use MindSpore to Create an AI
Application?... 966
15.5.1.1.4 How Do I Change the Default Port to Create a Real-Time Service Using a Custom Image?.....966
15.5.1.1.5 Does ModelArts Support Multi-Model Import?.. 967
15.5.1.1.6 Restrictions on the Size of an Image for Importing an AI Application... 967
15.5.2 Service Deployment... 967
15.5.2.1 Functional Consulting.. 967
15.5.2.1.1 What Types of Services Can Models Be Deployed as on ModelArts?..967
15.5.2.1.2 What Are the Differences Between Real-Time Services and Batch Services?.................................. 968
15.5.2.1.3 What Is the Maximum Size of a Prediction Request Body?..968
15.5.2.1.4 How Do I Select Compute Node Specifications for Deploying a Service?... 968
15.5.2.1.5 What Is the CUDA Version for Deploying a Service on GPUs?.. 969
15.5.2.2 Real-Time Services.. 969
15.5.2.2.1 What Do I Do If a Conflict Occurs in the Python Dependency Package of a Custom Prediction
Script When I Deploy a Real-Time Service?... 969
15.5.2.2.2 What Is the Format of a Real-Time Service API?... 969
15.5.2.2.3 Why Did My Service Deployment Fail with Proper Deployment Timeout Configured?................970
15.6 API/SDK... 970
15.6.1 Can ModelArts APIs or SDKs Be Used to Download Models to a Local PC?... 970
15.6.2 What Installation Environments Do ModelArts SDKs Support?...970
15.6.3 Does ModelArts Use the OBS API to Access OBS Files over an Intranet or the Internet?.................. 971
15.6.4 How Do I Obtain a Job Resource Usage Curve After I Submit a Training Job by Calling an API?...971
15.6.5 How Do I View the Old-Version Dedicated Resource Pool List Using the SDK?.................................... 971
15.7 Using PyCharm Toolkit... 971

Modelarts
Usermanual Contents

2024-04-30 xvii

15.7.1 What Should I Do If an Error Occurs During Toolkit Installation?.. 971
15.7.2 What Should I Do If an Error Occurs When I Edit a Credential in PyCharm Toolkit?.......................... 972
15.7.3 Why Cannot I Start Training?... 974
15.7.4 What Should I Do If Error "xxx isn't existed in train_version" Occurs When a Training Job Is
Submitted?... 974
15.7.5 What Should I Do If Error "Invalid OBS path" Occurs When a Training Job Is Submitted?............... 975
15.7.6 What Should I Do If Error "NoSuchKey" Occurs When PyCharm Toolkit Is Used to Submit a
Training Job?.. 975
15.7.7 What Should I Do If an Error Occurs During Service Deployment?... 976
15.7.8 How Do I View Error Logs of PyCharm Toolkit?.. 977
15.7.9 How Do I Use PyCharm ToolKit to Create Multiple Jobs for Simultaneous Training?..........................977
15.7.10 What Should I Do If "Error occurs when accessing to OBS" Is Displayed When PyCharm ToolKit Is
Used?... 977

16 Troubleshooting.. 978
16.1 General Issues... 978
16.1.1 Incorrect OBS Path on ModelArts... 978
16.2 ExeML... 980
16.2.1 Preparing Data.. 980
16.2.1.1 Failed to Publish a Dataset Version.. 980
16.2.1.2 Invalid Dataset Version... 983
16.2.2 Training a Model... 983
16.2.2.1 Failed to Create an ExeML-powered Training Job..983
16.2.2.2 ExeML-powered Training Job Failed..983
16.2.3 Deploying a Model... 987
16.2.3.1 Failed to Submit the Real-time Service Deployment Task..987
16.2.3.2 Failed to Deploy a Real-time Service... 987
16.2.4 Publishing a Model.. 988
16.2.4.1 Failed to Submit the Model Publishing Task... 988
16.2.4.2 Failed to Publish a Model...988
16.3 DevEnviron... 989
16.3.1 Environment Configuration Faults.. 989
16.3.1.1 Disk Space Used Up... 990
16.3.1.2 An Error Is Reported When Conda Is Used to Install Keras 2.3.1 in Notebook................................... 992
16.3.1.3 Error "HTTP error 404 while getting xxx" Is Reported During Dependency Installation in a
Notebook.. 993
16.3.1.4 The numba Library Has Been Installed in a Notebook Instance and Error "import numba
ModuleNotFoundError: No module named 'numba'" Is Reported...993
16.3.2 Instance Faults... 994
16.3.2.1 Failed to Create a Notebook Instance and JupyterProcessKilled Is Displayed in Events..................994
16.3.2.2 What Do I Do If I Cannot Access My Notebook Instance?... 995
16.3.2.3 What Should I Do When the System Displays an Error Message Indicating that No Space Left
After I Run the pip install Command?..997
16.3.2.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message "save error"
Is Displayed?.. 997

Modelarts
Usermanual Contents

2024-04-30 xviii

16.3.2.5 ModelArts.6333 Error Occurs.. 997
16.3.2.6 What Can I Do If a Message Is Displayed Indicating that the Token Does Not Exist or Is Lost
When I Open a Notebook Instance?...998
16.3.3 Code Running Failures.. 998
16.3.3.1 Error Occurs When Using a Notebook Instance to Run Code, Indicating That No File Is Found
in /tmp... 998
16.3.3.2 What Do I Do If a Notebook Instance Won't Run My Code?.. 999
16.3.3.3 Why Does the Instance Break Down When dead kernel Is Displayed During Training Code
Running?... 999
16.3.3.4 What Do I Do If cudaCheckError Occurs During Training?.. 1000
16.3.3.5 What Do I Do If Insufficient Space Is Displayed in DevEnviron?... 1000
16.3.3.6 Why Does the Notebook Instance Break Down When opencv.imshow Is Used?.............................1000
16.3.3.7 Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?
... 1001
16.3.3.8 What Do I Do If No Kernel Is Displayed After a Notebook File Is Created?......................................1001
16.3.4 JupyterLab Plug-in Faults.. 1002
16.3.4.1 What Do I Do If the Git Plug-in Password Is Invalid?.. 1002
16.3.5 Save an Image Failures.. 1003
16.3.5.1 What If the Error Message "there are processes in 'D' status, please check process status using'ps
-aux' and kill all the 'D' status processes" or "Buildimge,False,Error response from daemon,Cannot pause
container xxx" Is Displayed When I Save an Image?..1004
16.3.5.2 What Do I Do If Error "container size %dG is greater than threshold %dG" Is Displayed When I
Save an Image?.. 1004
16.3.5.3 What Do I Do If Error "too many layers in your image" Is Displayed When I Save an Image?. 1005
16.3.5.4 What Do I Do If Error "The container size (xG) is greater than the threshold (25G)" Is Reported
When I Save an Image?.. 1005
16.3.6 Other Faults... 1006
16.3.6.1 Failed to Open the checkpoints Folder in Notebook..1006
16.3.6.2 Failed to Use a Purchased Dedicated Resource Pool to Create New-Version Notebook Instances
... 1007
16.3.6.3 Error Message "Permission denied" Is Displayed When the tensorboard Command Is Used to
Open a Log File in a Notebook Instance.. 1008
16.4 Training Jobs.. 1009
16.4.1 OBS Operation Issues... 1009
16.4.1.1 Error in File Reading.. 1009
16.4.1.2 Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job Is Connected to OBS.........1010
16.4.1.3 TensorFlow Stops Writing TensorBoard to OBS When the Size of Written Data Reaches 5 GB.1010
16.4.1.4 Error "Unable to connect to endpoint" Error Occurs When a Model Is Saved................................. 1011
16.4.1.5 Error Message "BrokenPipeError: Broken pipe" Displayed When OBS Data Is Copied.................. 1011
16.4.1.6 Error Message "ValueError: Invalid endpoint: obs.xxxx.com" Displayed in Logs..............................1013
16.4.1.7 Error Message "errorMessage:The specified key does not exist" Displayed in Logs.......................1013
16.4.2 In-Cloud Migration Adaptation Issues.. 1014
16.4.2.1 Failed to Import a Module.. 1014
16.4.2.2 Error Message "No module named .*" Displayed in Training Job Logs... 1015
16.4.2.3 Failed to Install a Third-Party Package... 1017

Modelarts
Usermanual Contents

2024-04-30 xix

16.4.2.4 Failed to Download the Code Directory... 1018
16.4.2.5 Error Message "No such file or directory" Displayed in Training Job Logs...1018
16.4.2.6 Failed to Find the .so File During Training... 1020
16.4.2.7 ModelArts Training Job Failed to Parse Parameters and an Error Is Displayed in the Log...........1021
16.4.2.8 Training Output Path Is Used by Another Job.. 1022
16.4.2.9 Error Message "RuntimeError: std::exception" Displayed for a PyTorch 1.0 Engine........................1022
16.4.2.10 Error Message "retCode=0x91, [the model stream execute failed]" Displayed in MindSpore Logs
... 1023
16.4.2.11 Error Occurred When Pandas Reads Data from an OBS File If MoXing Is Used to Adapt to an
OBS Path.. 1023
16.4.2.12 Error Message "Please upgrade numpy to >= xxx to use this pandas version" Displayed in Logs
... 1024
16.4.2.13 Reinstalled CUDA Version Does Not Match the One in the Target Image...................................... 1024
16.4.2.14 Error ModelArts.2763 Occurred During Training Job Creation... 1025
16.4.2.15 Error Message "AttributeError: module '***' has no attribute '***'" Displayed Training Job Logs1025
16.4.2.16 System Container Exits Unexpectedly... 1026
16.4.3 Hard Faults Due to Space Limit.. 1027
16.4.3.1 Downloading Files Timed Out or No Space Left for Reading Data.. 1027
16.4.3.2 Insufficient Container Space for Copying Data.. 1028
16.4.3.3 Error Message "No space left" Displayed When a TensorFlow Multi-node Job Downloads Data
to /cache.. 1029
16.4.3.4 Size of the Log File Has Reached the Limit... 1029
16.4.3.5 Error Message "write line error" Displayed in Logs..1030
16.4.3.6 Error Message "No space left on device" Displayed in Logs... 1031
16.4.3.7 Training Job Failed Due to OOM... 1032
16.4.3.8 Common Issues Related to Insufficient Disk Space and Solutions..1034
16.4.4 Internet Access Issues... 1035
16.4.4.1 Error Message "Network is unreachable" Displayed in Logs.. 1035
16.4.4.2 URL Connection Timed Out in a Running Training Job...1036
16.4.5 Permission Issues.. 1036
16.4.5.1 What Should I Do If Error "stat:403 reason:Forbidden" Is Displayed in Logs When a Training Job
Accesses OBS.. 1036
16.4.5.2 Error Message "Permission denied" Displayed in Logs... 1037
16.4.6 GPU Issues.. 1039
16.4.6.1 Error Message "No CUDA-capable device is detected" Displayed in Logs... 1039
16.4.6.2 Error Message "RuntimeError: connect() timed out" Displayed in Logs...1040
16.4.6.3 Error Message "cuda runtime error (10) : invalid device ordinal at xxx" Displayed in Logs........1041
16.4.6.4 Error Message "RuntimeError: Cannot re-initialize CUDA in forked subprocess" Displayed in Logs
... 1042
16.4.6.5 No GPU Is Found for a Training Job... 1042
16.4.7 Service Code Issues.. 1043
16.4.7.1 Error Message "pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields"
Displayed in Logs.. 1043

Modelarts
Usermanual Contents

2024-04-30 xx

16.4.7.2 Error Message "max_pool2d_with_indices_out_cuda_frame failed with error code 0" Displayed in
Logs.. 1043
16.4.7.3 Training Job Failed with Error Code 139... 1044
16.4.7.4 Debugging Training Code in the Cloud Environment If a Training Job Failed...................................1045
16.4.7.5 Error Message "'(slice(0, 13184, None), slice(None, None, None))' is an invalid key" Displayed in
Logs.. 1045
16.4.7.6 Error Message "DataFrame.dtypes for data must be int, float or bool" Displayed in Logs......... 1045
16.4.7.7 Error Message "CUDNN_STATUS_NOT_SUPPORTED" Displayed in Logs...1046
16.4.7.8 Error Message "Out of bounds nanosecond timestamp" Displayed in Logs..................................... 1046
16.4.7.9 Error Message "Unexpected keyword argument passed to optimizer" Displayed in Logs........... 1047
16.4.7.10 Error Message "no socket interface found" Displayed in Logs.. 1047
16.4.7.11 Error Message "Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP"
Displayed in Logs.. 1048
16.4.7.12 Error Message "AttributeError: 'NoneType' object has no attribute 'dtype'" Displayed in Logs1048
16.4.7.13 Error Message "No module name 'unidecode'" Displayed in Logs...1049
16.4.7.14 Distributed Tensorflow Cannot Use tf.variable...1049
16.4.7.15 When MXNet Creates kvstore, the Program Is Blocked and No Error Is Reported....................... 1050
16.4.7.16 ECC Error Occurs in the Log, Causing Training Job Failure..1051
16.4.7.17 Training Job Failed Because the Maximum Recursion Depth Is Exceeded....................................... 1051
16.4.7.18 Training Using a Built-in Algorithm Failed Due to a bndbox Error..1051
16.4.7.19 Training Job Status Is Reviewing Job Initialization .. 1052
16.4.7.20 Training Job Process Exits Unexpectedly.. 1052
16.4.7.21 Stopped Training Job Process... 1053
16.4.8 Training Job Suspended..1054
16.4.8.1 Data Replication Suspension.. 1054
16.4.8.2 Suspension Before Training... 1054
16.4.8.3 Suspension During Training.. 1055
16.4.8.4 Suspension in the Last Training Epoch.. 1056
16.4.9 Running a Training Job Failed..1057
16.4.9.1 Troubleshooting a Training Job Failure... 1057
16.4.9.2 An NCCL Error Occurs When a Training Job Fails to Be Executed...1058
16.4.9.3 A Training Job Created Using a Custom Image Is Always in the Running State.............................. 1059
16.4.9.4 Running a Job Failed Due to Persistently Rising Memory Usage.. 1059
16.4.10 Training Jobs Created in a Dedicated Resource Pool...1060
16.4.10.1 No Cloud Storage Name or Mount Path Displayed on the Page for Creating a Training Job.. 1060
16.4.10.2 Storage Volume Failed to Be Mounted to the Pod During Training Job Creation.........................1061
16.4.11 Training Performance Issues.. 1062
16.4.11.1 Training Performance Deteriorated..1062
16.5 Inference Deployment.. 1063
16.5.1 AI Application Management.. 1063
16.5.1.1 Creating an AI Application Failed... 1063
16.5.1.2 Failed to Build an Image or Import a File When an IAM user Creates an AI Application............ 1065

Modelarts
Usermanual Contents

2024-04-30 xxi

16.5.1.3 Obtaining the Directory Structure in the Target Image When Importing an AI Application
Through OBS...1066
16.5.1.4 Failed to Obtain Certain Logs on the ModelArts Log Query Page..1067
16.5.1.5 Failed to Download a pip Package When an AI Application Is Created Using OBS........................1067
16.5.1.6 Failed to Use a Custom Image to Create an AI application.. 1068
16.5.1.7 Insufficient Disk Space Is Displayed When a Service Is Deployed After an AI Application Is
Imported... 1069
16.5.1.8 Error Occurred When a Created AI Application Is Deployed as a Service.. 1070
16.5.1.9 Invalid Runtime Dependency Configured in an Imported Custom Image..1070
16.5.1.10 Garbled Characters Displayed in an AI Application Name Returned When AI Application Details
Are Obtained Through an API.. 1071
16.5.1.11 The Model or Image Exceeded the Size Limit for AI Application Import... 1071
16.5.1.12 A Single Model File Exceeded the Size Limit (5 GB) for AI Application Import............................. 1072
16.5.1.13 Creating an AI Application Failed Due to Image Building Timeout... 1072
16.5.2 Service Deployment...1073
16.5.2.1 Error Occurred When a Custom Image Model Is Deployed as a Real-Time Service.......................1073
16.5.2.2 Alarm Status of a Deployed Real-Time Service... 1073
16.5.2.3 Failed to Start a Service..1074
16.5.2.4 What Do I Do If an Image Fails to Be Pulled When a Service Is Deployed, Started, Upgraded, or
Modified?... 1076
16.5.2.5 What Do I Do If an Image Restarts Repeatedly When a Service Is Deployed, Started, Upgraded,
or Modified?.. 1077
16.5.2.6 What Do I Do If a Container Health Check Fails When a Service Is Deployed, Started, Upgraded,
or Modified?.. 1077
16.5.2.7 What Do I Do If Resources Are Insufficient When a Service Is Deployed, Started, Upgraded, or
Modified?... 1077
16.5.2.8 Error Occurred When a CV2 Model Package Is Used to Deploy a Real-Time Service....................1078
16.5.2.9 Service Is Consistently Being Deployed... 1079
16.5.2.10 A Started Service Is Intermittently in the Alarm State.. 1079
16.5.2.11 Failed to Deploy a Service and Error "No Module named XXX" Occurred.......................................1080
16.5.2.12 Insufficient Permission to or Unavailable Input/Output OBS Path of a Batch Service................1080
16.5.2.13 What Can I Do if the Memory Is Insufficient?..1081
16.5.3 Service Prediction... 1082
16.5.3.1 Service Prediction Failed...1082
16.5.3.2 Error "APIG.XXXX" Occurred in a Prediction Failure... 1083
16.5.3.3 Error ModelArts.4206 Occurred in Real-Time Service Prediction...1085
16.5.3.4 Error ModelArts.4302 Occurred in Real-Time Service Prediction...1085
16.5.3.5 Error ModelArts.4503 Occurred in Real-Time Service Prediction...1085
16.5.3.6 Error MR.0105 Occurred in Real-Time Service Prediction.. 1087
16.5.3.7 Method Not Allowed... 1088
16.5.3.8 Request Timed Out.. 1089
16.5.3.9 Error Occurred When an API Is Called for Deploying a Model Created Using a Custom Image1089
16.6 MoXing.. 1089
16.6.1 Error Occurs When MoXing Is Used to Copy Data... 1090

Modelarts
Usermanual Contents

2024-04-30 xxii

16.6.2 How Do I Disable the Warmup Function of the Mox?... 1091
16.6.3 Pytorch Mox Logs Are Repeatedly Generated..1091
16.6.4 Does moxing.tensorflow Contain the Entire TensorFlow? How Do I Perform Local Fine Tune on the
Generated Checkpoint?... 1092
16.6.5 Copying Data Using MoXing Is Slow and the Log Is Repeatedly Printed in a Training Job............. 1093
16.6.6 Failed to Access a Folder Using MoXing and Read the Folder Size Using get_size............................ 1094
16.7 APIs or SDKs.. 1094
16.7.1 "ERROR: Could not install packages due to an OSError" Occurred During ModelArts SDK
Installation... 1094
16.7.2 Error Occurred During Service Deployment After the Target Path to a File Downloaded Through a
ModelArts SDK Is Set to a File Name.. 1095
16.7.3 A Training Job Created Using an API Is Abnormal... 1095
16.8 Change History... 1096

17 Change History..1098

Modelarts
Usermanual Contents

2024-04-30 xxiii

1 Service Overview

1.1 Infographics

Modelarts
Usermanual 1 Service Overview

2024-04-30 1

1.1.1 What Is ModelArts

Modelarts
Usermanual 1 Service Overview

2024-04-30 2

Modelarts
Usermanual 1 Service Overview

2024-04-30 3

1.2 What Is ModelArts?
ModelArts is a one-stop AI development platform geared toward developers and
data scientists of all skill levels. It enables you to rapidly build, train, and deploy
models anywhere, and manage full-lifecycle AI workflows. ModelArts accelerates
AI development and fosters AI innovation with key capabilities, including data
preprocessing and auto labeling, distributed training, automated model building,
and one-click workflow execution.

ModelArts covers all stages of AI development, including data processing,
algorithm development, and model training and deployment. The underlying
technologies of ModelArts support various heterogeneous computing resources,
allowing developers to flexibly select and use resources. In addition, ModelArts
supports popular open-source AI development frameworks such as TensorFlow,
PyTorch, and MindSpore. ModelArts also allows you to use customized algorithm
frameworks tailored to your needs.

ModelArts aims to simplify AI development.

Product Architecture

ModelArts supports the entire development process, including data processing,
and model training, management, and deployment. It also provides AI Gallery for
sharing models.

ModelArts supports various AI application scenarios, such as image classification,
object detection, video analysis, speech recognition, product recommendation, and
exception detection.

Figure 1-1 ModelArts architecture

Product Advantages
● One-stop platform

The out-of-the-box and full-lifecycle AI development platform provides one-
stop data processing, and development, training, management, and
deployment of models.

● Easy to use
– Automatic optimization of hyperparameters
– Code-free development and simplified operations

Modelarts
Usermanual 1 Service Overview

2024-04-30 4

● High performance
– The self-developed MoXing deep learning framework accelerates

algorithm development and training.
– Models running on Ascend AI chips achieve more efficient inference.

● Flexible
– Mainstream open-source frameworks such as TensorFlow, PyTorch, and

MindSpore
– Ascend chips
– Exclusive use of dedicated resources
– Custom images for custom frameworks and operators

1.3 Functions
AI engineers face challenges in the installation and configuration of various AI
tools, data preparation, and model training. To address these challenges, the one-
stop AI development platform ModelArts is provided. The platform integrates data
preparation, algorithm development, model training, and model deployment into
the production environment, allowing AI engineers to perform one-stop AI
development.

Figure 1-2 Function overview

ModelArts has the following features:

● Data governance
Manages data preparation, such as data filtering and labeling, and dataset
versions.

● Rapid and simplified model training
Enables high-performance distributed training and simplifies coding with the
self-developed MoXing deep learning framework.

● Multi-scenario deployment
Deploys models in various production environments, and supports real-time
and batch inference.

● Auto learning
Enables model building without coding and supports image classification,
object detection, and predictive analytics.

Modelarts
Usermanual 1 Service Overview

2024-04-30 5

1.4 Basic Knowledge

1.4.1 Introduction to the AI Development Lifecycle

What Is AI
Artificial intelligence (AI) is a technology capable of simulating human cognition
through machines. The core capability of AI is to make a judgment or prediction
based on a given input.

What Is the Purpose of AI Development
AI development aims to centrally process and extract information from volumes of
data to summarize internal patterns of the study objects.

Massive volumes of collected data are computed, analyzed, summarized, and
organized by using appropriate statistics, machine learning, and deep learning
methods to maximize data value.

Basic Process of AI Development
The basic process of AI development includes the following steps: determining an
objective, preparing data, and training, evaluating, and deploying a model.

Figure 1-3 AI development process

Step 1 Determine an objective.

Before starting AI development, determine what to analyze. What problems do
you want to solve? What is the business goal? Sort out the AI development
framework and ideas based on the business understanding. For example, image
classification and object detection. Different projects have different requirements
for data and AI development methods.

Step 2 Prepare data.

Data preparation refers to data collection and preprocessing.

Data preparation is the basis of AI development. When you collect and integrate
related data based on the determined objective, the most important thing is to
ensure the authenticity and reliability of the obtained data. Typically, you cannot
collect all the data at the same time. In the data labeling phase, you may find that
some data sources are missing and then you may need to repeatedly adjust and
optimize the data.

Step 3 Train a model.

Modeling involves analyzing the prepared data to find the causality, internal
relationships, and regular patterns, thereby providing references for commercial
decision making. After model training, usually one or more machine learning or

Modelarts
Usermanual 1 Service Overview

2024-04-30 6

deep learning models are generated. These models can be applied to new data to
obtain predictions and evaluation results.

Step 4 Evaluate the model.

A model generated by training needs to be evaluated. Typically, you cannot obtain
a satisfactory model after the first evaluation, and may need to repeatedly adjust
algorithm parameters and data to further optimize the model.

Some common metrics, such as the accuracy, recall, and area under the curve
(AUC), help you effectively evaluate and obtain a satisfactory model.

Step 5 Deploy the model.

Model development and training are based on existing data (which may be test
data). After a satisfactory model is obtained, the model needs to be formally
applied to actual data or newly generated data for prediction, evaluation, and
visualization. The findings can then be reported to decision makers in an intuitive
way, helping them develop the right business strategies.

----End

1.4.2 Basic Concepts of AI Development
Machine learning is classified into supervised, unsupervised, and reinforcement
learning.

● Supervised learning uses labeled samples to adjust the parameters of
classifiers to achieve the required performance. It can be considered as
learning with a teacher. Common supervised learning includes regression and
classification.

● Unsupervised learning is used to find hidden structures in unlabeled data.
Clustering is a form of unsupervised learning.

● Reinforcement learning is an area of machine learning concerned with how
software agents ought to take actions in an environment so as to maximize
some notion of cumulative reward.

Regression
Regression reflects the time feature of data attributes and generates a function
that maps one data attribute to an actual variable prediction to find the
dependency between the variable and attribute. Regression mainly analyzes data
and predicts data and data relationship. Regression can be used for customer
development, retention, customer churn prevention, production lifecycle analysis,
sales trend prediction, and targeted promotion.

Modelarts
Usermanual 1 Service Overview

2024-04-30 7

Classification
Classification involves defining a set of categories based on the common features
of objects and identifying which category an object belongs to. Classification can
be used for customer classification, customer properties, feature analysis, customer
satisfaction analysis, and customer purchase trend prediction.

Clustering
Clustering involves grouping a set of objects in such a way that objects in the
same group are more similar to each other than to those in other groups.
Clustering can be used for customer segmentation, customer characteristic
analysis, customer purchase trend prediction, and market segmentation.

Modelarts
Usermanual 1 Service Overview

2024-04-30 8

Clustering analyzes data objects and produces class labels. Objects are grouped
based on the maximized and minimized similarities to form clusters. In this way,
objects in the same cluster are more similar to each other than to those in other
clusters.

1.4.3 Common Concepts of ModelArts

ExeML

ExeML is the process of automating model design, parameter tuning, and model
training, model compression, and model deployment with the labeled data. The
process is code-free and does not require developers to have experience in model
development. A model can be built in three steps: labeling data, training a model,
and deploying the model.

Inference

Inference is the process of deriving a new judgment from a known judgment
according to a certain strategy. In AI, machines simulate human intelligence, and
complete inference based on neural networks.

Real-Time Inference

Real-time inference specifies a web service that provides an inference result for
each inference request.

Batch Inference

Batch inference specifies a batch job that processes batch data for inference.

Ascend Chip

The Ascend chips are a series of AI chips with high computing performance and
low power consumption.

Modelarts
Usermanual 1 Service Overview

2024-04-30 9

Resource Pool
ModelArts provides large-scale computing clusters for model development,
training, and deployment. There are two types of resource pools: public resource
pool and dedicated resource pool. The public resource pool is provided by default.
Dedicated resource pools are created separately and used exclusively.

1.4.4 Introduction to Development Tools
NO TE

This document describes the DevEnviron notebook functions of the new version.

Software development is a process of reducing developer costs and improving
development experience. In AI development, ModelArts is dedicated to improving
AI development experience and simplifying the development process. ModelArts
DevEnviron uses cloud native resources and integrates the development tool chain
to provide better in-cloud AI development experience for AI development,
exploration, and teaching.

ModelArts notebook for seamless in-cloud and on-premises collaboration

● In-cloud JupyterLab, local IDE, and ModelArts plug-ins for remote
development and debugging, tailored to your needs

● In-cloud development environment with AI compute resources, cloud storage,
and built-in AI engines

● Custom runtime environment saved as an image for training and inference

Feature 1: Remote development, allowing remote access to notebook from a
local IDE

The notebook of the new version provides remote development. After enabling
remote SSH, you can remotely access the ModelArts notebook development
environment to debug and run code from a local IDE.

Due to limited local resources, developers using a local IDE run and debug code
typically on a CPU or GPU server shared between team members. Building and
maintaining the CPU or GPU server are costly.

ModelArts notebook instances are out of the box with various built-in engines and
flavors for you to select. You can use a dedicated container environment. Only
after simple configurations, you can remotely access the environment to run and
debug code from your local IDE.

Modelarts
Usermanual 1 Service Overview

2024-04-30 10

Figure 1-4 Remotely accessing notebook from a local IDE

ModelArts notebook can be regarded as an extension of a local development
environment. The operations such as data reading, training, and file saving are the
same as those performed in a local environment.

ModelArts notebook allows you to use in-cloud resources while with local coding
habits unchanged.

A local IDE supports Visual Studio (VS) Code, PyCharm, and SSH. In addition, the
PyCharm Toolkit plug-ins allow you to easily use cloud resources.

Feature 2: Preset images that are out-of-the-box with optimized
configurations and supporting mainstream AI engines

The AI engines and versions preset in each image are fixed. When creating a
notebook instance, specify an AI engine and version, including the chip type.

ModelArts DevEnviron provides a group of preset images, including PyTorch,
TensorFlow, and MindSpore images. You can use a preset image to start your
notebook instance. After the development in the instance, submit a training job
without any adaptation.

The image versions preset in ModelArts are determined based on user feedback
and version stability. If your development can be carried out using the versions
preset in ModelArts, for example, MindSpore 1.5, use preset images. These images
have been fully verified and have many commonly-used installation packages built
in. They are out-of-the-box, relieving you from configuring the environment.

The images preset in ModelArts DevEnviron include:

● Common preset packages: common AI engines such as PyTorch and
MindSpore based on standard Conda, common data analysis software
packages such as Pandas and Numpy, and common tool software such as
CUDA and CUDNN, meeting common AI development requirements.

Modelarts
Usermanual 1 Service Overview

2024-04-30 11

● Preset Conda environments: A Conda environment and basic Conda Python
(excluding any AI engine) are created for each preset image. The following
figure shows the Conda environment for the preset MindSpore.

Select a Conda environment based on whether the AI engine is used for
debugging.

● Notebook: a web application that enables you to code on the GUI and
combine the code, mathematical equations, and visualized content into a
document.

● JupyterLab plug-ins: enable flavor changing and instance stopping to
improving user experience.

● Remote SSH: allows you to remotely debug a notebook instance from a local
PC.

NO TE

● To simplify operations, ModelArts notebook of the new version does not support
switchover between AI engines in a notebook instance.

● AI engines vary based on regions. For details about the AI engines available in a region,
see the AI engines displayed on the management console.

Feature 3: JupyterLab, an online interactive development and debugging
tool

ModelArts integrates open-source JupyterLab for online interactive development
and debugging. You can use the notebook on the ModelArts management console
to compile and debug code and train models based on the code, without
concerning environment installation or configuration.

JupyterLab is an interactive development environment. It is the next-generation
product of Jupyter Notebook. JupyterLab enables you to compile notebooks,
operate terminals, edit Markdown text, enable interaction, and view CSV files and
images.

1.5 AI frameworks supported by ModelArts
The AI frameworks and versions supported by ModelArts vary slightly based on
the development environment notebook, training jobs, and model inference (AI
application management and deployment). The following describes the AI
frameworks supported by each module.

Modelarts
Usermanual 1 Service Overview

2024-04-30 12

Unified Image List
ModelArts provides unified images of Arm+Ascend specifications, including
MindSpore and PyTorch. You can use the images to develop environment, train
models, and deploy services. For details, see Unified Image List.

Table 1-1 MindSpore

Preset Image Supported
Processor

Applicable Scope

mindspore_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

mindspore_2.1.0-cann_6.3.2-py_3.7-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

mindspore_2.2.10-cann_8.0.rc1-
py_3.9-hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

Table 1-2 PyTorch

Preset Image Supported
Processor

Applicable Scope

pytorch_1.11.0-cann_6.3.2-py_3.7-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

pytorch_2.1.0-cann_8.0.rc1-py_3.9-
hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

pytorch_1.11.0-cann_8.0.rc1-py_3.9-
hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

Development Environment Notebook
The image and versions supported by development environment notebook
instances vary based on runtime environments.

Modelarts
Usermanual 1 Service Overview

2024-04-30 13

Table 1-3 Images supported by notebook of the new version

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

pytorch_1.11.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

pytorch_2.1.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

mindspore_2.2.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

mindspore_2.1.0-cann_6.3.2-
py_3.7-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
MindSpore

Ascend Yes Yes

pytorch_1.11.0-cann_6.3.2-
py_3.7-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

Modelarts
Usermanual 1 Service Overview

2024-04-30 14

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

mindspore1.7.0-cann5.1.0-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

mindstudio5.0.rc1-ascend-
cann5.1.rc1-euler2.8.3-
aarch64

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes No

mindspore1.8.0-cann5.1.2-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

tensorflow1.15-cann5.1.0-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
TensorFlow is
preset in the AI
engine.

Ascend Yes Yes

mindspore_2.0.0-cann_6.3.0-
py_3.7-euler_2.8.3

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
MindSpore

Ascend Yes Yes

pytorch_1.11.0-cann_6.3.0-
py_3.7-euler_2.8.3

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

Modelarts
Usermanual 1 Service Overview

2024-04-30 15

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

tensorflow1.15-
mindspore1.7.0-cann5.1.0-
euler2.8-aarch64

Ascend+Arm
algorithm
development and
training.
TensorFlow and
MindSpore are
preset in the AI
engine.

Ascend Yes Yes

tensorflow_1.15.0-
cann_6.3.0-py_3.7-
euler_2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

tensorflow1.15.0-cann5.1.2-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

Table 1-4 Images supported by notebook of the old version

Runtime Environment Built-in AI Engine and
Version

Supported Chip

Ascend-Powered-Engine
1.0 (Python3)

MindSpore 1.2.0 Ascend

MindSpore 1.1.1 Ascend

TensorFlow 1.15.0 Ascend

Training Jobs
The following table lists the AI engines.

The built-in training engines are named in the following format:
<Training engine name_version>-[cpu | <cuda_version | cann_version >]-<py_version>-<OS name_version>-<
x86_64 | aarch64>

Modelarts
Usermanual 1 Service Overview

2024-04-30 16

Table 1-5 AI engines supported by training jobs

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

Ascend-
Powered-
Engine

aarch6
4

Euler2.8 mindspore_2.0.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

PyTorch aarch6
4

Euler2.8 pytorch_1.11.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

TensorFlow aarch6
4

Euler2.8 tensorflow_1.15.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

NO TE

Supported AI engines vary depending on regions.

Supported AI Engines for ModelArts Inference
If you import a model from a template or OBS to create an AI application, the
following AI engines and versions are supported.

NO TE

● Runtime environments marked with recommended are unified runtime images, which
will be used as mainstream base inference images.

● Images of the old version will be discontinued. Use unified images.
● The base images to be removed are no longer maintained.
● Naming a unified runtime image: <AI engine name and version> - <Hardware and

version: CPU, CUDA, or CANN> - <Python version> - <OS version> - <CPU architecture>

Table 1-6 Supported AI engines and their runtime

Engine Runtime

TensorFlow tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

MindSpore mindspore_2.0.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

PyTorch pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

Modelarts
Usermanual 1 Service Overview

2024-04-30 17

1.6 Related Services

IAM
ModelArts uses Identity and Access Management (IAM) for authentication and
authorization. For more information about IAM, see Identity and Access
Management User Guide.

OBS
ModelArts uses Object Storage Service (OBS) to securely and reliably store data
and models at low costs. For more details, see Object Storage Service Console
Operation Guide.

EVS
ModelArts uses Elastic Volume Service (EVS) to store created notebook instances.

CCE
ModelArts uses Cloud Container Engine (CCE) to deploy models as real-time
services. CCE enables high concurrency and provides elastic scaling. For more
information about CCE, see Cloud Container Engine User Guide.

SWR
To use an AI framework that is not supported by ModelArts, use Software
Repository for Container (SWR) to customize an image and import the image to
ModelArts for training or inference. For details about SWR, see .

Cloud Eye
ModelArts uses Cloud Eye to monitor online services and model loads in real time
and send alarms and notifications automatically. For details about Cloud Eye, see
Cloud Eye User Guide.

CTS
ModelArts uses Cloud Trace Service (CTS) to record operations for later query,
audit, and backtrack operations. For details about CTS, see Cloud Trace Service
User Guide.

1.7 How Do I Access ModelArts?
You can access ModelArts through the web-based management console or by
using HTTPS-based application programming interfaces (APIs).

● Using the Management Console
ModelArts features a simple and easy-to-use management console, and
provides a host of functions including ExeML, data management,

Modelarts
Usermanual 1 Service Overview

2024-04-30 18

development environment, model training, AI application management, AI
Hub, and service deployment. You can complete end-to-end AI development
on the management console.

● Using APIs
If you want to integrate ModelArts into a third-party system for secondary
development, use APIs to access ModelArts. For details about the APIs and
operations, see ModelArts API Reference.

Modelarts
Usermanual 1 Service Overview

2024-04-30 19

2 Preparations

2.1 Configuring Access Authorization (Global
Configuration)

Scenarios

Exposed ModelArts functions are controlled through IAM permissions. For
example, if you as an IAM user need to create a training job on ModelArts, you
must have the modelarts:trainJob:create permission.

ModelArts must access other services for AI computing. For example, ModelArts
must access OBS to read your data for training. For security purposes, ModelArts
must be authorized to access other cloud services. This is agency authorization.

ModelArts provides one-click auto authorization. You can quickly configure agency
authorization on the Global Configuration page of ModelArts. Then, ModelArts
will automatically create an agency for you and configure it in ModelArts.

In this mode, the authorization scope is specified based on the preset system
policies of dependent services to ensure sufficient permissions for using services.
The created agency has almost all permissions of dependent services. If you want
to precisely control the scope of permissions granted to an agency, use custom
authorization. For more about permissions management, see Permissions
Management.

This section introduces one-click auto authorization. This mode allows you to
grant permissions to IAM users, federated users (virtual IAM users), agencies, and
all users with one click.

Adding Authorization
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Settings. The Global Configuration page is displayed.

2. Click Add Authorization. On the Add Authorization page that is displayed,
configure the parameters.

Modelarts
Usermanual 2 Preparations

2024-04-30 20

Table 2-1 Parameters

Parameter Description

Authorized User Options: IAM user, Federated user, Agency, and All users
● IAM user: You can use a tenant account to create IAM users and assign

permissions for specific resources. Each IAM user has their own identity
credentials (password and access keys) and uses cloud resources based
on assigned permissions.

● Federated user: A federated user is also called a virtual enterprise user.
● Agency: You can create agencies in IAM.
● All users: If you select this option, the agency permissions will be

granted to all IAM users under the current account, including those
created in the future. For individual users, choose All users.

Modelarts
Usermanual 2 Preparations

2024-04-30 21

Parameter Description

Authorized To This parameter is not displayed when Authorized User is set to All users.
● IAM user: Select an IAM user and configure an agency for the IAM

user.

Figure 2-1 Selecting an IAM user

● Federated user: Enter the username or user ID of the target federated
user.

Figure 2-2 Selecting a federated user

● Agency: Select an agency name. You can create an agency under
account A and grant the agency permissions to account B. When using
account B, you can switch the role in the upper right corner of the
console to account A and use the agency permissions of account A.

Figure 2-3 Switch Role

Agency ● Use existing: If there are agencies in the list, select an available one to
authorize the selected user. Click the drop-down arrow next to an
agency name to view its permission details.

● Add agency: If there is no available agency, create one. If you use
ModelArts for the first time, select Add agency.

Modelarts
Usermanual 2 Preparations

2024-04-30 22

Parameter Description

Add agency >
Agency Name

The system automatically creates a changeable agency name.

Add agency >
Authorization
Method

● Role-based: A coarse-grained IAM authorization strategy to assign
permissions based on user responsibilities. Only a limited number of
service-level roles are available. When using roles to grant permissions,
assign other roles on which the permissions depend to take effect.
Roles are not ideal for fine-grained authorization and secure access
control.

● Policy-based: A fine-grained authorization tool that defines
permissions for operations on specific cloud resources under certain
conditions. This type of authorization is more flexible and ideal for
secure access control.

Add agency >
Permissions >
Common User

Common User provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage
training jobs. Select this option generally.
Click View permissions to view common user permissions.

Add agency >
Permissions >
Custom

If you need refined permissions management, select Custom to flexibly
assign permissions to the created agency. You can select permissions from
the permission list as required.

3. Click Create.

Viewing Authorized Permissions

You can view the configured authorizations on the Global Configuration page.
Click View Permissions in the Authorization Content column to view the
permission details.

Figure 2-4 View Permissions

Figure 2-5 Common user permissions

Modelarts
Usermanual 2 Preparations

2024-04-30 23

Changing the Authorization Scope
1. To change the authorization scope, click Modify permissions in IAM in the

View Permissions dialog box.

Figure 2-6 Modify permissions in IAM

2. Modify the agency information. Select your required validity period.

Figure 2-7 Agency information

3. On the Agencies page, click Authorize, select policies or rules, and click Next.
Select the scope for minimum authorization and click OK.
When setting the minimum authorization scope, you can select either Global
services or All resources. If you select All resources, the selected permissions
will be applied to all resources.

Deleting Authorization
To better manage your authorization, you can delete the authorization of an IAM
user or delete the authorizations of all users in batches.

● Deleting the authorization of a user
On the Global Configuration page, locate the target user. Click Delete in the
Operation column of the target user. Enter DELETE and click OK. After the
deletion takes effect, the user cannot use ModelArts functions.

● Deleting authorizations in batches
On the Global Configuration page, click Clear Authorization above the
authorization list. Enter DELETE and click OK. After the deletion, the account
and all IAM users under the account cannot use ModelArts functions.

Modelarts
Usermanual 2 Preparations

2024-04-30 24

FAQs
1. How do I configure authorization when I use ModelArts for the first time?

On the Add Authorization page, set Agency to Add agency and select
Common User, which provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage training
jobs. Select this option generally.

2. Where is the entrance for authorization using an access key?
Access key authorization on the global configuration page has been
discontinued. If you used an access key for authorization before, switch to
agency authorization. To do so, click Clear Authorization on the Global
Configuration page and use an agency for authorization.

3. How do I obtain an access key (AK/SK)?
If you use AK/SK authentication to use certain functions, such as accessing
real-time services and logging in using PyCharm Toolkit or VS Code, obtain an
access key. For details, see How Do I Obtain an Access Key?.

4. How do I delete an existing agency from the agency list?

Go to the IAM console, click Agencies in the navigation pane, and delete the
target agency.

5. Why is a message indicating insufficient permission displayed when I access a
page on the ModelArts management console?
Possible causes are insufficient user permissions or changes in module
capabilities. To fix this issue, follow the prompts to update the authorization.

2.2 Creating an OBS Bucket
ModelArts uses OBS to store data and model backups and snapshots, achieving
secure, reliable, and low-cost storage. Before using ModelArts, create an OBS
bucket and folders for storing data.

OBS
OBS provides stable, secure, and efficient cloud storage service that lets you store
virtually any volume of unstructured data in any format. Bucket and objects are
basic concepts in OBS. A bucket is a container for storing objects in OBS. Each
bucket is specific to a region and has specific storage class and access permissions.
A bucket is accessible through its domain name over the Internet. An object is the
basic unit of data storage in OBS.

ModelArts cannot store data and uses OBS as its data storage center. All the input
data, output data, and cache data during AI development can be stored in OBS
buckets for reading.

Modelarts
Usermanual 2 Preparations

2024-04-30 25

Before using ModelArts, create an OBS bucket and folders for storing data.

Procedure
1. Log in to OBS Console and click Create Bucket in the upper right corner of

the page to create an OBS bucket. For example, create an OBS bucket named
c-flowers.

NO TE

The created OBS bucket and ModelArts are in the same region.
Do not enable Default Encryption. ModelArts cannot read the data from encrypted
OBS buckets.

2. On the Buckets page, click the bucket name to view its details.
3. Click Objects in the navigation pane on the left. On the Objects page, click

Create Folder to create an OBS folder. For example, create a folder named
flowers in the created c-flowers OBS bucket. For details, see Creating a
Folder.

Figure 2-8 Create Folder

Modelarts
Usermanual 2 Preparations

2024-04-30 26

3 ExeML

3.1 Introduction to ExeML

ExeML Functions

ModelArts ExeML is a customized code-free model development tool that helps
you start codeless AI application development with high flexibility. ExeML
automates model design, parameter tuning and training, and model compression
and deployment based on the labeled data. With ExeML, you only need to upload
data and perform simple operations as prompted on the ExeML GUI to train and
deploy models.

You can use ExeML to quickly build models for image classification, and object
detection. ExeML is widely used in industrial, retail, and security sectors.

● Image classification: identifies a class of objects in images.

● Object detection: identifies the position and class of each object in an image.

ExeML Process

With ModelArts ExeML, you can develop AI models without coding. You only need
to upload data, create a project, label the data, train a model, and deploy the
trained model. For details, see Figure 3-1. In the new-version ExeML, this process
can be finished by a workflow. You can develop a DAG through a workflow. DAG
execution is to use a task execution template to perform data labeling, dataset
publishing, model training, model registration, and service deployment in
sequence.

Figure 3-1 ExeML process

Modelarts
Usermanual 3 ExeML

2024-04-30 27

ExeML Projects
● Image Classification

An image classification project aims to classify images. You only need to add
images and label them. Then, an image classification model can be quickly
generated for automatically classifying offerings, vehicle types, and defective
goods. For example, in the quality check scenario, you can upload a product
image, label the image as qualified or unqualified, and train and deploy a
model to inspect product quality.

● Object Detection
An object detection project aims to identify the class and location of objects
in images. You only need to add images and label objects in the images with
proper bounding boxes. The labeled images will be used as a training set for
building a model to identify multiple objects or provide the number of objects
in a single image. Object detection can also be used to inspect employees'
dress code and perform unattended inspection of article placement.

3.2 Image Classification

3.2.1 Preparing Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.

Requirements on Datasets
● Check that all images are undamaged and in a compatible format. The

supported formats are JPG, JPEG, BMP, and PNG.
● Do not store data of different projects in the same dataset.
● Collect at least two classes of images with a similar number of images in each

class. Make sure each class has a minimum of 20 images.
● To ensure the prediction accuracy of models, the training samples must be

similar to the real-world use cases.
● To ensure the generalization capability of models, datasets should cover all

possible scenarios.

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:
● The name of files cannot contain plus signs (+), spaces, or tabs.
● If you do not need to upload training data in advance, create an empty folder

to store files generated in the future, for example, /bucketName/data-cat.
● If you need to upload images to be labeled in advance, create an empty

folder and save the images in the folder. An example of the image directory
structure is /bucketName/data-cat/cat.jpg.

● If you want to upload labeled images to the OBS bucket, upload them
according to the following specifications:

Modelarts
Usermanual 3 ExeML

2024-04-30 28

– The dataset for image classification requires storing labeled objects and
their label files (in one-to-one relationship with the labeled objects) in
the same directory. For example, if the name of the labeled object is
10.jpg, the name of the label file must be 10.txt.
Example of data files:
├─<dataset-import-path>
 │ 10.jpg
 │ 10.txt
 │ 11.jpg
 │ 11.txt
 │ 12.jpg
 │ 12.txt

– Only images in JPG, JPEG, PNG, and BMP formats are supported. When
uploading images on the OBS console, ensure that the size of an image
does not exceed 5 MB and the total size of images to be uploaded in one
attempt does not exceed 8 MB. If the data volume is large, use OBS
Browser+ to upload images.

– A label name can contain a maximum of 32 characters, including letters,
digits, hyphens (-), and underscores (_).

– The specifications of image classification label files (.txt) are as follows:
Each row contains only one label.
flower
book
...

Procedure for uploading data to OBS:

Perform the following operations to upload data to OBS for model training and
building.

1. Log in to OBS Console and create a bucket.
2. Upload the local data to the OBS bucket. If you have a large amount of data,

use OBS Browser+ to upload data or folders. The uploaded data must meet
the dataset requirements of the ExeML project.

NO TE

Upload data from unencrypted buckets. Otherwise, training will fail because data cannot be
decrypted.

Creating a Dataset
After the data preparation is completed, create a dataset of the type supported by
the project. For details, see .

3.2.2 Creating a Project
ModelArts ExeML supports image classification and object detection projects. You
can create any of them based on your needs. Perform the following operations to
create an ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. Click Create Project in the box of your desired project. The page for creating

an ExeML project is displayed.

Modelarts
Usermanual 3 ExeML

2024-04-30 29

Figure 3-2 Creating a project

3. On the project creation page, set parameters by referring to Table 3-1.

Table 3-1 Parameters

Parameter Description

Name Name of an ExeML project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Dataset You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see .

Modelarts
Usermanual 3 ExeML

2024-04-30 30

Parameter Description

Output Path Select an OBS path for storing ExeML data.
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the image classification project executes the

following phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Classify Images: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.
f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project

On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. In the search box above the ExeML project list, filter the desired workflows

based on the required property, such as name, status, project type, current
phase, and tag.

Figure 3-3 Property

Modelarts
Usermanual 3 ExeML

2024-04-30 31

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.

Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.

Operation Column: This function is enabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.

Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 3-4 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

3.2.3 Labeling Data
Model training requires a large number of labeled images. Therefore, before
model training, add labels to the images that are not labeled. ModelArts allows
you to add labels in batches by one click. You can also modify or delete labels that
have been added to images.

NO TE

The number of labeled images in the dataset must be no fewer than 100. Otherwise,
checking the dataset will fail, affecting your model training.

After the project is created, you will be directed to the ExeML page and the project
starts to run. Click the data labeling phase. After the status changes to Awaiting
operation, confirm the data labeling status in the dataset. You can also modify
labels, add data, or delete data in the dataset.

Modelarts
Usermanual 3 ExeML

2024-04-30 32

Figure 3-5 Data labeling status

Labeling Images
1. On the labeling phase of the new-version ExeML, click Instance Details. The

data labeling page is displayed.

Figure 3-6 Clicking Instance Details

2. Select the images to be labeled in sequence, or tick Select Images on
Current Page to select all images on the page, and then add labels to the
images in the right pane.

Figure 3-7 Labeling an image

3. After selecting an image, input a label in the Label text box, or select an
existing label from the drop-down list. Click OK. The selected image is
labeled. For example, you can select multiple images containing tulips and
add label tulips to them. Then select other unlabeled images and label them
as sunflowers and roses. After the labeling is complete, the images are saved
on the Labeled tab page.

a. You can add multiple labels to an image.

Modelarts
Usermanual 3 ExeML

2024-04-30 33

b. A label consists of letters, digits, hyphens (-), and underscores (_).
4. After all the images are labeled, view them on the Labeled tab page or view

All Labels in the right pane to check the name and quantity of the labels.

Synchronizing or Adding Images
On the labeling phase, click Instance Details to go to the data labeling page.
Then, add images from your local PC or synchronize image data from OBS.

Figure 3-8 Adding local images

Figure 3-9 Synchronizing OBS images

● Add data: You can click Add data to quickly add images on a local PC to
ModelArts. These images will be automatically synchronized to the OBS path
specified during project creation.

● Synchronize New Data: You can upload images to the OBS directory
specified during project creation and click Synchronize New Data to quickly
add the images in the OBS directory to ModelArts.

● Delete Image: You can delete images one by one, or tick Select Current
Page to delete all images on the page.

NO TE

The deleted images cannot be recovered. Exercise caution when performing this
operation.

Modifying Labeled Data
After labeling data, you can modify the labeled data on the Labeled tab page.

● Modifying based on images
On the data labeling page, click the Labeled tab, and select one or more
images to be modified from the image list. Modify the image information in
the label information area on the right.
– Adding a label: In the Label text box, select an existing label or enter a

new label name, and then click .
– Modifying a label: In the Labels of Selected Images area, click the

editing icon in the Operation column, enter the correct label name in the
text box, and click the check mark icon to complete the modification.

Modelarts
Usermanual 3 ExeML

2024-04-30 34

– Deleting a label: In the Labels of Selected Images area, click in the
Operation column to delete the label.

● Modifying based on labels
On the labeling overview page, click Label Management. Information about
all labels is displayed.
– Modifying a label: In the Operation column of the target label, click

Modify, enter the new label, and click OK.
– Deleting a label: In the Operation column of the target label, click

Delete, and click OK.

NO TE

Deleted tags cannot be restored.

Resuming Workflow Execution
After confirming data labeling, return back to the new-version ExeML. Click Next.
Then, the workflow continues to run in sequence until all phases are executed.

Figure 3-10 Resuming the workflow execution

3.2.4 Training a Model
After labeling the images, perform model training to obtain the required image
classification model. Ensure that the labeled images meet the requirements
specified in Prerequisites. Otherwise, checking the dataset will fail.

Prerequisites
1. The number of labeled images in your dataset is greater than or equal to 100.
2. At least two classes of samples are required for training, and each class with

at least 5 samples.

Procedure
1. Ensure all your dataset has been labeled. For details, see Labeling Data.

Modelarts
Usermanual 3 ExeML

2024-04-30 35

Figure 3-11 Finding unlabeled data

2. In the data labeling phase of the new-version ExeML, click Next and wait
until the workflow enters the training phase.

3. Wait until the training is complete. No manual operation is required. If you
close or exit the page, the system continues training until it is complete.

4. On the image classification phase, wait until the training status changes from
Running to Completed.

5. After the training, click on the image classification phase to view metric
information. For details about the evaluation result parameters, see Table
3-2.

Table 3-2 Evaluation result parameters

Parameter Descriptio
n

Description

Recall Recall Fraction of correctly predicted samples
over all samples predicted as a class. It
shows the ability of a model to
distinguish positive samples.

Precision Precision Fraction of correctly predicted samples
over all samples predicted as a class. It
shows the ability of a model to
distinguish negative samples.

Accuracy Accuracy Fraction of correctly predicted samples
over all samples. It shows the general
ability of a model to recognize samples.

F1 Score F1 score Harmonic average of the precision and
recall of a model. It is used to evaluate
the quality of a model. A high F1 score
indicates a good model.

Modelarts
Usermanual 3 ExeML

2024-04-30 36

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

3.2.5 Deploying a Model as a Service

Deploying a Service

You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After model training is complete, you can deploy a
version with the ideal accuracy and in the Successful status as a service. The
procedure is as follows:

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
service deployment.

Figure 3-12 Resource specifications

– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

Modelarts
Usermanual 3 ExeML

2024-04-30 37

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is not enabled, the real-time service continuously runs. Auto
stop is enabled by default and its default value is 1 hour later.
The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tag, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next. Wait until the status changes to
Executed. The AI application has been deployed as a real-time service.

Testing a Service
● After the service is deployed, click Instance Details to go to the real-time

service details page. Click the Prediction tab to test the service.

Figure 3-13 Testing the service

● You can also choose Service Deployment > Real-Time Services and click
Predict in the Operation column of the target service for testing. The testing
procedure is the same as that described in the following section. For details,
see Testing a Service.

● You can also use code to test a service. For details, see "Accessing Real-Time
Services".

● The following describes the procedure for performing a service test after the
image classification model is deployed as a service on the ExeML page.

a. After the model is deployed, click Instance Details in the service
deployment phase to go to the service page. On the Prediction tab page,
click Upload and select a local image for test.

Modelarts
Usermanual 3 ExeML

2024-04-30 38

b. Click Prediction to conduct the test. After the prediction is complete,
label sunflowers and its detection score are displayed in the prediction
result area on the right. If the model accuracy does not meet your
expectation, add images on the Label Data tab page, label the images,
and train and deploy the model again. Table 3-3 describes the
parameters in the prediction result. If you are satisfied with the model
prediction result, call the API to access the real-time service as prompted.
For details, see "Accessing Real-Time Services".
Only JPG, JPEG, BMP, and PNG images are supported.

Figure 3-14 Prediction result

Table 3-3 Parameters in the prediction result

Parameter Description

predicted_label Image prediction label

scores Prediction confidence of top 5 labels

NO TE

● A running real-time service continuously consumes resources. If you do not
need to use the real-time service, stop the service to stop billing. To do so,
click Stop in the More drop-down list in the Operation column. If you want
to use the service again, click Start.

3.3 Object Detection

3.3.1 Preparing Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.

Uploading Data to OBS
This operation uses the OBS console to upload data.

Perform the following operations to import data to the dataset for model training
and building.

Modelarts
Usermanual 3 ExeML

2024-04-30 39

1. Log in to OBS Console and create a bucket.
2. Upload the local data to the OBS bucket. If you have a large amount of data,

use OBS Browser+ to upload data or folders. The uploaded data must meet
the dataset requirements of the ExeML project.

NO TE

Upload data from unencrypted buckets. Otherwise, training will fail because data cannot be
decrypted.

Requirements on Datasets
● The name of files in a dataset cannot contain Chinese characters, plus signs

(+), spaces, or tabs.
● Ensure that no damaged image exists. The supported image formats include

JPG, JPEG, BMP, and PNG.
● Do not store data of different projects in the same dataset.
● To ensure the prediction accuracy of models, the training samples must be

similar to the actual application scenarios.
● To ensure the generalization capability of models, datasets should cover all

possible scenarios.
● In an object detection dataset, if the coordinates of the bounding box exceed

the boundaries of an image, the image cannot be identified as a labeled
image.

Requirements for Files Uploaded to OBS
● If you do not need to upload training data in advance, create an empty folder

to store files generated in the future, for example, /bucketName/data-cat.
● If you need to upload images to be labeled in advance, create an empty

folder and save the images in the folder. An example of the image directory
structure is /bucketName/data-cat/cat.jpg.

● If you want to upload labeled images to the OBS bucket, upload them
according to the following specifications:
– The dataset for object detection requires storing labeled objects and their

label files (in one-to-one relationship with the labeled objects) in the
same directory. For example, if the name of the labeled object is
IMG_20180919_114745.jpg, the name of the label file must be
IMG_20180919_114745.xml.
The label files for object detection must be in PASCAL VOC format. For
details about the format, see Table 3-4.
Example of data files:
├─<dataset-import-path>
 │ IMG_20180919_114732.jpg
 │ IMG_20180919_114732.xml
 │ IMG_20180919_114745.jpg
 │ IMG_20180919_114745.xml
 │ IMG_20180919_114945.jpg
 │ IMG_20180919_114945.xml

– Images in JPG, JPEG, PNG, and BMP formats are supported. When
uploading images on the ModelArts console, ensure that the size of an
image does not exceed 5 MB and the total size of images to be uploaded

Modelarts
Usermanual 3 ExeML

2024-04-30 40

in one attempt does not exceed 8 MB. If the data volume is large, use
OBS Browser+ to upload images.

– A label name can contain a maximum of 32 characters, including letters,
digits, hyphens (-), and underscores (_).

Table 3-4 PASCAL VOC format description

Field Mandat
ory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is

mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This

parameter is mandatory.

segment
ed

Yes Segmented or not

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: class of the labeled object. This

parameter is mandatory.
● pose: shooting angle of the labeled object.

This parameter is mandatory.
● truncated: whether the labeled object is

truncated (0 indicates that the object is not
truncated). This parameter is mandatory.

● occluded: whether the labeled object is
occluded (0 indicates that the object is not
occluded). This parameter is mandatory.

● difficult: whether the labeled object is
difficult to identify (0 indicates that the object
is easy to identify). This parameter is
mandatory.

● confidence: confidence score of the labeled
object. The value range is 0 to 1. This
parameter is optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible
values, see Table 3-5.

Modelarts
Usermanual 3 ExeML

2024-04-30 41

Table 3-5 Description of bounding box types

type Shape Labeling Information

bndbox Rectangl
e

Coordinates of the upper left and lower right
points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

Example of the label file in KITTI format:
<annotation>
 <folder>test_data</folder>
 <filename>260730932.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
</annotation>

3.3.2 Creating a Project
ModelArts ExeML supports image classification and object detection projects. You
can create any of them based on your needs. Perform the following operations to
create an ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. Click Create Project in the box of your desired project. The page for creating

an ExeML project is displayed.

Figure 3-15 Create Project

Modelarts
Usermanual 3 ExeML

2024-04-30 42

3. On the project creation page, set parameters by referring to Table 3-6.

Table 3-6 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Dataset
Source

You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see .

Output Path An OBS path for storing ExeML data
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.

4. Click Create Project. Then, the ExeML workflow is displayed.

Modelarts
Usermanual 3 ExeML

2024-04-30 43

5. Wait until the workflow of the object detection project executes the following
phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Detect Objects: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.
f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. In the search box above the ExeML project list, filter the desired workflows

based on the required property, such as name, status, project type, current
phase, and tag.

Figure 3-16 Property

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is enabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Modelarts
Usermanual 3 ExeML

2024-04-30 44

Figure 3-17 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

3.3.3 Labeling Data
Before data labeling, consider how to design labels. The labels must correspond to
the distinct characteristics of the detected images and are easy to identify (the
detected object in an image is highly distinguished from the background). Each
label specifies the expected recognition result of the detected images. After the
label design is complete, prepare images based on the designed labels. It is
recommended that the number of all images to be detected be greater than 100.
If the labels of some images are similar, prepare more images. At least two classes
of samples are required for training, and each class with at least 50 samples.

● During labeling, the variance of a class should be as small as possible. That is,
the labeled objects of the same class should be as similar as possible. The
labeled objects of different classes should be as different as possible.

● The contrast between the labeled objects and the image background should
be as stark as possible.

● In object detection labeling, a target object must be entirely contained within
a labeling box. If there are multiple objects in an image, do not relabel or
miss any objects.

After a project is created, you will be redirected to the new-version ExeML and the
project starts to run. When the data labeling phase changes to Awaiting
operation, manually confirm data labeling in the dataset. You can also add or
delete data in the dataset and modify labels.

Modelarts
Usermanual 3 ExeML

2024-04-30 45

Figure 3-18 Data labeling status

Labeling Images
1. On the labeling phase of the new-version ExeML, click Instance Details. The

data labeling page is displayed. Click an image to go to the labeling page.

2. Left-click and drag the mouse to select the area where the target object is
located. In the dialog box that is displayed, select the label color, enter the
label name, for example, yunbao, and press Enter. After the labeling is
complete, the status of the images changes to Labeled.
More descriptions of data labeling are as follows:
– You can click the arrow keys in the upper and lower parts of the image,

or press the left and right arrow keys on the keyboard to select another
image. Then, repeat the preceding operations to label the image. If an
image contains more than one object, you can label all the objects.

– You can add multiple labels with different colors for an object detection
ExeML project for easy identification. After selecting an object, select a
new color and enter a new label name in the dialog box that is displayed
to add a new label.

– In an ExeML project, object detection supports only rectangular labeling
boxes. In the Data Management function, more types of labeling boxes
are supported for object detection datasets.

– In the Label Data window, you can scroll the mouse to zoom in or zoom
out on the image to quickly locate the object.

Modelarts
Usermanual 3 ExeML

2024-04-30 46

NO TE

For an object detection dataset, you can add multiple labeling boxes and labels to an
image during labeling. The labeling boxes cannot extend beyond the image boundary.

3. After all images in the image directory are labeled, return to the ExeML
workflow page and click Next. The workflow automatically publishes a data
labeling version and performs training.

Synchronizing or Adding Images
In the labeling phase, click Instance Details to go to the data labeling page. Then,
add images from your local PC or synchronize images from OBS.

Figure 3-19 Adding local images

Figure 3-20 Synchronizing images from OBS

● Add data: You can quickly add images on a local PC to ModelArts. These
images will be automatically synchronized to the OBS path specified during
project creation. Click Add data and import data.

● Synchronize New Data: You can upload images to the OBS directory
specified during project creation and click Synchronize New Data to quickly
add the new images in the OBS directory to ModelArts.

● Delete: You can delete images one by one, or select Select Images on
Current Page to delete all images on the page.

NO TE

Deleted images cannot be recovered.

Modifying Labeled Data
After labeling data, you can modify the labeled data on the Labeled tab page.

● Modifying based on images
On the dataset details page, click the Labeled tab, and then select the image
to be modified. Modify the image information in the label information area
on the right.
– Modifying a label: In the Labeling area, click the editing icon, enter the

correct label name in the text box, and click the check mark to complete
the modification. The label color cannot be modified.

Modelarts
Usermanual 3 ExeML

2024-04-30 47

– Deleting a label: In the Labeling area, click the deletion button to delete
a label for the image.
After the label is deleted, click the project name in the upper left corner
of the page to exit the labeling page. The image will be returned to the
Unlabeled tab page.

● Modifying based on labels
On the labeling job overview page, click Label Management on the right.
You will see the label management page, which shows information about all
labels.

Figure 3-21 Label management page

– Modifying a label: Click Modify in the Operation column. In the dialog
box that appears, enter a new label and click OK. After the modification,
the images that have been added with the label use the new label name.

– Deleting a label: Click the deletion button in the Operation column. In
the dialog box that appears, confirm the operation and click OK.

NO TE

Deleted tags cannot be restored.

Resuming Workflow Execution
After confirming data labeling, return back to the new-version ExeML. Click Next.
Then, the workflow continues to run in sequence until all phases are executed.

Figure 3-22 Resuming the workflow execution

3.3.4 Training a Model
After labeling the images, perform auto training to obtain an appropriate model
version.

Procedure
1. On the ExeML page of the new version, click the name of the target project.

Then, click Instance Details on the labeling phase to label data.

Modelarts
Usermanual 3 ExeML

2024-04-30 48

Figure 3-23 Finding unlabeled data

2. Return to the labeling phase of the new-version ExeML, click Next and wait
until the workflow enters the training phase.

3. Wait until the training is complete. No manual operation is required. If you
close or exit the page, the system continues training until it is complete.

4. On the object detection phase, wait until the training status changes from
Running to Completed.

5. After the training, click on the object detection phase to view metric
information. For details about the evaluation result parameters, see Table
3-7.

Table 3-7 Evaluation result parameters

Parameter Description

Recall Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish positive samples.

Precision Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish negative samples.

Accuracy Fraction of correctly predicted samples over all
samples. It shows the general ability of a model to
recognize samples.

F1 Score Harmonic average of the precision and recall of a
model. It is used to evaluate the quality of a model.
A high F1 score indicates a good model.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

Modelarts
Usermanual 3 ExeML

2024-04-30 49

3.3.5 Deploying a Model as a Service

Deploying a Service
You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
service deployment.

Figure 3-24 Resource specifications

– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is not enabled, the real-time service continuously runs. Auto
stop is enabled by default and its default value is 1 hour later.
The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

Modelarts
Usermanual 3 ExeML

2024-04-30 50

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tag, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next. Wait until the status changes to
Executed. The AI application has been deployed as a real-time service.

Testing a Service
● After the service is deployed, click Instance Details to go to the real-time

service details page. Click the Prediction tab to test the service.

Figure 3-25 Testing the service

● You can also choose Service Deployment > Real-Time Services and click
Predict in the Operation column of the target service for testing. The testing
procedure is the same as that described in the following section. For details,
see Testing a Service.

● You can also use code to test a service. For details, see "Accessing Real-Time
Services".

● The following describes the procedure for performing a service test after the
object detection model is deployed as a service on the ExeML page.

a. After the model is deployed, click Instance Details in the service
deployment phase to go to the service page. On the Prediction tab page,
click Upload and select a local image for test.

b. Click Predict to perform the test. After the prediction is complete, the
result is displayed in the Test Result pane on the right. If the model
accuracy does not meet your expectation, add images on the Label Data
tab page, label the images, and train and deploy the model again. Table
3-8 describes the parameters in the prediction result. If you are satisfied
with the model prediction result, call the API to access the real-time
service as prompted. For details, see "Accessing Real-Time Services".

Modelarts
Usermanual 3 ExeML

2024-04-30 51

Currently, only JPG, JPEG, BMP, and PNG images are supported.

Table 3-8 Parameters in the prediction result

Parameter Description

detection_class
es

Label of each detection box

detection_boxe
s

Coordinates of four points (y_min, x_min, y_max, and
x_max) of each detection box, as shown in Figure
3-26

detection_score
s

Confidence of each detection box

Figure 3-26 Illustration for coordinates of four points of a detection box

NO TE

● A running real-time service keeps consuming resources. If you do not need to
use the real-time service, click Stop in the Version Manager pane to stop the
service. If you want to use the service again, click Start.

3.4 Predictive Analytics

3.4.1 Preparing Data
Before using ModelArts to build a predictive analytics model, upload data to OBS.

Modelarts
Usermanual 3 ExeML

2024-04-30 52

Requirements on Datasets
The data set used in the predictive analytics project must be a table dataset in .csv
format. For details about the table dataset, see .

NO TE

To convert the data from .xlsx to .csv, perform the following operations:

Save the original table data in .xlsx. Choose File > Save As, select a local address, set Save
as type: to CSV (Comma delimited), and click Save. Then, click OK in the displayed dialog
box.

Requirements on the training data:
● The number of columns in the training data must be the same, and there has

to be at least 100 data records (a feature with different values is considered
as different data records).

● The training columns cannot contain timestamp data (such as yy-mm-dd or
yyyy-mm-dd).

● If a column has only one value, the column is considered invalid. Ensure that
there are at least two values in the label column and no data is missing.

NO TE

The label column is the training target specified in a training task. It is the output
(prediction item) for the model trained using the dataset.

● In addition to the label column, the dataset must contain at least two valid
feature columns. Ensure that there are at least two values in each feature
column and that the percentage of missing data must be lower than 10%.

● Due to the limitation of the feature filtering algorithm, place the predictive
data column at the last. Otherwise, the training may fail.

Example of a table dataset:

The following table takes the bank deposit predictive dataset as an example. Data
sources include age, occupation, marital status, cultural level, and whether there is
a personal mortgage or personal loan.

Table 3-9 Fields and meanings of data sources

Field Meaning Type Description

attr_1 Age Int Age of the customer

attr_2 Occupation String Occupation of the customer

attr_3 Marital
status

String Marital status of the customer

attr_4 Education
status

String Education status of the customer

attr_5 Real estate String Housing situation of the customer

attr_6 Loan String Loan of the customer

attr_7 Deposit String Deposit of the customer

Modelarts
Usermanual 3 ExeML

2024-04-30 53

Table 3-10 Sample data of the dataset

attr_1 attr_2 attr_3 attr_4 attr_5 attr_6 attr_7

31 blue-
collar

married secondar
y

yes no no

41 manage
ment

married tertiary yes yes no

38 technicia
n

single secondar
y

yes no no

39 technicia
n

single secondar
y

yes no yes

39 blue-
collar

married secondar
y

yes no no

39 services single unknown yes no no

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:

The OBS path of the predictive analytics projects must comply with the following
rules:

● The OBS path of the input data must redirect to the data files. The data files
must be stored in a folder in an OBS bucket rather than the root directory of
the OBS bucket, for example, /obs-xxx/data/input.csv.

● There must be at least 100 lines of valid data in .csv. There cannot be more
than 200 columns of data and the total data size must be smaller than 100
MB.

Procedure for uploading data to OBS:

Perform the following operations to import data to the dataset for model training
and building.

1. Log in to the OBS console and create a bucket.

2. Upload the local data to the OBS bucket. If you have a large amount of data,
use OBS Browser+ to upload data or folders. The uploaded data must meet
the dataset requirements of the ExeML project.

NO TE

Upload data from unencrypted buckets. Otherwise, training will fail because data cannot be
decrypted.

Modelarts
Usermanual 3 ExeML

2024-04-30 54

Creating a Dataset
After the data is prepared, create a proper dataset. For details, see .

FAQs
How do I process Schema information when creating a table dataset using data
selected from OBS?

Schema information includes the names and types of table columns, which must
be the same as those of the imported data.
● If the original table contains a table header, enable Contain Table Header.

The first row of the file will be used as column names. You do not need to
modify the Schema information.

● If the original table does not contain a table header, disable Contain Table
Header. After data is selected from OBS, the column names will be used as
the first row of the table by default. Change the column names to attr_1,
attr_2, ..., attr_n. attr_n is the prediction column placed at last.

3.4.2 Creating a Project
ModelArts ExeML supports image classification, and object detection projects. You
can create any of them based on your needs. Perform the following operations to
create an ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. Click Create Project in the box of your desired project.

Figure 3-27 Creating a project (1)

3. On the displayed page, set the parameters by referring to Table 3-11.

Modelarts
Usermanual 3 ExeML

2024-04-30 55

Figure 3-28 Creating a project (2)

Table 3-11 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see .

Modelarts
Usermanual 3 ExeML

2024-04-30 56

Parameter Description

Label
Column

Select the column you want to predict.
The label column is the output of an inference model.
During model training, all information is used to train an
inference model. The model uses the data of other columns
as the input and outputs the inference result in the label
column. You can publish the model as a real-time inference
service.

Output Path Select an OBS path for storing ExeML data.
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the predictive analytics project executes the

following phases in sequence:

a. Publish Dataset Version: Publish a version for the labeled dataset.
b. Check Data: Check whether any exception occurs in your dataset.
c. Predict: Train the dataset of the published version to generate a model.
d. Register Model: Register the trained model with model management.
e. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose ExeML.
2. In the search box above the ExeML project list, filter the desired workflows

based on the required property, such as name, status, project type, current
phase, and tag.

Modelarts
Usermanual 3 ExeML

2024-04-30 57

Figure 3-29 Property

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is enabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 3-30 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

Modelarts
Usermanual 3 ExeML

2024-04-30 58

5. To arrange ExeML projects by a specific property, click in the table
header.

3.4.3 Training a Model
After the ExeML task is created, a model is trained for predictive analytics. You can
publish the model as a real-time inference service.

Procedure
1. On the ExeML page of the new version, click the name of the target project to

view the execution status of the current workflow.
2. On the predictive analytics phase, wait until the phase status changes from

Running to Executed.

3. Click to view the training details, such as the label column, data type,
accuracy, and evaluation result.
The example is a discrete value of binary classification. For details about the
evaluation result parameters, see Table 3-12.
For details about the evaluation results generated for different data types of
label columns, see Evaluation Results.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

Evaluation Results

The parameters in evaluation results vary depending on the training data type.

● Discrete values
The evaluation parameters include recall, precision, accuracy, and F1 score,
which are described in the following table.

Table 3-12 Parameters in discrete value evaluation results

Param
eter

Description

Recall Fraction of correctly predicted samples over all samples predicted
as a class. It shows the ability of a model to distinguish positive
samples.

Precisi
on

Fraction of correctly predicted samples over all samples predicted
as a class. It shows the ability of a model to distinguish negative
samples.

Accura
cy

Fraction of correctly predicted samples over all samples. It shows
the general ability of a model to recognize samples.

Modelarts
Usermanual 3 ExeML

2024-04-30 59

Param
eter

Description

F1
Score

Harmonic average of the precision and recall of a model. It is used
to evaluate the quality of a model. A high F1 score indicates a
good model.

● Continuous values

The evaluation parameters include Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE). The three error
values represent a difference between a real value and a predicted value.
During multiple rounds of modeling, a group of error values is generated for
each round of modeling. Use these error values to determine the quality of a
model. A smaller error value indicates a better model.

3.4.4 Deploying a Model as a Service

Deploying a Service

You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
service deployment.

Figure 3-31 Resource specifications

– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.

Modelarts
Usermanual 3 ExeML

2024-04-30 60

– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is disabled, a real-time service will continue to run. The auto
stop function is enabled by default. The default value is 1 hour later.
The options are 1 hour later, 2 hours later, 4 hours later, 6 hours later,
and Custom. If you select Custom, enter any integer from 1 to 24 in the
text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tag, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next and confirm the operation. Wait until
the status changes to Executed, which means the AI application has been
deployed as a real-time service.

Testing the Service
● After the service is deployed, click Instance Details to go to the real-time

service details page. Click the Prediction tab to test the service.

Figure 3-32 Testing the service

● You can also choose Service Deployment > Real-Time Services and click
Predict in the Operation column of the target service for testing. The testing

Modelarts
Usermanual 3 ExeML

2024-04-30 61

procedure is the same as that described in the following section. For details,
see "Testing the Deployed Service".

● You can also use code to test a service. For details, see "Accessing Real-Time
Services".

● The following describes the procedure for performing a service test after the
predictive analytics model is deployed as a service on the ExeML page.

a. After the model is deployed, you can test the model using code. In
ExeML, click Instance Details on the Deploy Service page to go to the
real-time service page. On the Prediction tab page, enter the debugging
code in the Inference Code area.

b. Click Predict to perform the test. After the prediction is complete, the
result is displayed in the Test Result pane on the right. If the model
accuracy does not meet your expectation, train and deploy the model
again on the Label Data tab page. If you are satisfied with the model
prediction result, call the API to access the real-time service as prompted.
For details, see "Accessing Real-Time Services".

▪ In the input code, the label column of a predictive analytics database
must be named class. Otherwise, the prediction will fail.
{
 "data": {
 "req_data": [{
 "attr_1": "34",
 "attr_2": "blue-collar",
 "attr_3": "single",
 "attr_4": "tertiary",
 "attr_5": "no",
 "attr_6": "tertiary"
 }]
 }
}

▪ In the preceding code snippet, predict is the inference result of the
label column.

Figure 3-33 Prediction result

NO TE

● A running real-time service continuously consumes resources. If you do not
need to use the real-time service, stop the service to stop billing. To do so,
click Stop in the More drop-down list in the Operation column. If you want
to use the service again, click Start.

● If you enable auto stop, the service automatically stops at the specified time
and no fees will be generated then.

3.5 Tips

Modelarts
Usermanual 3 ExeML

2024-04-30 62

3.5.1 How Do I Quickly Create an OBS Bucket and a Folder
When Creating a Project?

When creating a project, select a training data path. This section describes how to
quickly create an OBS bucket and folder when you select the training data path.

1. On the page for creating an ExeML project, click on the right of Input
Dataset Path. The Input Dataset Path dialog box is displayed.

2. Click Create Bucket. The Create Bucket page is displayed. For details, see
"Creating a Bucket" in Object Storage Service Console Operation Guide.

Figure 3-34 Creating an OBS bucket

3. Select the bucket, and click Create Folder. In the dialog box that is displayed,
enter the folder name and click OK.
– The name cannot contain the following special characters: \/:*?"<>|
– The name cannot start or end with a period (.) or slash (/).
– The absolute path of a folder cannot exceed 1,023 characters.
– Any single slash (/) separates and creates multiple levels of folders at

once.

3.5.2 Where Are Models Generated by ExeML Stored? What
Other Operations Are Supported?

Unified Model Management

For an ExeML project, after the model training is complete, the generated model is
automatically displayed on the AI Application Management > AI Applications
page. The model name is automatically generated by the system. Its prefix is the
same as the name of the ExeML project for easy identification.

CA UTION

Models generated by ExeML cannot be downloaded.

What Other Operations Are Supported for Models Generated by ExeML?
● Deploying models as real-time and batch services

Modelarts
Usermanual 3 ExeML

2024-04-30 63

On the ExeML page, models can only be deployed as real-time services. You
can deploy models as batch services on the AI Application Management >
AI Applications page.

● Creating a version
When creating a new version, you can select a meta model only from a
ModelArts training job, OBS, model template, or custom image. You cannot
create a version from the original ExeML project.

● Deleting a model or its version

Modelarts
Usermanual 3 ExeML

2024-04-30 64

4 Workflow

4.1 MLOps Overview

What Is MLOps?

Machine Learning Operations (MLOps) are a set of practices with machine
learning (ML) and DevOps combined. With the development of ML, it is expected
not only to make breakthroughs in academic research, but also to systematically
implement these technologies in various scenarios. However, there is a significant
gap between academic research and the implementation of ML technologies. In
academic research, an AI algorithm is developed for a certain dataset (a public
dataset or a scenario-specific dataset). The algorithm is continuously iterated and
optimized for this specific dataset. Scenario-oriented systematical AI development
involves the development of both models and the entire system. Then, the
successful experience in software system development "DevOps" is naturally
introduced to AI development. However, in the AI era, traditional DevOps cannot
cover the entire development process of an AI system.

DevOps

Development and Operations (DevOps) are a set of processes, approaches, and
systems that facilitate communication, collaboration, and integration between
software development, O&M, and quality assurance (QA) departments. DevOps is
a proven approach in large-scale software system development. DevOps not only
accelerates the interaction and iteration between services and development, but
also resolves the conflicts between development and O&M. Development pursues
speed, while O&M requires stability. This is the inherent and root conflict between
development and O&M. Similar conflicts occur during the implementation of AI
applications. The development of AI applications requires basic algorithm
knowledge as well as fast, efficient algorithm iteration. Professional O&M
personnel pursue stability, security, and reliability. Their professional knowledge is
quite different from that of AI algorithm personnel. O&M personnel have to
understand the design and ideas of algorithm personnel for service assurance,
which are difficult for them to achieve. In this case, the algorithm personnel are
required to take end-to-end responsibilities, leading to high labor cost. This
method is feasible if a small number of models are used. However, when AI

Modelarts
Usermanual 4 Workflow

2024-04-30 65

applications are implemented on a large scale, manpower will become a
bottleneck.

MLOps Functions
The ML development process consists of project design, data engineering, model
building, and model deployment. AI development is not a unidirectional pipeline
job. During development, multiple iterations of experiments are performed based
on the data and model results. To achieve better model results, algorithm
engineers perform diverse data processing and model optimization based on the
data features and labels of existing datasets. Traditional AI development ends with
a one-off delivery of the final model output by iterative experimentation. As time
passes after an application is released however, model drift occurs, leading to
worsening effects when applying new data and features to the existing model.
Iterative experimentation of MLOps forms a fixed pipeline which contains data
engineering, model algorithms, and training configurations. You can use the
pipeline to continuously perform iterative training on data that is being
continuously generated. This ensures that the AI application of the model, built
using the pipeline, is always in an optimum state.

Figure 4-1 MLOps

An entire MLOps link, which covers everything from algorithm development to
service delivery and O&M, requires an implementation tool. Originally, the
development and delivery processes were conducted separately. The models
developed by algorithm engineers were delivered to downstream system
engineers. In this process, algorithm engineers are highly involved, which is
different from MLOps. There are general delivery cooperation rules in each
enterprise. When it comes to project management, working process management
needs to be added to AI projects as the system does not simply build and manage
pipelines, but acts as a job management system.

The tool for the MLOps link must support the following features:

● Process analysis: Accumulated industry sample pipelines help you quickly
design AI projects and processes.

● Process definition and redefinition: You can use pipelines to quickly define AI
projects and design workflows for model training and release for inference.

Modelarts
Usermanual 4 Workflow

2024-04-30 66

● Resource allocation: You can use account management to allocate resource
quotas and permissions to participants (including developers and O&M
personnel) in the pipeline and view resource usage.

● Task arrangement: Sub-tasks can be arranged based on sub-pipelines.
Additionally, notifications can be enabled for efficient management and
collaboration.

● Process quality and efficiency evaluation: Pipeline execution views are
provided, and checkpoints for different phases such as data evaluation, model
evaluation, and performance evaluation are added so that AI project
managers can easily view the quality and efficiency of the pipeline execution.

● Process optimization: In each iteration of the pipeline, you can customize core
metrics and obtain affected data and causes. In this way, you can quickly
determine the next iteration based on these metrics.

4.2 What Is Workflow?
A workflow is a pipeline tool developed based on service scenarios for deploying
models or applications. In ML, a pipeline may involve data labeling, data
processing, model development and training, model evaluation, application
development, and application evaluation.

Figure 4-2 Workflow

Different from traditional ML-based model building, workflows can be used to
develop production pipelines. Based on MLOps, workflows enable runtime
recording, monitoring, and continuous running. The development and continuous
iteration of a workflow are separated in products based on roles and concepts.

A pipeline consists of multiple phases. The functions required by the pipeline and
the function parameters are called through workflow SDKs. When developing a
pipeline, you can use SDKs to describe phases and the relationships between
phases. Developing a pipeline is the development state of the workflow. After a
pipeline is determined, you can consolidate and provide it for others to use. You
do not need to pay attention to what algorithms are used in the pipeline or how
the pipeline is implemented. Instead, you only need to check whether the models
or applications produced by the pipeline meet the release requirements. If not, you

Modelarts
Usermanual 4 Workflow

2024-04-30 67

need to check whether the data and parameters need to be adjusted for iteration.
Using such a consolidated pipeline is the running state of the workflow.

The development and running states of a workflow are as follows:

● Development state: Workflow Python SDKs are used to develop and debug a
pipeline.

● Running state: You can configure and run a produced pipeline in visualized
mode.

Leveraging DevOps principles and practices, workflows orchestrate ModelArts
capabilities to help you efficiently train, develop, and deploy AI models.

Different functions are implemented in the development and running states of a
workflow.

Workflow Development State

Based on service requirements, you can use Python SDKs provided by ModelArts
workflows to offer each ModelArts capability as a step in a pipeline. This is a
familiar and flexible development mode for AI developers. Python SDKs support:

● Debugging: partially execution, fully execution, and debugging.

● Release: Release a workflow from the development state to the running state.

● Experiment record: for persistence and the management of experiments.

Workflow Running State

Workflows are executed in visualized mode. You only need to pay attention to
some simple parameter settings, whether the model needs to be retrained, and
model deployment.

Running workflows are released from the development state or subscribed to from
AI Hub.

A running workflow supports:

● Unified configuration management: The parameters and resources required
for a workflow are centrally managed.

● Workflow operations: include starting, stopping, copying, and deleting
workflows.

● Running record: records historical running parameters and statuses of the
workflow.

Workflow Components

A workflow is the description of a directed acyclic graph (DAG). You can develop a
DAG through a workflow. A DAG consists of phases and the relationships between
phases. To define a DAG, specify the execution content and sequence on phases. A
green rectangle indicates a phase, and the link between phases shows the phase
relationship. A DAG is actually an ordered job execution template.

Modelarts
Usermanual 4 Workflow

2024-04-30 68

Sample Workflows

ModelArts provides abundant scenario-oriented sample workflows. You can
subscribe to them in .

Subscribing to and Using an AI Hub Workflow
1. On the workflow asset page of AI Hub, select and subscribe to a workflow.
2. After the subscription, click Run. You will be automatically redirected to the

ModelArts console. Select an asset version, workflow name, service region,
and workspace, and click Import. The workflow details page is displayed.

3. Click Configure in the upper right corner. On the configuration page that
appears, set parameters and click Save in the upper right corner to save the
configuration.

4. Click Start in the top right corner to start the workflow.
5. On the workflow execution page, wait for the workflow to start running.
6. On the dashboard, check the status of each phase. The workflow runs

automatically from one phase to the next until it finishes all the phases.

4.3 How to Use a Workflow?

4.3.1 Using a Workflow Subscribed to From AI Hub
1. On the workflow asset page of AI Hub, select and subscribe to a workflow.
2. After the subscription, click Run. You will be automatically redirected to the

ModelArts console. Select an asset version, workflow name, service region,
and workspace, and click Import. The workflow details page is displayed.

3. Click Configure in the upper right corner. On the configuration page that
appears, set parameters and click Save in the upper right corner to save the
configuration.

4. Click Start in the upper right corner to start the workflow.
5. On the workflow execution page, wait for the workflow to start running.

On the dashboard, check the status of each phase. The workflow runs
automatically from one phase to the next until it finishes all the phases.

4.3.2 Configuring a Workflow

4.3.2.1 Configuration Entries

Before or during the execution of a workflow, configure the parameters and
resources required by the workflow. After obtaining the workflow, modify the
configuration as required so that the produced model or application is better
suited for your needs.

Workflow configurations include the configurations before and during the
workflow execution.

Modelarts
Usermanual 4 Workflow

2024-04-30 69

Configurations Before Workflow Execution

Log in to the ModelArts management console and choose Workflow to go to the
workflow list page. There are two entries to configure a workflow before it runs.

● Click Configure in the Operation column of the target workflow to go to the
workflow configuration page.

Figure 4-3 Configure

● On the workflow list page, click the name of the target workflow. On the
workflow details page that is displayed, click Configure in the upper right
corner.

Figure 4-4 Configure

Configurations During Workflow Execution

Certain phases require parameter configuration during the execution of a
workflow. When the workflow runs to such a phase, it pauses and waits for your
input.

On the workflow overview page, view the to-dos on the right. Click the workflow
name to go to the phase in the awaiting input status. Set the parameters for the
phase and click Next.

Figure 4-5 Workflow to-dos

4.3.2.2 Runtime Configurations

Work directories can be centrally managed in ModelArts workflow. The root
directory is configured in Runtime Configurations.

1. On the workflow list page, click the name of the target workflow.
2. Click Configure in the upper right corner.
3. On the Workflow Configurations tab page, configure the Runtime

Configurations settings.

Modelarts
Usermanual 4 Workflow

2024-04-30 70

Figure 4-6 Runtime Configurations

4.3.2.3 Resource Configurations

You can configure resources for multiple phases within a workflow, with the ability
to specify different configurations for each phase.

Figure 4-7 Resource Configurations

If you need to use a dedicated resource pool, enable Dedicated Resource Pool.

Specify the required inference resource specifications when the workflow runs on
the service deployment phase.

1. Wait until the workflow runs on the service deployment phase, and the phase
enters the Awaiting input status.

2. In the Input area, select the required inference resource specifications.

3. Click Next.

4.3.2.4 Tab Configuration

You can filter workflows by tag for easy classification, which saves a lot of time.

Configuring Tags
1. On the ModelArts console, choose Workflow from the navigation pane. The

workflow list page is displayed.

2. Locate the workflow you want to tag and click its name. The workflow details
page is displayed.

3. Click in the upper left corner.

4. In the Edit Workflow dialog box that appears, enter a tag in the Tag text box
and click Add Tag. The new tag is displayed below. You can add multiple tags
at a time. After the tags are added, click Yes.

Searching for a Workflow by Tag

Workflows with tags can be filtered by tag in the search box.

1. In the search box above the workflow list, set Property to Tag.

Modelarts
Usermanual 4 Workflow

2024-04-30 71

2. On the tag list that appears, click the target tag. The workflow list displays
workflows with that tag.

4.3.2.5 Input and Output Configurations

You can set input and output parameters on the configuration page, or when the
workflow is running.

When a workflow is running, you can configure parameters for the phase in the
Awaiting input state.

Input Configurations

The following table describes the parameters you need to specify.

Table 4-1 Input parameters

Input Parameter Description

dataset Select an existing dataset or create a new one.

obs Select your OBS path.

label task Select a labeling job under your dataset.

service Select a deployed real-time service.

swr image Select the image storage path required for registering the
model.

Output Configurations

Click Select to select the OBS path to store the output data.

4.3.2.6 Phase Parameters

You can configure different parameters for each phase.

Modelarts
Usermanual 4 Workflow

2024-04-30 72

4.3.2.7 Saving Configurations
On the workflow configuration page, click Save in the upper right corner after you
complete the configuration.

Figure 4-8 Saving Configurations

After the workflow is saved, click Start in the upper right corner of the page. In
the dialog box that is displayed, click OK. The workflow is started and the runtime
page is displayed.

4.3.3 Starting, Stopping, Searching for, Copying, or Deleting a
Workflow

Starting a Workflow
When a workflow is not running, you can start it in any of the following ways:

● On the workflow list page, click Start in the Operation column. In the
displayed dialog box, click OK.

● On the runtime configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

● On the workflow configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

Searching for a Workflow
On the workflow list page, you can use the search box to quickly search for
workflows based on workflow properties.

1. Log in to the ModelArts console. In the navigation pane, choose Workflow.
2. In the search box above the workflow list, filter workflows based on the

required property, such as the name, status, current phase, start time, running
duration, or tag.

Modelarts
Usermanual 4 Workflow

2024-04-30 73

Figure 4-9 Property

3. Click on the right of the search box to set the content you want to display
on the workflow list page and modify other display settings.
– Table Text Wrapping: This function is disabled by default. If you enable

this function, excess text will move down to the next line; otherwise, the
text will be truncated.

– Operation Column: This function is enabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position
of the table.

– Custom Columns: By default, all items are selected. You can select
columns you want to see.

Modelarts
Usermanual 4 Workflow

2024-04-30 74

Figure 4-10 Settings

4. Click OK.

5. To arrange workflows by a specific property, click in the table header.

Stopping a Workflow

You can stop a running workflow in either of the following ways:

● Workflow list page
When a workflow is running, the Stop button is available in the Operation
column. Click Stop. In the displayed dialog box, click OK.

● Click the name of a running workflow and click Stop in the upper right corner
of the displayed page. In the displayed dialog box, click OK.

NO TE

The Stop button is available only for a workflow that is running.

After a workflow is stopped, the associated training jobs and real-time services are
also stopped.

Copying a Workflow

A workflow can have only one running instance. If you want to concurrently run a
workflow, copy the workflow. To do so, click More in the Operation column and
select Copy. In the displayed dialog box, a new name is automatically generated
in the format of "Original workflow name_copy".

You can rename the new workflow. Ensure that the name complies with naming
specifications.

Modelarts
Usermanual 4 Workflow

2024-04-30 75

NO TE

A workflow name is 1 to 64 characters long, starting with a letter and containing only
letters, digits, underscores (_), and hyphens (-).

Deleting a Workflow
You can delete a workflow in either of the following ways:

● Workflow list page

a. Click More in the Operation column and select Delete.
b. In the displayed dialog box, enter delete and click OK.

Figure 4-11 Confirming the deletion

● Runtime configuration page
Click Delete in the upper right corner of the page. In the displayed dialog
box, enter DELETE and click OK.

NO TE

● Deleted workflows cannot be recovered.
● After a workflow is deleted, the corresponding training jobs and real-time services

are not deleted accordingly. To delete them, go to the Training Management >
Training Jobs and Service Deployment > Real-Time Services pages.

4.3.4 Viewing Workflow Execution Records
All runtime statuses of a workflow are recorded.

1. On the workflow list page, click the name of the target workflow.
2. On the workflow details page, view all runtime records of the workflow in the

left pane.

Modelarts
Usermanual 4 Workflow

2024-04-30 76

Figure 4-12 Viewing execution records

3. Delete or edit the runtime records, or rerun the workflow.
– To delete a runtime record that is no longer needed, click Delete. In the

displayed dialog box, click Yes.
– To distinguish a runtime record from others, click Edit Tag to add a tag

to it.
– To rerun the workflow, click Rerun on a runtime record.

4. Filter and compare all runtime records of the workflow.
– Filter: You can filter all runtime records by status or tag.

Figure 4-13 Filtering

– Compare: You can compare all runtime records by status, execution
record, start time, duration, and metrics.

Figure 4-14 Comparison

After you click Start to run a workflow, the execution record list is refreshed. In
addition, the data is updated on both the DAG and dashboard. An execution
record is added after each startup.

You can click any phase on the workflow details page to obtain the phase status,
including attributes (status, start time, and duration).

Modelarts
Usermanual 4 Workflow

2024-04-30 77

Figure 4-15 Viewing the status of a node

4.3.5 Retrying, Stopping, or Proceeding a Phase
● Retrying a phase

If executing a single phase failed, you can click Retry to re-execute the
current phase without restarting the workflow. Before the retry, you can
modify configurations on the Global Configuration page. The modification
takes effect after the affected phase is retried.

● Stopping a phase
Click a phase to view its details. On this page, you can stop the running
phase.

● Proceeding a phase
If parameters need to be configured during the runtime of a single phase, the
phase is awaiting operation. After the parameters are configured, you can
click Proceed to proceed to the execution of the current phase.

4.3.6 Partial Execution
To reduce the time consumed by repeated execution in large-scale and complex
workflows, you can choose specific phases to execute in sequence.

● Creation
Predefine the phases to be executed when you use the SDK to create a
workflow.

● Configuration
When configuring a workflow, enable Execute Certain Phases, select phases
to be executed, and configure parameters for these phases.

Figure 4-16 Execute Certain Phases

Modelarts
Usermanual 4 Workflow

2024-04-30 78

● Start
After saving the configuration, click Start to execute certain phases.

Modelarts
Usermanual 4 Workflow

2024-04-30 79

5 Data Management

5.1 Introduction to Data Preparation
NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

The driving forces behind AI are computing power, algorithms, and data. Data
quality affects model precision. Generally, a large amount of high-quality data is
more likely to train a high-precision AI model. Models trained using normal data
achieves 85% to 90% accuracy, while commercial applications have higher
requirements. If you want to improve the model accuracy to 96% or even 99%, a
large amount of high-quality data is required. In this case, the data must be more
refined, scenario-based, and professional. The preparation of a large amount of
high-quality data has become a challenging issue in AI development.

ModelArts is a one-stop AI development platform that supports AI lifecycle
development, including data processing, algorithm development, model training,
and model deployment. In addition, ModelArts provides AI Hub that can be used
to share data, algorithms, and models. ModelArts data management provides
end-to-end data preparation, processing, and labeling.

ModelArts data management provides the following functions for you to obtain
high-quality AI data:

● Data acquisition
– Allows you to import data from OBS, MRS, DLI, and GaussDB(DWS).
– Provides 18+ data augmentation operators to increase data volume for

training.
● Improved data quality

– Allows you to preview various formats of data including images, text,
audios, and videos, helping you identify data quality.

– Allows you to filter data by multiple search criteria, such as sample
attributes and labeling information.

– Provides 12+ labeling tools for refined, scenario-based, and professional
data labeling.

Modelarts
Usermanual 5 Data Management

2024-04-30 80

– Performs feature analysis based on samples and labeling results, helping
you understand data quality.

● More efficient data preparation
– Allows you to manage data by version for more efficient data

management.
– Provides data processing operators for data validation, data selection, and

data cleansing to help you quickly process data.
– Provides capabilities such as interactive labeling and auto labeling for

more efficient data labeling.
– Enables team labeling and team labeling management for labeling a

large amount of data.

5.2 Getting Started
This section uses preparing data for training an object detection model as an
example to describe how to analyze and label sample data. During actual service
development, you can select one or more data management functions to prepare
data based on service requirements. The operation process is as follows:

● Making Preparations
● Creating a Dataset
● Analyzing Data
● Labeling Data
● Publishing Data
● Exporting Data

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Preparations

Before using data management of ModelArts, complete the following
preparations:

When using data management, ModelArts needs to access dependent services
such as OBS. Therefore, grant permissions on the Global Configuration page. For
details, see Configuring Access Authorization (Global Configuration).

Creating a Dataset

In this example, an OBS path is used as the input path to create a dataset.
Perform the following operations to create an object detection dataset and import
the data to the dataset:

Step 1 Log in to the . In the navigation pane, choose Data Management > Datasets.

Step 2 Click Create. On the Create Dataset page, create a dataset based on the data
type and data labeling requirements.

Modelarts
Usermanual 5 Data Management

2024-04-30 81

1. Set the basic information, the name and description of the dataset.

Figure 5-1 Basic information of a dataset

2. Set labeling scene and type. In this example, choose Images and Object
detection.

Figure 5-2 Dataset labeling scene and type

3. Select an OBS path as Input Dataset Path, and select another OBS path as
Output Dataset Path.

Figure 5-3 Input and output dataset path

4. After setting the parameters, click Create in the lower right corner to create a
dataset.

----End

Analyzing Data

After a dataset is created, you can perform data analysis based on image features,
such as blurs and brightness, to better understand the data quality and determine
whether the dataset meets your algorithm and model requirements.

1. Create a feature analysis task.

a. Before performing feature analysis, publish a dataset version. On the
dataset Dashboard page, click Publish in the upper right corner to
publish a new version of the dataset.

Modelarts
Usermanual 5 Data Management

2024-04-30 82

b. After the version is published, go to the Dashboard page. Click View
Data Feature and Feature Analysis. In the displayed dialog box, select
the newly published dataset version and click OK to start feature analysis.

Figure 5-4 Starting feature analysis

c. View the task progress.
You can click View Task History to view the task progress. When the task
status changes to Successful, the task is complete.

Figure 5-5 Feature analysis progress

2. View feature analysis results.
After feature analysis is complete, you can select Version, Type, and Data
Feature Metric on the View Data Feature tab page. Then, the selected
versions and metrics are displayed on the page. The displayed chart helps you
understand data distribution for a better understanding of your data.
– Version: Select one or more versions for comparison.
– Type: Select types to be analyzed. The values all, train, eval, and

inference are available for you to select. They indicate all, training,
evaluation, and inference, respectively.

– Data Feature Metric: Select the metrics to be displayed. For details
about the metrics, see Data feature metrics.

Figure 5-6 Viewing feature analysis results

In feature analysis results, for example, image brightness distribution is
uneven, which means images of a certain brightness are lacking. This greatly
affects model training. In this case, increase images of that brightness to
make data more even for subsequent model building.

Labeling Data
● Manual labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 83

a. On the Unlabeled tab page, click an image. The system automatically
directs you to the page for labeling the image.

b. On the toolbar of the labeling page, select a proper labeling tool. In this
example, a rectangle is used for labeling.

Figure 5-7 Labeling tools

c. Drag the mouse to select an object, enter a new label name in the
displayed text box. If labels already exist, select one from the drop-down
list box. Click Add.

d. Click Back to Data Labeling Preview in the upper left part of the page
to view the labeling information. In the dialog box that is displayed, click
Yes to save the labeling settings. The selected image is automatically
moved to the Labeled tab page. On the Unlabeled and All tab pages,
the labeling information is updated along with the labeling process,
including the added label names and the number of images for each
label.

● Auto labeling
Auto labeling allows you to automatically label remaining data after a small
amount of data is manually labeled.

a. On the dataset details page, click Auto Label in the upper right corner.
b. In the Enable Auto Labeling dialog box, set the following parameters

and click Submit.

▪ Auto Labeling Type: Active learning

▪ Algorithm Type: Fast
Retain the default values of other parameters.

Figure 5-8 Starting auto labeling

c. View auto labeling progress.
After auto labeling is started, you can view the task progress on the To
Be Confirmed tab page. After a task is complete, you can view the
automatically labeled data on the To Be Confirmed tab page.

Modelarts
Usermanual 5 Data Management

2024-04-30 84

Figure 5-9 Viewing auto labeling progress

d. Confirm auto labeling results.

After auto labeling is complete, click the image on the To be confirmed
tab page. On the labeling details page, you can view or modify the auto
labeling result.

For correct labeling, click Labeled on the right. For wrong labeling,
correct wrong labels. For auto labeling of object detection datasets,
confirm images one by one. Ensure that all images are confirmed and go
to the next step.

Publishing Data

ModelArts training management allows you to create training jobs using
ModelArts datasets or files in an OBS directory. If a dataset is used as the data
source of a training job, specify a dataset and version. Therefore, you must have
published a dataset version. For details, see Publishing a Data Version.

NO TE

Data that is from the same source and labeled in different batches are differentiated by
version. This facilitates subsequent model building and development. You can select
specified versions.

Figure 5-10 Data source for creating a training job

Exporting Data

ModelArts training management allows you to create training jobs using
ModelArts datasets or files in an OBS directory. If you create a training job using
an OBS directory, export the prepared data to OBS.

1. Export data to OBS.

a. On the dataset details page, select or filter the data to be exported, and
click Export in the upper right corner.

b. Set Type to OBS, enter related information, and click OK.

Modelarts
Usermanual 5 Data Management

2024-04-30 85

Storage Path: path where the data to be exported is stored. You are
advised not to save data to the input or output path of the current
dataset.

Figure 5-11 Exporting to OBS

c. After the data is exported, view it in the specified path.
2. View task history.

After exporting data, you can view the export task details in Export History.

a. On the dataset details page, click Export History in the upper right
corner.

b. In the View Task History dialog box, view the export task history of the
current dataset. You can view the task ID, creation time, export type,
export path, total number of exported samples, and export status.

Figure 5-12 Export history

5.3 Introduction to Data Preparation
NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

The driving forces behind AI are computing power, algorithms, and data. Data
quality affects model precision. Generally, a large amount of high-quality data is
more likely to train a high-precision AI model. Models trained using normal data
achieves 85% to 90% accuracy, while commercial applications have higher
requirements. If you want to improve the model accuracy to 96% or even 99%, a
large amount of high-quality data is required. In this case, the data must be more
refined, scenario-based, and professional. The preparation of a large amount of
high-quality data has become a challenging issue in AI development.

ModelArts is a one-stop AI development platform that supports AI lifecycle
development, including data processing, algorithm development, model training,
and model deployment. In addition, ModelArts provides AI Hub that can be used

Modelarts
Usermanual 5 Data Management

2024-04-30 86

to share data, algorithms, and models. ModelArts data management provides
end-to-end data preparation, processing, and labeling.

ModelArts data management provides the following functions for you to obtain
high-quality AI data:

● Data acquisition
– Allows you to import data from OBS, MRS, DLI, and GaussDB(DWS).
– Provides 18+ data augmentation operators to increase data volume for

training.
● Improved data quality

– Allows you to preview various formats of data including images, text,
audios, and videos, helping you identify data quality.

– Allows you to filter data by multiple search criteria, such as sample
attributes and labeling information.

– Provides 12+ labeling tools for refined, scenario-based, and professional
data labeling.

– Performs feature analysis based on samples and labeling results, helping
you understand data quality.

● More efficient data preparation
– Allows you to manage data by version for more efficient data

management.
– Provides data processing operators for data validation, data selection, and

data cleansing to help you quickly process data.
– Provides capabilities such as interactive labeling and auto labeling for

more efficient data labeling.
– Enables team labeling and team labeling management for labeling a

large amount of data.

5.4 Creating a Dataset
Before using ModelArts to prepare data, create a dataset. Then, you can perform
operations on the dataset, such as importing data, analyzing data, and labeling
data.

5.4.1 Dataset Overview
NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Dataset Types
ModelArts supports the following types of datasets:

● Images: in .jpg, .png, .jpeg, or .bmp format for image classification, image
segmentation, and object detection

● Audio: in .wav format for sound classification, speech labeling, and speech
paragraph labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 87

● Text: in .txt or .csv format for text classification, named entity recognition, and
text triplet labeling

● Video: in .mp4 format for video labeling
● Free format: allows data in any format. Labeling is not available for free

format data. The free format applies if labeling is not required or needs to be
customized. Select this format if your data is in multiple formats or your data
is not in any of the preceding formats.

Figure 5-13 Example of a dataset in free format

Dataset Functions
Different types of datasets support different functions, such as auto labeling and
team labeling. For details, see Table 5-1.

Table 5-1 Functions supported by different types of datasets

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
res

Imag
e

Imag
e
classif
icatio
n

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Objec
t
detec
tion

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Imag
e
segm
entati
on

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

N/A

Modelarts
Usermanual 5 Data Management

2024-04-30 88

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
res

Audio Soun
d
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
parag
raph
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text Text
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Name
d
entity
recog
nition

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text
triplet

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Video Video
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Free
form
at

Free
forma
t

Supp
orted

N/A _ Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Table Table Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Specifications Restrictions
● The maximum numbers of samples and labels in a single text, video, or audio

database other than a table dataset are 1,000,000 and 10,000, respectively.

Modelarts
Usermanual 5 Data Management

2024-04-30 89

● The maximum size of a sample in a single text, video, or audio database other
than an image dataset is 5 GB.

● The maximum size of an image for object detection, image segmentation, or
image classification is 25 MB.

● The maximum size of a manifest file is 5 GB.

● The maximum size of a text file in a line is 100 KB.

● The maximum size of a labeling result file is 100 MB.

5.4.2 Creating a Dataset
Before using ModelArts to manage data, create a dataset. Then, you can perform
operations on the dataset, such as labeling data, importing data, and publishing
the dataset. This section describes how to create a dataset of the non-table type
(image, audio, text, video, and free format) and table type.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Prerequisites
● You have been authorized to access OBS. To do so, click the Settings page in

the navigation pane of the ModelArts management console and add access
authorization using an agency.

● OBS buckets and folders for storing data are available. In addition, the OBS
buckets and ModelArts are in the same region. OBS parallel file systems are
not supported. Select object storage.

● OBS buckets are not encrypted. ModelArts does not support encrypted OBS
buckets. When creating an OBS bucket, do not enable bucket encryption.

Image, Audio, Text, Video, and Free Format
1. Log in to the . In the navigation pane, choose Data Management > Datasets.

Figure 5-14 Dataset management page

NO TE

The number of datasets that can be created under an account in a region is limited.
For details, see the number displayed on the Dataset page.

2. Click Create. On the Create Dataset page, create a dataset based on the data
type and data labeling requirements.

Modelarts
Usermanual 5 Data Management

2024-04-30 90

Figure 5-15 Parameter settings

– Name: name of the dataset, which is customizable
– Description: details about the dataset
– Data Type: Select a data type based on your needs.
– Data Source

i. Importing data from OBS
If data is available in OBS, select OBS for Data Source, and configure
other mandatory parameters. The labeling formats of the input data
vary depending on the dataset type. For details about the labeling
formats supported by ModelArts, see Introduction to Data
Importing.

Figure 5-16 Importing data from OBS

ii. Importing data from a local path
If data is not stored in OBS and the required data cannot be
downloaded from AI Gallery, ModelArts enables you to upload the
data from a local path. Before uploading data, configure Storage
Path and Labeling Status. Click Upload data to select the local file
for uploading. Select a labeling format when the labeling status is
Labeled. The labeling formats of the input data vary depending on
the dataset type. For details about the labeling formats supported by
ModelArts, see Introduction to Data Importing.

Modelarts
Usermanual 5 Data Management

2024-04-30 91

– For more details about parameters, see Table 5-2.

Table 5-2 Dataset parameters

Parameter Description

Import
Path

OBS path from which your data is to be imported. This
path is used as the data storage path of the dataset.
NOTE

OBS parallel file systems are not supported. Select an OBS
bucket.
When you create a dataset, data in the OBS path will be
imported to the dataset. If you modify data in OBS, the data in
the dataset will be inconsistent with that in OBS. As a result,
certain data may be unavailable. To modify data in a dataset,
follow the operations provided in Import Mode or Importing
Data from an OBS Path.
If the numbers of samples and labels of the dataset exceed
quotas, importing the samples and labels will fail.

Labeling
Status

Labeling status of the selected data, which can be
Unlabeled or Labeled.
If you select Labeled, specify a labeling format and
ensure the data file complies with format specifications.
Otherwise, the import may fail.
Only image (object detection, image classification, and
image segmentation), audio (sound classification), and
text (text classification) labeling tasks support the import
of labeled data.

Output
Dataset
Path

OBS path where your labeled data is stored.
NOTE

● Ensure that your OBS path name contains letters, digits, and
underscores (_) and does not contain special characters, such
as ~'@#$%^&*{}[]:;+=<>/ and spaces.

● The dataset output path cannot be the same as the data
input path or subdirectory of the data input path.

● It is a good practice to select an empty directory as the
dataset output path.

● OBS parallel file systems are not supported. Select an OBS
bucket.

3. After setting the parameters, click Submit.

Modelarts
Usermanual 5 Data Management

2024-04-30 92

Table
1. Log in to the . In the navigation pane, choose Data Management > Datasets.

Figure 5-17 Dataset management page

NO TE

The number of datasets that can be created under an account in a region is limited.
For details, see the number displayed on the Dataset page.

2. Click Create. On the Create Dataset page, create a table dataset based on
the data type and data labeling requirements.

Figure 5-18 Parameters of a table dataset

– Name: name of the dataset, which is customizable

– Description: details about the dataset

– Data Type: Select a data type based on your needs.

– For more details about parameters, see Table 5-3.

Table 5-3 Dataset parameters

Parameter Description

Local file Storage Path: Select an OBS path.

Modelarts
Usermanual 5 Data Management

2024-04-30 93

Parameter Description

Schema Names and types of table columns, which must be the
same as those of the imported data. Set the column
name based on the imported data and select the
column type. For details about the supported types, see
Table 5-4.
Click Add Schema to add a new record. When creating
a dataset, you must specify a schema. Once created,
the schema cannot be modified.
When data is imported from OBS, the schema of the
CSV file in the file path is automatically obtained. If the
schemas of multiple CSV files are inconsistent, an error
will be reported.
NOTE

After you select data from OBS, column names in Schema are
automatically displayed, which is the first-row data of the
table by default. To ensure the correct prediction code, you
need to change column names in Schema to attr_1, attr_2, ...,
and attr_n. attr_n is the last column, indicating the prediction
column.

Output
Dataset Path

OBS path for storing table data. The data imported
from the data source is stored in this path. The path
cannot be the same as the file path in the OBS data
source or subdirectories of the file path.
After a table dataset is created, the following four
directories are automatically generated in the storage
path:
● annotation: version publishing directory. Each time

a version is published, a subdirectory with the same
name as the version is generated in this directory.

● data: data storage directory. Imported data is stored
in this directory.

● logs: directory for storing logs.
● temp: temporary working directory.

Table 5-4 Schema data types

Type Description Stora
ge
Space

Range

String String type N/A N/A

Short Signed integer 2
bytes

-32768 to 32767

Int Signed integer 4
bytes

-2147483648 to
2147483647

Modelarts
Usermanual 5 Data Management

2024-04-30 94

Type Description Stora
ge
Space

Range

Long Signed integer 8
bytes

-9223372036854775808
to
9223372036854775807

Double Double-precision
floating point

8
bytes

N/A

Float Single-precision floating
point

4
bytes

N/A

Byte Signed integer 1 byte -128 to 127

Date Date type in the format
of "yyyy-MM-dd", for
example, 2014-05-29

N/A N/A

Timesta
mp

Timestamp that
represents date and
time in the format of
"yyyy-MM-dd
HH:mm:ss"

N/A N/A

Boolean Boolean type 1 byte TRUE/FALSE

NO TE

When using a CSV file, pay attention to the following:

● When the data type is set to String, the data in the double quotation marks
is regarded as one record by default. Ensure the double quotation marks in
the same row are closed. Otherwise, the data will be too large to display.

● If the number of columns in a row of the CSV file is different from that
defined in the schema, the row will be ignored.

3. After setting the parameters, click Submit.

5.4.3 Modifying a Dataset
The basic information of a created dataset can be modified to keep pace with
service changes.

Prerequisites

A created dataset is available.

Modifying the Basic Information of a Dataset
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, choose More > Modify in the Operation column of the

target dataset.

Modelarts
Usermanual 5 Data Management

2024-04-30 95

3. Modify the basic information by referring to Table 5-5 and click OK.

Figure 5-19 Modify Dataset

Table 5-5 Parameters

Parameter Description

Name Name of a dataset, which must be 1 to 64 characters
long and start with a letter. Only letters, digits,
underscores (_), and hyphens (-) are allowed. The
name must start with a letter.

Description Brief description of the dataset.

5.5 Importing Data

5.5.1 Introduction to Data Importing
After a dataset is created, you can import more data. ModelArts allows you to
import data from different data sources.

● Importing Data from OBS
● Importing Data from Local Files

ModelArts AI Gallery provides a large number of built-in datasets, including file
and table datasets. You can download and use the built-in datasets from AI
Gallery. You can also import your data to ModelArts.

File Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from
OBS or a local file. After the import, the data from the import path is
automatically synchronized to the data source path of the dataset.

● OBS: Import data from an OBS path or a manifest file.

Modelarts
Usermanual 5 Data Management

2024-04-30 96

● Local file: Import local data that has been uploaded to an OBS path.

Table Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from
OBS, DWS, DLI, MRS, and local files.

Import Mode

There are five modes for importing data to a dataset.

● When you create a dataset, select an import path. The data is automatically
synchronized from the import path.

Figure 5-20 Importing data when creating a dataset

● After a dataset is created, click Import in the Operation column on the
dataset list page.

Figure 5-21 Importing data on the dataset list page

● On the dataset list page, click a dataset. On the dataset details page, choose
Import > Import.

Figure 5-22 Importing data on the dataset details page

● On the dataset list page, click a dataset. On the dataset details page, click
Synchronize Data Source to synchronize data from OBS.

Modelarts
Usermanual 5 Data Management

2024-04-30 97

Figure 5-23 Synchronizing data sources on the dataset details page

● Add data on the labeling job details page.

Figure 5-24 Adding data on the labeling job details page

5.5.2 Importing Data from OBS

5.5.2.1 Introduction to Importing Data from OBS

Import Modes
You can import data from OBS through an OBS path or a manifest file.

● OBS path: indicates that the dataset to be imported has been stored in an
OBS path. In this case, select an OBS path that you can access. In addition,
the directory structure in the OBS path must comply with the specifications.
For details, see Specifications for Importing Data from an OBS Directory.
This import mode is available only for the following types of datasets: Image
classification, Object detection, Text classification, Table, and Sound
classification. For other types of datasets, data can be imported only through
a manifest file.

● Manifest file: indicates that the dataset file is in the manifest format and the
manifest file has been uploaded to OBS. The manifest file defines the
mapping between labeling objects and content. For details about the
specifications of manifest files, see Specifications for Importing a Manifest
File.

NO TE

Before importing an object detection dataset, ensure that the labeling range of the labeling
file does not exceed the size of the original image. Otherwise, the import may fail.

Modelarts
Usermanual 5 Data Management

2024-04-30 98

Table 5-6 Import modes supported by datasets

Dat
aset
Typ
e

Labeling
Type

From an OBS Path From a Manifest File

Ima
ges

Image
classificati
on

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Classification

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Classification

Object
detection

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Object
Detection

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Object
Detection

Image
segmenta
tion

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Segmentation

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Segmentation

Aud
io

Sound
classificati
on

Supported
You can import unlabeled or
labeled data.
Follow the format
specifications described in
Sound Classification.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Sound
Classification

Speech
labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Speech
Labeling

Speech
paragrap
h labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Speech
Paragraph Labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 99

Dat
aset
Typ
e

Labeling
Type

From an OBS Path From a Manifest File

Text Text
classificati
on

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text
Classification

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text
Classification

Named
entity
recognitio
n

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Named Entity
Recognition

Text
triplet

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text Triplet

Vide
o

Video
labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Video Labeling

Oth
er

Free
format

Supported
You can import unlabeled
data.

N/A

Tabl
e

Table Supported
Follow the format
specifications described in
Tables.

N/A

5.5.2.2 Importing Data from an OBS Path

Prerequisites
● A dataset is available.

● The data to be imported is stored in OBS. The manifest file is stored in OBS.

● The OBS bucket and ModelArts are in the same region and you can operate
the bucket.

Modelarts
Usermanual 5 Data Management

2024-04-30 100

Importing File Data from an OBS Path
The parameters on the GUI for data import vary according to the dataset type.
The following uses a dataset of the image classification type as an example.

1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. Locate the row that contains the desired dataset and click Import in the

Operation column. Alternatively, click the dataset name to go to the
Dashboard tab page of the dataset, and click Import in the upper right
corner.

3. In the Import dialog box, configure parameters as follows and click OK.
– Data Source: OBS
– Import Mode: Path
– Import Path: OBS path for storing data
– Labeling Status: Labeled
– Advanced Feature Settings: disabled by default

Import by Tag enables the system to automatically obtain the labels of
the current dataset. Click Add Label to add a label. This parameter is
optional. If Import by Tag is disabled, you can add or delete labels for
imported data when labeling data.

Figure 5-25 Importing data from an OBS path

Modelarts
Usermanual 5 Data Management

2024-04-30 101

After the data is imported, it will be automatically synchronized to the
dataset. On the Datasets page, click the dataset name to view its details and
create a labeling job to label the data.

Labeling Status of File Data
The labeling status can be Unlabeled or Labeled.

● Unlabeled: Only the labeling object (such as unlabeled images or texts) is
imported.

● Labeled: Both the labeling object and content are imported. Labeling content
importing is not supported for datasets in free format.
To ensure that the labeling content can be correctly read, you must store data
in strict accordance with the specifications.
If Import Mode is set to Path, store the data to be imported according to the
labeling file specifications. For details, see Specifications for Importing Data
from an OBS Directory.
If Import Mode is set to manifest, the manifest file specifications must be
met.

NO TE

● If the labeling status is set to Labeled, ensure that the folder or manifest file
complies with the format specifications. Otherwise, the import may fail.

● After the import of labeled data, check whether the imported data is in the labeled
state.

Importing a Table Dataset from OBS
ModelArts allows you to import table data (CSV files) from OBS.

Import description:

● The prerequisite for successful import is that the schema of the data source
must be the same as that specified during dataset creation. The schema
indicates column names and types of a table. Once specified during dataset
creation, the values cannot be changed.

● When a CSV file is imported from OBS, the data type is not validated, but the
number of columns must be the same as that in the schema of the dataset. If
the data format is invalid, the data is set to null. For details, see Table 5-4.

● You must select the directory where the CSV file is stored. The number of
columns in the CSV file must be the same as that in the dataset schema. The
schema of the CSV file can be automatically obtained.

├─dataset-import-example
│ table_import_1.csv
│ table_import_2.csv
│ table_import_3.csv
│ table_import_4.csv

Modelarts
Usermanual 5 Data Management

2024-04-30 102

5.5.2.3 Specifications for Importing Data from an OBS Directory
When importing data from OBS, the data storage directory and file name must
comply with the ModelArts specifications.

Only the following labeling types of data can be imported by Labeling Format:
image classification, object detection, image segmentation, text classification, and
sound classification.

NO TE

● To import data from an OBS directory, you must have the read permission on the OBS
directory.

● The OBS buckets and ModelArts must be in the same region.

Image Classification
Data for image classification can be stored in two formats:

Format 1: ModelArts imageNet 1.0
● Images with the same label must be stored in the same directory, with the

label name as the directory name. If there are multiple levels of directories,
the last level is used as the label name.
In the following example, Cat and Dog are label names.
dataset-import-example
├─Cat
│ 10.jpg
│ 11.jpg
│ 12.jpg
│
└─Dog
 1.jpg
 2.jpg
 3.jpg

Format 2: ModelArts image classification 1.0
● The image and labeled file must be stored in the same directory, with the

content in the labeled file used as label names.
In the following example, import-dir-1 and import-dir-2 are the imported
subdirectories:
dataset-import-example
├─import-dir-1

Modelarts
Usermanual 5 Data Management

2024-04-30 103

│ 10.jpg
│ 10.txt
│ 11.jpg
│ 11.txt
│ 12.jpg
│ 12.txt
└─import-dir-2
 1.jpg
 1.txt
 2.jpg
 2.txt

The following shows a label file for a single label, for example, the 1.txt file:
Cat

The following shows a label file for multiple labels, for example, the 2.txt file:
Cat
Dog

● Only images in JPG, JPEG, PNG, and BMP formats are supported. The size of a
single image cannot exceed 5 MB, and the total size of all images uploaded at
a time cannot exceed 8 MB.

Object Detection
Data for object detection can be stored in two formats:

Format 1: ModelArts PASCAL VOC 1.0

● The simple mode of object detection requires you to store labeled objects and
your label files (in one-to-one relationship with the labeled objects) in the
same directory. For example, if the name of the labeled object file is
IMG_20180919_114745.jpg, the name of the label file must be
IMG_20180919_114745.xml.
The label files must be in PASCAL VOC format. For details about the format,
see Table 5-14.
Example:
├─dataset-import-example
│ IMG_20180919_114732.jpg
│ IMG_20180919_114732.xml
│ IMG_20180919_114745.jpg
│ IMG_20180919_114745.xml
│ IMG_20180919_114945.jpg
│ IMG_20180919_114945.xml

A label file example is as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>bike_1_1593531469339.png</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>554</width>
 <height>606</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>Dog</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>

Modelarts
Usermanual 5 Data Management

2024-04-30 104

 <occluded>0</occluded>
 <bndbox>
 <xmin>279</xmin>
 <ymin>52</ymin>
 <xmax>474</xmax>
 <ymax>278</ymax>
 </bndbox>
 </object>
 <object>
 <name>Cat</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <occluded>0</occluded>
 <bndbox>
 <xmin>279</xmin>
 <ymin>198</ymin>
 <xmax>456</xmax>
 <ymax>421</ymax>
 </bndbox>
 </object>
</annotation>

● Only images in JPG, JPEG, PNG, and BMP formats are supported. A single
image cannot exceed 5 MB, and the total size of all images uploaded at a
time cannot exceed 8 MB.

Format 2: YOLO

● A YOLO dataset must comply with the following structure:
└─ yolo_dataset/
 │
 ├── obj.names # Label set file
 ├── obj.data # Files and relative paths for recording dataset information
 ├── train.txt # Relative path of images in the training set
 ├── valid.txt # Relative path of images in the validation set
 │
 ├── obj_train_data/ # Directory where the images in the training set and the corresponding label
files are stored
 │ ├── image1.txt # BBox label list for image 1
 │ ├── image1.jpg
 │ ├── image2.txt
 │ ├── image2.jpg
 │ ├── ...
 │
 ├── obj_valid_data/ # Directory where the images in the validation set and the corresponding
label files are stored
 │ ├── image101.txt
 │ ├── image101.jpg
 │ ├── image102.txt
 │ ├── image102.jpg
 │ ├── ...

A YOLO dataset supports only training sets and validation sets. If other sets
are imported, they will be invalid in the YOLO dataset.

● obj.data contains the following content and at least one of the train and
valid subsets must be contained. The file paths are relative paths.
classes = 5 # Optional
names = <path/to/obj.names># For example, obj.names
train = <path/to/train.txt># For example, train.txt
valid = <path/to/valid.txt># Optional, for example, valid.txt
backup = backup/ # Optional

● The obj.names file records the label list. Each row label is used as the file
index.
label1 # index of label 1: 0
label2 # index of label 2: 1
label3
...

Modelarts
Usermanual 5 Data Management

2024-04-30 105

● The file paths in train.txt and valid.txt are relative paths, and the file list
must be in one-to-one relationship with the files in the directories. The file
structures of the two files are as follows:
<path/to/image1.jpg># For example, obj_train_data/image.jpg
<path/to/image2.jpg># For example, obj_train_data/image.jpg
...

● The .txt files in the obj_train_data/ and obj_valid_data/ directories contain
the BBox label information of the corresponding images. Each line indicates a
BBox label.
image1.txt:
<label_index> <x_center> <y_center> <width> <height>
0 0.250000 0.400000 0.300000 0.400000
3 0.600000 0.400000 0.400000 0.266667

x_center, y_center, width, and height indicate the normalized parameters for
the target bounding box: the x-coordinate and y-coordinate of the center
point, width, and height.

● Only images in JPG, JPEG, PNG, and BMP formats are supported. A single
image cannot exceed 5 MB, and the total size of all images uploaded at a
time cannot exceed 8 MB.

Image Segmentation
ModelArts image segmentation 1.0:

● Labeled objects and their label files (in one-to-one relationship with the
labeled objects) must be in the same directory. For example, if the name of
the labeled object file is IMG_20180919_114746.jpg, the name of the label
file must be IMG_20180919_114746.xml.
Fields mask_source and mask_color are added to the label file in PASCAL
VOC format. For details about the format, see Table 5-10.
Example:
├─dataset-import-example
│ IMG_20180919_114732.jpg
│ IMG_20180919_114732.xml
│ IMG_20180919_114745.jpg
│ IMG_20180919_114745.xml
│ IMG_20180919_114945.jpg
│ IMG_20180919_114945.xml

A label file example is as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>image_0006.jpg</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>230</width>
 <height>300</height>
 <depth>3</depth>
 </size>
 <segmented>1</segmented>
 <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/
segmentationClassRaw/image_0006.png</mask_source>
 <object>
 <name>bike</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>

Modelarts
Usermanual 5 Data Management

2024-04-30 106

 <mask_color>193,243,53</mask_color>
 <occluded>0</occluded>
 <polygon>
 <x1>71</x1>
 <y1>48</y1>
 <x2>75</x2>
 <y2>73</y2>
 <x3>49</x3>
 <y3>69</y3>
 <x4>68</x4>
 <y4>92</y4>
 <x5>90</x5>
 <y5>101</y5>
 <x6>45</x6>
 <y6>110</y6>
 <x7>71</x7>
 <y7>48</y7>
 </polygon>
 </object>
</annotation>

Text Classification
txt and csv files can be imported for text classification, with the text encoding
format of UTF-8 or GBK.

Labeled objects and labels for text classification can be stored in two formats:

● ModelArts text classification combine 1.0: The labeled objects and labels for
text classification are in the same text file. You can specify a separator to
separate the labeled objects and labels, as well as multiple labels.
For example, the following shows an example text file. The Tab key is used to
separate the labeled objects from the labels.
It touches good and responds quickly. I don't know how it performs in the future. positive
Three months ago, I bought a very good phone and replaced my old one with it. It can operate longer
between charges. positive
Why does my phone heat up if I charge it for a while? The volume button stuck after being pressed
down. negative
It's a gift for Father's Day. The delivery is fast and I received it in 24 hours. I like the earphones
because the bass sounds feel good and they would not fall off. positive

● ModelArts text classification 1.0: The labeled objects and labels for text
classification are text files, and correspond to each other based on the rows.
For example, the first row in a label file indicates the label of the first row in
the file of the labeled object.
For example, the content of the labeled object
COMMENTS_20180919_114745.txt is as follows:
It touches good and responds quickly. I don't know how it performs in the future.
Three months ago, I bought a very good phone and replaced my old one with it. It can operate longer
between charges.
Why does my phone heat up if I charge it for a while? The volume button stuck after being pressed
down.
It's a gift for Father's Day. The delivery is fast and I received it in 24 hours. I like the earphones
because the bass sounds feel good and they would not fall off.

The content of the label file COMMENTS_20180919_114745_result.txt is as
follows:
positive
negative
negative
positive

This data format requires you to store labeled objects and your label files (in
one-to-one relationship with the labeled objects) in the same directory. For

Modelarts
Usermanual 5 Data Management

2024-04-30 107

example, if the name of the labeled object file is
COMMENTS_20180919_114745.txt, the name of the label file must be
COMMENTS _20180919_114745_result.txt.
Example of data files:
├─dataset-import-example
│ COMMENTS_20180919_114732.txt
│ COMMENTS _20180919_114732_result.txt
│ COMMENTS _20180919_114745.txt
│ COMMENTS _20180919_114745_result.txt
│ COMMENTS _20180919_114945.txt
│ COMMENTS _20180919_114945_result.txt

Sound Classification
ModelArts audio classification dir 1.0: Sound files with the same label must be
stored in the same directory, and the label name is the directory name.

Example:

dataset-import-example
├─Cat
│ 10.wav
│ 11.wav
│ 12.wav
│
└─Dog
 1.wav
 2.wav
 3.wav

Tables
CSV files can be imported from OBS. Select the directory where the files are
stored. The number of columns in the CSV file must be the same as that in the
dataset schema. The schema of the CSV file can be automatically obtained.

├─dataset-import-example
│ table_import_1.csv
│ table_import_2.csv
│ table_import_3.csv
│ table_import_4.csv

5.5.2.4 Importing a Manifest File

Prerequisites
● You have created a dataset.
● You have stored the data to be imported in OBS. You have stored the manifest

file in OBS.
● The OBS bucket and ModelArts are in the same region and you can operate

the bucket.

Importing File Data from a Manifest File
The parameters for data import vary according to the dataset type. The following
uses an image dataset as an example.

1. Log in to the . In the navigation pane, choose Data Management > Datasets.

Modelarts
Usermanual 5 Data Management

2024-04-30 108

2. Locate the row that contains the desired dataset and click Import in the
Operation column. Alternatively, you can click the dataset name to go to the
Dashboard tab page of the dataset, and click Import in the upper right
corner.

3. In the Import dialog box, set the parameters as follows and click OK.
– Data Source: OBS
– Import Mode: manifest
– Manifest File: OBS path for storing the manifest file
– Labeling Status: Labeled
– Advanced Feature Settings: disabled by default

Import by Tag The system automatically obtains the labels of the
dataset. You can click Add Label to add a label. This parameter is
optional. If Import by Tag is disabled, you can add or delete labels for
imported data when labeling data.
Import Only Hard Examples: If this parameter is selected, only the hard
attribute data of the manifest file is imported.

Figure 5-26 Importing a manifest file

After the data is imported, it will be automatically synchronized to the
dataset. On the Datasets page, click the dataset name to view its details and
create a labeling job to label the data.

Labeling Status of File Data
The labeling status can be Unlabeled or Labeled.

● Unlabeled: Only the labeling object (such as unlabeled images or texts) is
imported.

Modelarts
Usermanual 5 Data Management

2024-04-30 109

● Labeled: Both the labeling object and content are imported. Labeling content
importing is not supported for datasets in free format.

To ensure that the labeling content can be correctly read, you must store data
in strict accordance with the specifications.

If Import Mode is set to Path, store the data to be imported according to the
labeling file specifications.

If Import Mode is set to manifest, the manifest file specifications must be
met. For details, see Specifications for Importing a Manifest File.

NO TE

If the labeling status is set to Labeled, ensure that the folder or manifest file complies
with the format specifications. Otherwise, the import may fail.

5.5.2.5 Specifications for Importing a Manifest File

The manifest file defines the mapping between labeled objects and content. The
manifest file import mode means that the manifest file is used for dataset import.
The manifest file can be imported from OBS. When importing a manifest file from
OBS, ensure that you have the permissions to access the directory where the
manifest file is stored.

NO TE

There are many requirements on the manifest file compilation. Import new data from OBS.
Generally, manifest file import is used for data migration of ModelArts in different regions
or using different accounts. If you have labeled data in a region using ModelArts, you can
obtain the manifest file of the published dataset from the output path. Then you can
import the dataset using the manifest file to ModelArts of other regions or accounts. The
imported data carries the labeling information and does not need to be labeled again,
improving development efficiency.

The manifest file that contains information about the original file and labeling can
be used in labeling, training, and inference scenarios. The manifest file that
contains only information about the original file can be used in inference scenarios
or used to generate an unlabeled dataset. The manifest file must meet the
following requirements:

● The manifest file uses the UTF-8 encoding format.

● The manifest file uses the JSON Lines format (jsonlines.org). A line contains
one JSON object.
{"source": "/path/to/image1.jpg", "annotation": ... }
{"source": "/path/to/image2.jpg", "annotation": ... }
{"source": "/path/to/image3.jpg", "annotation": ... }

In the preceding example, the manifest file contains multiple lines of JSON
object.

● The manifest file can be generated by you, third-party tools, or ModelArts
Data Labeling. The file name can be any valid file name. To facilitate the
internal use of the ModelArts system, the file name generated by the
ModelArts data labeling function consists of the following strings:
DatasetName-VersionName.manifest. For example, animal-
v201901231130304123.manifest.

Modelarts
Usermanual 5 Data Management

2024-04-30 110

Image Classification
{
 "source":"s3://path/to/image1.jpg",
 "usage":"TRAIN",
 "hard":"true",
 "hard-coefficient":0.8,
 "id":"0162005993f8065ef47eefb59d1e4970",
 "annotation": [
 {
 "type": "modelarts/image_classification",
 "name": "cat",
 "property": {
 "color":"white",
 "kind":"Persian cat"
 },
 "hard":"true",
 "hard-coefficient":0.8,
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type": "modelarts/image_classification",
 "name":"animal",
 "annotated-by":"modelarts/active-learning",
 "confidence": 0.8,
 "creation-time":"2019-01-23 11:30:30"
 }],
 "inference-loc":"/path/to/inference-output"
}

Table 5-7 Parameters

Parameter Manda
tory

Description

source Yes URI of an object to be labeled. For details about data
source types and examples, see Table 5-8.

usage No By default, the parameter value is left blank. Possible
values are as follows:
● TRAIN: The object is used for training.
● EVAL: The object is used for evaluation.
● TEST: The object is used for testing.
● INFERENCE: The object is used for inference.
If the parameter value is left blank, you decide how
to use the object.

id No Sample ID exported from the system. You do not
need to set this parameter when importing the
sample.

annotation No If the parameter value is left blank, the object is not
labeled. The value of annotation consists of an
object list. For details about the parameters, see
Table 5-9.

inference-loc No This parameter is available when the file is
generated by the inference service, indicating the
location of the inference result file.

Modelarts
Usermanual 5 Data Management

2024-04-30 111

Table 5-8 Data source types

Type Example

OBS "source":"s3://path-to-jpg"

Content "source":"content://I love machine learning"

Table 5-9 annotation objects

Parameter Mandat
ory

Description

type Yes Label type. Possible values are as follows:
● image_classification: image classification
● text_classification: text classification
● text_entity: named entity recognition
● object_detection: object detection
● audio_classification: sound classification
● audio_content: speech labeling
● audio_segmentation: speech paragraph labeling

name Yes/No This parameter is mandatory for the classification
type but optional for other types. This example uses
the image classification type.

id Yes/No Label ID. This parameter is mandatory for triplets
but optional for other types. The entity label ID of a
triplet is in E+number format, for example, E1 and
E2. The relationship label ID of a triplet is in R
+number format, for example, R1 and R2.

property No Labeling property. In this example, the cat has two
properties: color and kind.

hard No Indicates whether the example is a hard example.
True indicates that the labeling example is a hard
example, and False indicates that the labeling
example is not a hard example.

annotated-by No The default value is human, indicating manual
labeling.
● human

creation-time No Time when the labeling job was created. It is the
time when labeling information was written, not
the time when the manifest file was generated.

Modelarts
Usermanual 5 Data Management

2024-04-30 112

Parameter Mandat
ory

Description

confidence No Confidence score of machine labeling. The value
ranges from 0 to 1.

Image Segmentation
{
 "annotation": [{
 "annotation-format": "PASCAL VOC",
 "type": "modelarts/image_segmentation",
 "annotation-loc": "s3://path/to/annotation/image1.xml",
 "creation-time": "2020-12-16 21:36:27",
 "annotated-by": "human"
 }],
 "usage": "train",
 "source": "s3://path/to/image1.jpg",
 "id": "16d196c19bf61994d7deccafa435398c",
 "sample-type": 0
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 5-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for image segmentation and object detection but optional for
other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

● sample-type indicates a sample format. Value 0 indicates image, 1 text, 2
audio, 4 table, and 6 video.

Table 5-10 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

mask_source No Segmentation mask path

Modelarts
Usermanual 5 Data Management

2024-04-30 113

Parameter Mand
atory

Description

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 5-11.

● mask_color: label color, which is represented by
the RGB value. This parameter is mandatory.

Modelarts
Usermanual 5 Data Management

2024-04-30 114

Table 5-11 Bounding box types

Parameter Shape Labeling information

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>
<x7>100<x7>
<y7>100<y7>

Example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>image_0006.jpg</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>230</width>
 <height>300</height>
 <depth>3</depth>
 </size>
 <segmented>1</segmented>
 <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/
segmentationClassRaw/image_0006.png</mask_source>
 <object>
 <name>bike</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <mask_color>193,243,53</mask_color>
 <occluded>0</occluded>
 <polygon>
 <x1>71</x1>
 <y1>48</y1>
 <x2>75</x2>
 <y2>73</y2>
 <x3>49</x3>
 <y3>69</y3>
 <x4>68</x4>
 <y4>92</y4>
 <x5>90</x5>
 <y5>101</y5>
 <x6>45</x6>
 <y6>110</y6>

Modelarts
Usermanual 5 Data Management

2024-04-30 115

 <x7>71</x7>
 <y7>48</y7>
 </polygon>
 </object>
</annotation>

Text Classification
{
 "source": "content://I like this product ",
 "id":"XGDVGS",
 "annotation": [
 {
 "type": "modelarts/text_classification",
 "name": " positive",
 "annotated-by": "human",
 "creation-time": "2019-01-23 11:30:30"
 }]
}

The content parameter indicates the text to be labeled. The other parameters are
the same as those described in Image Classification. For details, see Table 5-7.

Named Entity Recognition
{
 "source":"content://Michael Jordan is the most famous basketball player in the world.",
 "usage":"TRAIN",
 "annotation":[
 {
 "type":"modelarts/text_entity",
 "name":"Person",
 "property":{
 "@modelarts:start_index":0,
 "@modelarts:end_index":14
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_entity",
 "name":"Category",
 "property":{
 "@modelarts:start_index":34,
 "@modelarts:end_index":44
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 5-7.

Table 5-12 describes the property parameters. For example, if you want to extract
Michael from "source":"content://Michael Jordan", the value of start_index is 0
and that of end_index is 7.

Modelarts
Usermanual 5 Data Management

2024-04-30 116

Table 5-12 property parameters

Parameter Data type Description

@modelarts:start_in
dex

Integer Start position of the text. The value starts
from 0, including the characters specified
by start_index.

@modelarts:end_ind
ex

Integer End position of the text, excluding the
characters specified by end_index.

Text Triplet
{
 "source":"content://"Three Body" is a series of long science fiction novels created by Liu Cix.",
 "usage":"TRAIN",
 "annotation":[
 {
 "type":"modelarts/text_entity",
 "name":"Person",
 "id":"E1",
 "property":{
 "@modelarts:start_index":67,
 "@modelarts:end_index":74
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_entity",
 "name":"Book",
 "id":"E2",
 "property":{
 "@modelarts:start_index":0,
 "@modelarts:end_index":12
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_triplet",
 "name":"Author",
 "id":"R1",
 "property":{
 "@modelarts:from":"E1",
 "@modelarts:to":"E2"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_triplet",
 "name":"Works",
 "id":"R2",
 "property":{
 "@modelarts:from":"E2",
 "@modelarts:to":"E1"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

Modelarts
Usermanual 5 Data Management

2024-04-30 117

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 5-7.

Table 5 property parameters describes the property parameters.
@modelarts:start_index and @modelarts:end_index are the same as those of
named entity recognition. For example, when source is set to content://"Three
Body" is a series of long science fiction novels created by Liu Cix., Liu Cix is an
entity person, Three Body is an entity book, the person is the author of the book,
and the book is works of the person.

Table 5-13 property parameters

Parameter Data type Description

@modelarts:start_in
dex

Integer Start position of the triplet entities. The
value starts from 0, including the
characters specified by start_index.

@modelarts:end_ind
ex

Integer End position of the triplet entities,
excluding the characters specified by
end_index.

@modelarts:from String Start entity ID of the triplet relationship

@modelarts:to String Entity ID pointed to in the triplet
relationship

Object Detection
{
 "source":"s3://path/to/image1.jpg",
 "usage":"TRAIN",
 "hard":"true",
 "hard-coefficient":0.8,
 "annotation": [
 {
 "type":"modelarts/object_detection",
 "annotation-loc": "s3://path/to/annotation1.xml",
 "annotation-format":"PASCAL VOC",
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }]
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 5-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for object detection and image segmentation but optional for
other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

Modelarts
Usermanual 5 Data Management

2024-04-30 118

Table 5-14 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 5-15.

Table 5-15 Bounding box types

Parameter Shape Labeling information

point Point Coordinates of a point
<x>100<x>
<y>100<y>

Modelarts
Usermanual 5 Data Management

2024-04-30 119

Parameter Shape Labeling information

line Line Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>200<y2>

bndbox Rectangle Coordinates of the upper left and lower
right points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>

circle Circle Center coordinates and radius
<cx>100<cx>
<cy>100<cy>
<r>50<r>

Example:
<annotation>
 <folder>test_data</folder>
 <filename>260730932.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>point</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>

Modelarts
Usermanual 5 Data Management

2024-04-30 120

 <occluded>0</occluded>
 <difficult>0</difficult>
 <point>
 <x1>456</x1>
 <y1>596</y1>
 </point>
 </object>
 <object>
 <name>line</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <line>
 <x1>133</x1>
 <y1>651</y1>
 <x2>229</x2>
 <y2>561</y2>
 </line>
 </object>
 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
 <object>
 <name>boots</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <hard-coefficient>0.8</hard-coefficient>
 <polygon>
 <x1>373</x1>
 <y1>264</y1>
 <x2>500</x2>
 <y2>198</y2>
 <x3>437</x3>
 <y3>76</y3>
 <x4>310</x4>
 <y4>142</y4>
 </polygon>
 </object>
 <object>
 <name>circle</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <circle>
 <cx>405</cx>
 <cy>170</cy>
 <r>100<r>
 </circle>
 </object>
</annotation>

Sound Classification
{
"source":

Modelarts
Usermanual 5 Data Management

2024-04-30 121

"s3://path/to/pets.wav",
 "annotation": [
 {
 "type": "modelarts/audio_classification",
 "name":"cat",
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 5-7.

Speech Labeling
{
 "source":"s3://path/to/audio1.wav",
 "annotation":[
 {
 "type":"modelarts/audio_content",
 "property":{
 "@modelarts:content":"Today is a good day."
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 5-7.

● The @modelarts:content parameter in property indicates speech content.
The data type is String.

Speech Paragraph Labeling
{
 "source":"s3://path/to/audio1.wav",
 "usage":"TRAIN",
 "annotation":[
 {

"type":"modelarts/audio_segmentation",
 "property":{
 "@modelarts:start_time":"00:01:10.123",
 "@modelarts:end_time":"00:01:15.456",

 "@modelarts:source":"Tom",

 "@modelarts:content":"How are you?"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/audio_segmentation",
 "property":{
 "@modelarts:start_time":"00:01:22.754",
 "@modelarts:end_time":"00:01:24.145",
 "@modelarts:source":"Jerry",
 "@modelarts:content":"I'm fine, thank you."
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

Modelarts
Usermanual 5 Data Management

2024-04-30 122

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 5-7.

● Table 5-16 describes the property parameters.

Table 5-16 property parameters

Parameter Data type Description

@modelarts:start_
time

String Start time of the sound. The format is
hh:mm:ss.SSS.
hh indicates the hour, mm indicates the
minute, ss indicates the second, and SSS
indicates the millisecond.

@modelarts:end_t
ime

String End time of the sound. The format is
hh:mm:ss.SSS.
hh indicates the hour, mm indicates the
minute, ss indicates the second, and SSS
indicates the millisecond.

@modelarts:sourc
e

String Sound source

@modelarts:conte
nt

String Sound content

Video Labeling
{
 "annotation": [{
 "annotation-format": "PASCAL VOC",
 "type": "modelarts/object_detection",
 "annotation-loc": "s3://path/to/annotation1_t1.473722.xml",
 "creation-time": "2020-10-09 14:08:24",
 "annotated-by": "human"
 }],
 "usage": "train",
 "property": {
 "@modelarts:parent_duration": 8,
 "@modelarts:parent_source": "s3://path/to/annotation1.mp4",
 "@modelarts:time_in_video": 1.473722
 },
 "source": "s3://input/path/to/annotation1_t1.473722.jpg",
 "id": "43d88677c1e9a971eeb692a80534b5d5",
 "sample-type": 0
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 5-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for object detection but optional for other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

● sample-type indicates a sample format. Value 0 indicates image, 1 text, 2
audio, 4 table, and 6 video.

Modelarts
Usermanual 5 Data Management

2024-04-30 123

Table 5-17 property parameters

Parameter Data type Description

@modelarts:parent_
duration

Double Duration of the labeled video, in seconds

@modelarts:time_in
_video

Double Timestamp of the labeled video frame, in
seconds

@modelarts:parent_
source

String OBS path of the labeled video

Table 5-18 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

Modelarts
Usermanual 5 Data Management

2024-04-30 124

Parameter Mand
atory

Description

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 5-19.

Table 5-19 Bounding box types

Parameter Shape Labeling information

point Point Coordinates of a point
<x>100<x>
<y>100<y>

line Line Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>200<y2>

bndbox Rectangle Coordinates of the upper left and lower
right points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

Modelarts
Usermanual 5 Data Management

2024-04-30 125

Parameter Shape Labeling information

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>

circle Circle Center coordinates and radius
<cx>100<cx>
<cy>100<cy>
<r>50<r>

Example:
<annotation>
 <folder>test_data</folder>
 <filename>260730932_t1.473722.jpg.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>point</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <point>
 <x1>456</x1>
 <y1>596</y1>
 </point>
 </object>
 <object>
 <name>line</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <line>
 <x1>133</x1>
 <y1>651</y1>
 <x2>229</x2>
 <y2>561</y2>
 </line>
 </object>

Modelarts
Usermanual 5 Data Management

2024-04-30 126

 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
 <object>
 <name>boots</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <hard-coefficient>0.8</hard-coefficient>
 <polygon>
 <x1>373</x1>
 <y1>264</y1>
 <x2>500</x2>
 <y2>198</y2>
 <x3>437</x3>
 <y3>76</y3>
 <x4>310</x4>
 <y4>142</y4>
 </polygon>
 </object>
 <object>
 <name>circle</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <circle>
 <cx>405</cx>
 <cy>170</cy>
 <r>100<r>
 </circle>
 </object>
</annotation>

5.5.3 Importing Data from Local Files

Prerequisites
● You have created a dataset.
● You have created an OBS bucket. The OBS bucket and ModelArts are in the

same region and you can operate the bucket.

Import Operation
Both file and table data can be uploaded from local files. The data uploaded from
local files should be stored in an OBS directory. You must have created an OBS
bucket.

In a single batch upload, a maximum of 100 files can be uploaded at a time, and
the total size of the files cannot exceed 5 GB.

The parameters on the GUI for data import vary according to the dataset type.
The following uses a dataset of the image classification type as an example.

Modelarts
Usermanual 5 Data Management

2024-04-30 127

1. Log in to the . In the navigation pane, choose Data Management > Datasets.

2. Locate the row that contains the desired dataset and click Import in the
Operation column.

Figure 5-27 Importing data

Alternatively, you can click the dataset name to go to the Dashboard tab
page of the dataset, and click Import in the upper right corner.

3. In the Import dialog box, set the parameters as follows and click OK.

– Data Source: Local file

– Storage Path: Select an OBS path.

– Uploading Data: Click Upload data, upload local data, and click OK.

Figure 5-28 Importing data from local files

5.6 Data Analysis and Preview
Generally, the quality of raw data cannot meet training requirements, for example,
invalid or duplicate data exists. To help you improve data quality, ModelArts
provides the following capabilities:

● Auto Grouping: pre-classifies data through clustering to allow you to label
data based on clustering results, which ensures that different labels have the
same or the almost same number of samples.

● Data Filtering: enables you to filter data based on sample attributes and
auto grouping results.

● Data Feature Analysis: analyzes data features or labeling results, such as the
brightness and bounding box distribution, helping you analyze data balance
and improve the model training effect.

Modelarts
Usermanual 5 Data Management

2024-04-30 128

5.6.1 Processing Data
After data is collected and imported, the data cannot directly meet the training
requirements. Process data during R&D to ensure data quality and prevent
negative impact on subsequent operations (such as data labeling and model
training). ModelArts provides data processing to extract valuable and meaningful
data from a large amount of disordered and difficult-to-understand data.

ModelArts provides four basic data processing functions:

● Data validation: helps AI developers identify invalid data, such as damaged
data and unqualified data, and effectively prevent algorithm precision
deterioration or training failures caused by noisy data.

● Data cleansing: checks data consistency based on data validation and correct
some invalid values.

● Data selection: During AI development, a large amount of duplicate data may
exist in the collected data. The duplicate data does not improve the model
precision. Moreover, it takes a long time to label the data. In this case, use
data selection to preprocess data and deduplicate collected data.

● Data augmentation: increases the data volume.

5.6.2 Auto Grouping
To improve the precision of auto labeling algorithms, you can evenly label
multiple classes. ModelArts provides built-in grouping algorithms. You can enable
auto grouping to improve data labeling efficiency.

Auto grouping can be understood as data labeling preprocessing. Clustering
algorithms are used to cluster unlabeled images, and images are labeled or
cleaned by group based on the clustering result.

For example, a user searches for XX through a search engine, downloads and
uploads related images to the dataset, and then uses the auto grouping function
to classify XX images, such as papers, posters, images confirmed as XX, and others.
The user can quickly remove unwanted images from a group or select all images
of a type and add labels to the images.

NO TE

Only datasets of image classification, object detection, and image segmentation types
support the auto grouping function.

Starting Auto Grouping Tasks
1. Log in to the . In the navigation pane, choose Data Management > Label

Data.
2. In the labeling job list, select a labeling job of the object detection or image

classification type and click the labeling job name to go to the labeling job
details page.

3. On the All statuses tab page of the dataset details page, choose Auto
Grouping > Start Task.

NO TE

You can start auto group tasks or view task history only on the All tab page.

Modelarts
Usermanual 5 Data Management

2024-04-30 129

4. In the displayed Auto Grouping dialog box, set parameters and click OK.
– Groups: Enter an integer from 2 to 200. The parameter value indicates

the number of groups into which images are divided.
– Result Processing Method: Select Update attribute or Save to OBS.
– Attribute Name: If you select Update attribute, you need to enter an

attribute name.
– Result Storage Path: If you select Save to OBS, specify an OBS path.
– Advanced Feature Settings: After this function is enabled, you can select

Clarity, Brightness, and Color dimensions for the auto grouping function
so that the grouping is based on the image brightness, color, and clarity.
You can select multiple options.

5. After the task is submitted, the task progress is displayed in the upper right
corner of the page. After the task is complete, you can view the history of the
auto grouping tasks to learn task status.

Viewing the Auto Grouping Result
On the All tab page of the dataset details page, expand Filter Criteria, set
Sample Attribute to the attribute name of the auto grouping task, and set the
sample attribute value to filter the grouping result.

Figure 5-29 Viewing the auto grouping result

Viewing Auto Grouping Task History
On the All tab page of the dataset details page, choose Auto Grouping > View
Task History. In the View Task History dialog box, basic information about the
auto grouping tasks of the current dataset is displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 130

Figure 5-30 Auto grouping task history

5.6.3 Data Filtering
On the Dashboard tab page of the dataset, the summary of the dataset is
displayed by default. In the upper right corner of the page, click Label. The
dataset details page is displayed, showing all data in the dataset by default. On
the All, Unlabeled, or Labeled tab page, you can add filter criteria in the filter
criteria area to quickly filter the data you want to view.

The following filter criteria are supported. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● Sample Creation Time: Select Within 1 month, Within 1 day, or Custom to

customize a time range.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.

5.6.4 Data Feature Analysis
Images or target bounding boxes are analyzed based on image features, such as
blurs and brightness to draw visualized curves to help process datasets.

You can also select multiple versions of a dataset to view their curves for
comparison and analysis.

Background
● Data feature analysis is only available for image datasets of the image

classification and object detection types.
● Data feature analysis is only available for the published datasets. The

published dataset versions in Default format support data feature analysis.
● A data scope for feature analysis varies depending on the dataset type.

– In a dataset of the object detection type, if the number of labeled
samples is 0, the View Data Feature tab page is unavailable and data
features are not displayed after a version is published. After the images
are labeled and the version is published, the data features of the labeled
images are displayed.

– In a dataset of the image classification type, if the number of labeled
samples is 0, the View Data Feature tab page is unavailable and data
features are not displayed after a version is published. After the images
are labeled and the version is published, the data features of all images
are displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 131

● The analysis result is valid only when the number of images in a dataset
reaches a certain level. Generally, more than 1,000 images are required.

● Image classification supports the following data feature metrics: Resolution,
Aspect Ratio, Brightness, Saturation, Blur Score, and Colorfulness Object
detection supports all data feature metrics. Supported Data Feature Metrics
provides all data feature metrics supported by ModelArts.

Data Feature Analysis
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. Select a dataset and click Data Features in the Operation column. The Data

Features tab page of the dataset page is displayed.
You can also click a dataset name to go to the dataset page and click the
Data Features tab.

3. By default, feature analysis is not started for published datasets. You need to
manually start feature analysis tasks for each dataset version. On the Data
Features tab page, click Feature Analysis.

Figure 5-31 Feature Analysis

4. In the dialog box that is displayed, configure the dataset version for feature
analysis and click OK to start analysis.
Version: Select a published version of the dataset.

Figure 5-32 Starting a data feature analysis task

5. After a data feature analysis task is started, it takes a certain period of time
to complete, depending on the data volume. If the selected version is
displayed in the Version drop-down list and can be selected, the analysis is
complete.

Figure 5-33 Selecting a version for which feature analysis has been performed

Modelarts
Usermanual 5 Data Management

2024-04-30 132

6. View the data feature analysis result.
Version: Select the version to be compared from the drop-down list You can
also select only one version.
Type: Select the type to be analyzed. The value can be all, train, eval, or
inference.
Data Feature Metric: Select metrics to be displayed from the drop-down list.
For details, see Supported Data Feature Metrics.
Then, the selected version and metrics are displayed on the page, as shown in
Figure 5-34. The displayed chart helps you understand data distribution for
better data processing.

Figure 5-34 Data feature analysis

7. View historical records of the analysis task.
After data feature analysis is complete, you can click Task History on the
right of the Data Features tab page to view historical analysis tasks and their
statuses in the dialog box that is displayed.

Figure 5-35 Viewing the task history

Modelarts
Usermanual 5 Data Management

2024-04-30 133

Supported Data Feature Metrics

Table 5-20 Data feature metrics

Metric Description Explanation

Resolution Image resolution. An area
value is used as a
statistical value.

Metric analysis results are
used to check whether there
is an offset point. If an offset
point exists, you can resize or
delete the offset point.

Aspect Ratio An aspect ratio is a
proportional relationship
between an image's width
and height.

The chart of the metric is in
normal distribution, which is
generally used to compare
the difference between the
training set and the dataset
used in the real scenario.

Brightness Brightness is the
perception elicited by the
luminance of a visual
target. A larger value
indicates better image
brightness.

The chart of the metric is in
normal distribution. You can
determine whether the
brightness of the entire
dataset is high or low based
on the distribution center.
You can adjust the brightness
based on your application
scenario. For example, if the
application scenario is night,
the brightness should be
lower.

Saturation Color saturation of an
image. A larger value
indicates that the entire
image color is easier to
distinguish.

The chart of the metric is in
normal distribution, which is
generally used to compare
the difference between the
training set and the dataset
used in the real scenario.

Blur Score
Clarity

Image clarity, which is
calculated using the
Laplace operator. A larger
value indicates clearer
edges and higher clarity.

You can determine whether
the clarity meets the
requirements based on the
application scenario. For
example, if data is collected
from HD cameras, the clarity
must be higher. You can
sharpen or blur the dataset
and add noises to adjust the
clarity.

Modelarts
Usermanual 5 Data Management

2024-04-30 134

Metric Description Explanation

Colorfulness Horizontal coordinate:
Colorfulness of an image.
A larger value indicates
richer colors.
Vertical coordinate:
Number of images

Colorfulness on the visual
sense, which is generally
used to compare the
difference between the
training set and the dataset
used in the real scenario.

Bounding Box
Number

Horizontal coordinate:
Number of bounding
boxes in an image
Vertical coordinate:
Number of images

It is difficult for a model to
detect a large number of
bounding boxes in an image.
Therefore, more images
containing many bounding
boxes are required for
training.

Std of Bounding
Boxes Area Per
Image
Standard Deviation
of Bounding Boxes
Per Image

Horizontal coordinate:
Standard deviation of
bounding boxes in an
image. If an image has
only one bounding box,
the standard deviation is
0. A larger standard
deviation indicates higher
bounding box size
variation in an image.
Vertical coordinate:
Number of images

It is difficult for a model to
detect a large number of
bounding boxes with
different sizes in an image.
You can add data for training
based on scenarios or delete
data if such scenarios do not
exist.

Aspect Ratio of
Bounding Boxes

Horizontal coordinate:
Aspect ratio of the target
bounding boxes
Vertical coordinate:
Number of bounding
boxes in all images

The chart of the metric is
generally in Poisson
distribution, which is closely
related to application
scenarios. This metric is
mainly used to compare the
differences between the
training set and the
validation set. For example, if
the training set is a
rectangle, the result will be
significantly affected if the
validation set is close to a
square.

Modelarts
Usermanual 5 Data Management

2024-04-30 135

Metric Description Explanation

Area Ratio of
Bounding Boxes

Horizontal coordinate:
Area ratio of the target
bounding boxes, that is,
the ratio of the bounding
box area to the entire
image area. A larger value
indicates a higher ratio of
the object in the image.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine the distribution of
anchors used in the model. If
the target bounding box is
large, set the anchor to a
large value.

Marginalization
Value of Bounding
Boxes

Horizontal coordinate:
Marginalization degree,
that is, the ratio of the
distance between the
center point of the target
bounding box and the
center point of the image
to the total distance of the
image. A larger value
indicates that the object is
closer to the edge. (The
total distance of an image
is the distance from the
intersection point of a ray
(that starts from the
center point of the image
and passes through the
center point of the
bounding box) and the
image border to the
center point of the
image.)
Vertical coordinate:
Number of bounding
boxes in all images

Generally, the chart of the
metric is in normal
distribution. The metric is
used to determine whether
an object is at the edge of an
image. If a part of an object
is at the edge of an image,
you can add a dataset or do
not label the object.

Modelarts
Usermanual 5 Data Management

2024-04-30 136

Metric Description Explanation

Overlap Score of
Bounding Boxes
Overlap Score of
Bounding Boxes

Horizontal coordinate:
Overlap degree, that is,
the part of a single
bounding box overlapped
by other bounding boxes.
The value ranges from 0
to 1. A larger value
indicates that more parts
are overlapped by other
bounding boxes.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine the overlapping
degree of objects to be
detected. Overlapped objects
are difficult to detect. You
can add a dataset or do not
label some objects based on
your needs.

Brightness of
Bounding Boxes
Brightness of
Bounding Boxes

Horizontal coordinate:
Brightness of the image in
the target bounding box.
A larger value indicates
brighter image.
Vertical coordinate:
Number of bounding
boxes in all images

Generally, the chart of the
metric is in normal
distribution. The metric is
used to determine the
brightness of an object to be
detected. In some special
scenarios, the brightness of
an object is low and may not
meet the requirements.

Blur Score of
Bounding Boxes
Clarity of Bounding
Boxes

Horizontal coordinate:
Clarity of the image in the
target bounding box. A
larger value indicates
higher image clarity.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine whether the
object to be detected is
blurred. For example, a
moving object may become
blurred during collection and
its data needs to be collected
again.

5.7 Labeling Data
Model training requires a large amount of labeled data. Therefore, before training
a model, label data. You can create a manual labeling job labeled by one person
or by a group of persons (team labeling), or enable auto labeling to quickly label
images. You can also modify existing labels, or delete them and re-label.

● Manual labeling: allows you to manually label data.
● Auto labeling: allows you to automatically label remaining data after a small

amount of data is manually labeled.
● Team labeling: allows you to perform collaborative labeling for a large

amount of data.

For details about data labeling, see .

Modelarts
Usermanual 5 Data Management

2024-04-30 137

5.8 Publishing Data

5.8.1 Introduction to Data Publishing
ModelArts distinguishes data of the same source according to versions processed
or labeled at different time, which facilitates the selection of dataset versions for
subsequent model building and development.

About Dataset Versions
● For a newly created dataset (before publishing), there is no dataset version

information. The dataset must be published before being used for model
development or training.

● The default naming rules of dataset versions are V001 and V002 in ascending
order. You can customize the version number during publishing.

● You can set any version to the current version. Then the details of the version
are displayed on the dataset details page.

● You can obtain the dataset in the manifest file format corresponding to each
dataset version based on the value of Storage Path. The dataset can be used
when you import data or filter hard examples.

● The version of a table dataset cannot be changed.

5.8.2 Publishing a Data Version
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. Locate the row containing the target dataset and click Publish in the

Operation column. Alternatively, click the dataset name to go to the
Dashboard tab page of the dataset, and click Publish in the upper right
corner.

3. In the displayed dialog box, set the parameters and click OK.

Modelarts
Usermanual 5 Data Management

2024-04-30 138

Figure 5-36 Publishing a dataset version

Table 5-21 Parameters for publishing a dataset

Parameter Description

Version The naming rules of V001 and V002 in ascending order are
used by default. A version name can be customized. Only
letters, digits, hyphens (-), and underscores (_) are allowed.

Format Only table datasets support version format setting. Available
values are CSV and CarbonData.
NOTE

If the exported CSV file contains any command starting with =, +, -,
or @, ModelArts automatically adds the Tab setting and escapes the
double quotation marks (") for security purposes.

Modelarts
Usermanual 5 Data Management

2024-04-30 139

Parameter Description

Splitting Only image classification, object detection, text
classification, and sound classification datasets support data
splitting.
By default, this function is disabled. After this function is
enabled, set the training and validation ratios.
Enter a value ranging from 0 to 1 for Training Set Ratio.
After the training set ratio is set, the validation set ratio is
determined. The sum of the training set ratio and the
validation set ratio is 1.
NOTE

To ensure the model accuracy, you are advised to set the training set
ratio to 0.8 or 0.9.

The training set ratio is the ratio of sample data used for
model training. The validation set ratio is the ratio of the
sample data used for model validation. The training and
validation ratios affect the performance of training
templates.

Description Description of the current dataset version.

Hard
Example

Only image classification and object detection datasets
support hard example attributes.
By default, this function is disabled. After this function is
enabled, information such as the hard example attributes of
the dataset are written to the corresponding manifest file.

Directory Structure of Dataset Versions
Datasets are managed based on OBS directories. After a new version is published,
the directory is generated based on the new version in the output dataset path.

Take an image classification dataset as an example. After the dataset is published,
the directory structure of related files generated in OBS is as follows:

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- VersionMame2
 ...
 |-- ...

The following uses object detection as an example. If a manifest file is imported to
the dataset, the following provides the directory structure of related files after the
dataset is published:

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- annotation
 |-- file1.xml

Modelarts
Usermanual 5 Data Management

2024-04-30 140

 |-- VersionMame2
 ...
 |-- ...

Take video labeling as an example. After the dataset is published, the labeling
result file (XML) is stored in the dataset output directory.

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- annotations
 |-- images
 |-- videoName1
 |-- videoName1.timestamp.xml
 |-- videoName2
 |-- videoName2.timestamp.xml
 |-- VersionMame2
 ...
 |-- ...

The key frames for video labeling are stored in the dataset input directory.

|-- user-specified-input-path
 |-- images
 |-- videoName1
 |-- videoName1.timestamp.jpg
 |-- videoName2
 |-- videoName2.timestamp.jpg

5.8.3 Managing Data Versions
During data preparation, you can publish data into multiple versions for dataset
management. You can view version updates, set the current version, and delete
versions.

Viewing Dataset Version Updates
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, choose More > Manage Version in the Operation column.

The Manage Version tab page is displayed.
You can view basic information about the dataset, and view the versions and
publish time on the left.

Figure 5-37 Viewing dataset versions

Modelarts
Usermanual 5 Data Management

2024-04-30 141

Setting to Current Version
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, choose More > Manage Version in the Operation column.

The Manage Version tab page is displayed.
3. On the Manage Version tab page, select the desired dataset version, and

click Set to Current Version in the basic information area on the right. After
the setting is complete, Current version is displayed to the right of the
version name.

NO TE

Only the version in Normal status can be set to the current version.

Deleting a Dataset Version
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, choose More > Manage Version in the Operation column.

The Manage Version tab page is displayed.
3. Locate the row that contains the target version, and click Delete in the

Operation column. In the dialog box that is displayed, click OK.

NO TE

Deleting a dataset version does not remove the original data. Data and its labeling
information are still stored in the OBS directory. However, this affects version
management. Exercise caution when performing this operation.

5.9 Exporting Data

5.9.1 Introduction to Exporting Data
You can select data or filter data based on the filter criteria in a dataset and
export to a new dataset or the specified OBS path. The historical export records
can be viewed in task history.

Only datasets of image classification, object detection, and image segmentation
types can be exported.

● For image classification datasets, only the label files in TXT format can be
exported.

● For object detection datasets, only XML label files in Pascal VOC format can
be exported.

● For image segmentation datasets, only XML label files in Pascal VOC format
and mask images can be exported.

5.9.2 Exporting Data to a New Dataset
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, select an image dataset and click the dataset name to go

to the Dashboard tab page of the dataset.

Modelarts
Usermanual 5 Data Management

2024-04-30 142

3. Click Export in the upper right corner. In the displayed Export To dialog box,
enter the related information and click OK.
Type: New Dataset.
Name: name of the new dataset
Storage Path: input path of the new dataset, that is, the OBS path where the
data to be exported is stored
Output Path: output path of the new dataset, that is, the output path after
labeling is complete The output path cannot be the same as the storage path,
and the output path cannot be a subdirectory of the storage path.

4. After the data is exported, view it in the specified path. After the data is
exported, you can view the new dataset in the dataset list.

5. On the Dashboard tab page, click Export History in the upper right corner. In
the displayed dialog box, view the task history of the dataset.

5.9.3 Exporting Data to OBS
1. Log in to the . In the navigation pane, choose Data Management > Datasets.
2. In the dataset list, select an image dataset and click the dataset name to go

to the Dashboard tab page of the dataset.
3. Click Export in the upper right corner. In the displayed Export To dialog box,

enter the related information and click OK.
Type: OBS.
Storage Path: path where the data to be exported is stored. You are advised
not to save data to the input or output path of the current dataset.

Figure 5-38 Exporting data to OBS

4. After the data is exported, view it in the specified path.
5. On the Dashboard tab page, click Export History in the upper right corner. In

the displayed dialog box, view the task history of the dataset.

5.10 Introduction to Data Labeling
NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Modelarts
Usermanual 5 Data Management

2024-04-30 143

Model training requires a large amount of labeled data. Therefore, before training
a model, label data. ModelArts provides you with the following labeling functions:

● Manual Labeling: allows you to manually label data.
● Auto Labeling: allows you to automatically label remaining data after a

small amount of data is manually labeled.
● Team Labeling: allows you to perform collaborative labeling for a large

amount of data.

Manual Labeling
Create a labeling job based on the dataset type. ModelArts supports the following
types of labeling jobs:

● Images
– Image classification: identifies a class of objects in images.
– Object detection: identifies the position and class of each object in an

image.
– Image segmentation: segments an image into different areas based on

objects in the image.
● Audio

– Sound classification: classifies and identifies different sounds.
– Speech labeling: labels speech content.
– Speech paragraph labeling: segments and labels speech content.

● Text
– Text classification: assigns labels to text according to its content.
– Named entity recognition: assigns labels to named entities in text, such

as time and locations.
– Text triplet: assigns labels to entity segments and entity relationships in

the text.
● Video

Video labeling: identifies the position and class of each object in a video. Only
the MP4 format is supported.

Auto Labeling
In addition to manual labeling, ModelArts also provides the auto labeling function
to quickly label data, reducing the labeling time by more than 70%. Auto labeling
means learning and training are performed based on the labeled images and an
existing model is used to quickly label the remaining images.

Only datasets of image classification and object detection types support the auto
labeling function.

Team Labeling
Generally, a small data labeling task can be completed by an individual. However,
team work is required to label a large dataset. ModelArts provides the team
labeling function. A labeling team can be formed to manage labeling for the same
dataset.

Modelarts
Usermanual 5 Data Management

2024-04-30 144

The team labeling function supports only datasets for image classification, object
detection, text classification, named entity recognition, text triplet, and speech
paragraph labeling.

Dataset Functions
Dataset functions vary depending on dataset types. For details, see Table 5-22.

Table 5-22 Functions supported by different types of datasets

Datas
et
Type

Labeling
Type

Manual
Labeling

Auto Labeling Team Labeling

Image
s

Image
classification

Supported Supported Supported

Object
detection

Supported Supported Supported

Image
segmentation

Supported N/A N/A

Audio Sound
classification

Supported N/A N/A

Speech
labeling

Supported N/A N/A

Speech
paragraph
labeling

Supported N/A Supported

Text Text
classification

Supported N/A Supported

Named entity
recognition

Supported N/A Supported

Text triplet Supported N/A Supported

Video Video
labeling

Supported N/A N/A

Free
format

N/A N/A N/A N/A

Table N/A N/A N/A N/A

5.11 Manual Labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 145

5.11.1 Creating a Labeling Job
Model training requires a large amount of labeled data. Therefore, before training
a model, label data. You can create a manual labeling job labeled by one person
or by a group of persons (team labeling), or enable auto labeling to quickly label
images. You can also modify existing labels, or delete them and re-label.

Labeling Job Types
Create a labeling job based on the dataset type. ModelArts supports the following
types of labeling jobs:

● Images
– Image classification: identifies a class of objects in images.
– Object detection: identifies the position and class of each object in an

image.
– Image segmentation: segments an image into different areas based on

objects in the image.
● Audio

– Sound classification: classifies and identifies different sounds.
– Speech labeling: labels speech content.
– Speech paragraph labeling: segments and labels speech content.

● Text
– Text classification: assigns labels to text according to its content.
– Named entity recognition: assigns labels to named entities in text, such

as time and locations.
– Text triplet: assigns labels to entity segments and entity relationships in

the text.
● Videos

Video labeling: identifies the position and class of each object in a video. Only
the MP4 format is supported.

Prerequisites
Before labeling data, create a dataset.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. On the Data Labeling page, click Create Labeling Job in the upper right

corner. On the page that is displayed, create a labeling job.

a. Enter basic information about the labeling job, including Name and
Description.

Modelarts
Usermanual 5 Data Management

2024-04-30 146

Figure 5-39 Basic information about a labeling job

b. Select a labeling scene and type as required.

Figure 5-40 Selecting a labeling scene and type

c. Set the parameters based on the labeling job type. For details, see the
parameters of the following labeling job types:

▪ Images (Image Classification, Image Segmentation, and Object
Detection)

▪ Audio (Sound Classification, Speech Labeling, and Speech
Paragraph Labeling)

▪ Text (Text Classification, Named Entity Recognition, and Text
Triplet)

▪ Videos

d. Click Create in the lower right corner of the page.
After the labeling job is created, the data labeling management page is
displayed. You can perform the following operations on the labeling job:
start auto labeling, publish new versions, modify the labeling job, and
delete the labeling job.

Modelarts
Usermanual 5 Data Management

2024-04-30 147

Images (Image Classification, Image Segmentation, and Object Detection)

Figure 5-41 Parameters of labeling jobs for image classification and object
detection

Table 5-23 Parameters of an image labeling job

Parameter Description

Dataset
Name

Select a dataset that supports the labeling type.

Label Set ● Label name: Enter a label name with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Set label colors for object detection and image

segmentation labeling jobs. Select a color from the color
palette on the right of a label, or enter the hexadecimal color
code to set the color.

● Add Label Attribute: For an object detection labeling job, you
can click the plus sign (+) on the right to add label attributes
after setting a label color. Label attributes are used to
distinguish different attributes of the objects with the same
label. For example, yellow kittens and black kittens have the
same label cat and their label attribute is color.

Modelarts
Usermanual 5 Data Management

2024-04-30 148

Parameter Description

Team
Labeling

Enable or disable team labeling. Image segmentation does not
support team labeling. Therefore, this parameter is unavailable
when you use image segmentation.
After enabling team labeling, enter the type of the team labeling
job, and select the labeling team and team members. For details
about the parameter settings, see Creating a Team Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no labeling
team is available, click the link on the page to go to the Labeling
Teams page, and add your team and members. For details, see
Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

Audio (Sound Classification, Speech Labeling, and Speech Paragraph
Labeling)

Figure 5-42 Parameters of labeling jobs for sound classification, speech labeling,
and speech paragraph labeling

Table 5-24 Parameters of an audio labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Modelarts
Usermanual 5 Data Management

2024-04-30 149

Parameter Description

Label Set (for
sound
classification)

You can add a label set for labeling jobs of sound
classification.
● Label name: Enter 1 to 1024 characters in the Label Set

text box.
● Add Label: Click Add Label to add one or more labels.

Label
Management
(for speech
paragraph
labeling)

Label management is available for speech paragraph labeling.
● Single Label

A single label is used to label a piece of audio that has only
one class.
– Label: Enter a label name, with 1 to 1024 characters.
– Label Color: Set the label color in the Label Color

column. You can select a color from the color palette or
enter a hexadecimal color code to set the color.

● Multiple Labels
Multiple labels are suitable for multi-dimensional labeling.
For example, you can label a piece of audio as both noise
and speech. For speech, you can label the audio with
different speakers. You can click Add Label Class to add
multiple label classes. A label class can contain multiple
labels. The label class or name contains 1 to 256
characters. Only letters, digits, periods (.), underscores (_),
and hyphens (-) are allowed.
– Add Label Class: Enter a label class.
– Label: Enter a label name.
– Add Label: Click Add Label to add one or more labels.

Speech
Labeling (for
speech
paragraph
labeling)

Only datasets for speech paragraph labeling support speech
labeling. By default, speech labeling is disabled. If this function
is enabled, you can label speech content.

Team Labeling
(for speech
paragraph
labeling)

Only datasets of speech paragraph labeling support team
labeling.
After enabling team labeling, enter the type of the team
labeling job, and select the labeling team and team members.
For details about the parameter settings, see Creating a Team
Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no
labeling team is available, click the link on the page to go to
the Labeling Teams page, and add your team and members.
For details, see Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

Modelarts
Usermanual 5 Data Management

2024-04-30 150

Text (Text Classification, Named Entity Recognition, and Text Triplet)

Figure 5-43 Parameters of labeling jobs for text classification, named entity
recognition, and text triplet

Table 5-25 Parameters of a text labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Label Set (for
text
classification
and named
entity
recognition)

● Label name: Enter a label name, with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Select a color from the color palette or enter

the hexadecimal color code to set the color.

Label Set (for
text triplet)

For datasets of the text triplet type, set entity labels and
relationship labels.
● Entity Label: Set the label name and label color. You can

click the plus sign (+) on the right of the color area to add
multiple labels.

● Relationship Label: a relationship between two entities.
Set the source entity and target entity. Therefore, add at
least two entity labels before adding a relationship label.

Modelarts
Usermanual 5 Data Management

2024-04-30 151

Parameter Description

Team Labeling Enable or disable team labeling.
After enabling team labeling, enter the type of the team
labeling job, and select the labeling team and team members.
For details about the parameter settings, see Creating a Team
Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no
labeling team is available, click the link on the page to go to
the Labeling Teams page, and add your team and members.
For details, see Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

Videos

Figure 5-44 Parameters of a video labeling job

Modelarts
Usermanual 5 Data Management

2024-04-30 152

Table 5-26 Parameters of a video labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Label Set ● Label name: Enter a label name, with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Select a color from the color palette or enter

the hexadecimal color code to set the color.

5.11.2 Image Labeling

5.11.2.1 Image Classification
Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can add labels to images by manual labeling or
auto labeling. In addition, you can modify the labels of images, or remove their
labels and label the images again.

Before labeling an image in image classification scenarios, pay attention to the
following:

● You can add multiple labels to an image.
● A label name can contain a maximum of 1024 characters, including letters,

digits, hyphens (-), and underscores (_).

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. On the right of the labeling job list, select a labeling type from the job type

drop-down list. Click the job to be performed based on the labeling type. The
details page of the job is displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 153

Figure 5-45 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from
datasets to labeling jobs.

To quickly obtain the latest data in a dataset, on the All statuses, Unlabeled, or
Labeled tab page of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Filtering Data

On the All statuses, Unlabeled, or tab page, click in the filter criteria area and
add filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.

Modelarts
Usermanual 5 Data Management

2024-04-30 154

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tab pages. The Unlabeled tab page is displayed by default. Click an image to
preview it. For the images that have been labeled, the label information is
displayed at the bottom of the preview page.

1. On the Unlabeled tab page, select the images to be labeled.

– Manual selection: In the image list, click the selection box in the upper
left corner of an image to enter the selection mode, indicating that the
image is selected. You can select multiple images of the same type and
add labels to them together.

– Batch selection: If all the images on the current page of the image list
belong to the same type, you can click Select Images on Current Page
in the upper right corner to select all the images on the current page.

2. Add labels to the selected images.

a. In the label adding area on the right, set a label in the Label text box.

Click the Label text box and select an existing label from the drop-down
list. If the existing labels cannot meet the requirements, input a label in
the text box.

b. Click OK. The selected images are automatically moved to the Labeled
tab page. On the Unlabeled and All statuses tab pages, the labeling
information is updated along with the labeling process, including the
added label names and the number of images for each label.

NO TE

For details about how to label data, see Labeling Description on the dataset details
page.

1. Log in to the ModelArts management console. In the left navigation pane, choose
Data Management > Label Data. The Data Labeling page is displayed.

2. On the My Creations or My Participations tab page, find the dataset to be
labeled.

3. Click the dataset name. The labeling details page is displayed. (By default, the
Unlabeled tab page is displayed.)

4. In the upper right corner of the labeling details page, click Labeling Description.

Figure 5-46 Labeling Description

Viewing Labeled Images

On the labeling job details page, click the Labeled tab to view the list of labeled
images. By default, the corresponding labels are displayed under the image
thumbnails. You can also select an image and view the label information of the
image in the Labels of Selected Images area on the right.

Modelarts
Usermanual 5 Data Management

2024-04-30 155

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying based on images

On the labeling job details page, click the Labeled tab, and select one or
more images to be modified from the image list. Modify the image
information in the label information area on the right.

Modifying a label: In the Labels of Selected Images area, click the edit icon
in the Operation column, enter the correct label name in the text box, and
click the check mark to complete the modification.

Deleting a label: In the Labels of Selected Images area, click the delete icon
in the Operation column to delete the label. This operation deletes only the
labels added to the selected image.

Figure 5-47 Modifying a label

● Modifying based on labels

– On the labeling job details page, click Label Management. All labels are
displayed on the list.

▪ Modifying a label: Click Modify in the Operation column. In the
dialog box that is displayed, enter a new label name and click OK.
After the modification, the images that have been added with the
label use the new label name.

▪ Deleting a label: Click Delete in the Operation column to delete the
label from all images that have been added with the label.

Figure 5-48 Label Management

Modelarts
Usermanual 5 Data Management

2024-04-30 156

Figure 5-49 All labels

– Click Label in the Operation column of the target labeling job to go to
the label management page.

▪ Click Modify in the Operation column of the target label to modify
it.

▪ Click Delete in the Operation column of the target label to delete it.

Adding Data

In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

Figure 5-50 Adding data

2. Configure the data source, import mode, import path, and labeling status.

3. Click OK.
The images you have added will be automatically displayed in the image list
on the All statuses tab page. You can choose Add data > View historical
records to view task history.

Modelarts
Usermanual 5 Data Management

2024-04-30 157

Figure 5-51 Viewing historical data

Deleting Images

You can quickly delete the images you want to discard.

On the All statuses, Unlabeled, or Labeled tab page, select the images to be
deleted or click Select Images on Current Page, and click Delete. In the displayed
dialog box, select or deselect Delete the source files from OBS as required. After
confirmation, click Yes to delete the images.

Figure 5-52 Deleting Images

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 5-53 Annotator Management (1)

Modelarts
Usermanual 5 Data Management

2024-04-30 158

Figure 5-54 Annotator Management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

5.11.2.2 Object Detection
Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can add labels to images by manual labeling or
auto labeling. In addition, you can modify the labels of images, or remove their
labels and label the images again.

Before labeling an image in object detection scenarios, pay attention to the
following:

● All target objects in the image must be labeled.
● Target objects are clear without any blocking and contained within bounding

boxes.
● Only the entire object must be contained within a bounding box. The

bounding box contains the entire object. The edge of the bounding box
cannot intersect the edge outline of the object to be labeled. Ensure that
there is no gap between the edge and the object to be labeled to prevent the
background from interfering with the model training.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.

Modelarts
Usermanual 5 Data Management

2024-04-30 159

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-55 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in a dataset, on the All statuses, Unlabeled, or
Labeled tab page of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Filtering Data

On the All statuses, Unlabeled, or tab page, click in the filter criteria area
and add filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.

Modelarts
Usermanual 5 Data Management

2024-04-30 160

● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tab pages. The Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, click an image. The system automatically directs
you to the page for labeling the image. For details about how to use common
buttons on this page, see Table 5-28.

2. In the tool bar, select a proper labeling shape. The default labeling shape is a
rectangle. In this example, the rectangle is used for labeling.

NO TE

In the tool bar, multiple tools are provided for you to label images. After you select a
shape to label the first image, the shape automatically applies to subsequent images.
You can switch the shape as required.

Table 5-27 Supported bounding box

Icon Description

Rectangle. You can also press 1. Click the edge of the
upper left corner of the object to be labeled. A rectangle
will be displayed. Drag the rectangle to cover the object
and click to label the object.

Polygon. You can also press 2. In the area where the object
to be labeled is located, click to label a point, move the
mouse and click multiple points along the edge of the
object, and then click the first point again. All the points
form a polygon. In this way, the object to be labeled is
within the bounding box.

Round. You can also press 3. Click the center point of an
object, and move the mouse to draw a circle to cover the
object and click to label the object.

Straight. You can also press 4. Click to specify the start and
end points of an object, and move the mouse to draw a
straight line to cover the object and click to label the
object.

Dashed line. You can also press 5. Click to specify the start
and end points of an object, and move the mouse to draw
a dashed line to cover the object and click to label the
object.

Dot. You can also press 6. Click the object in an image to
label a point.

Modelarts
Usermanual 5 Data Management

2024-04-30 161

3. In the Add Label text box, enter a new label name, select the label color, and
click Add. Alternatively, select an existing label from the drop-down list.
Label all objects in an image. Multiple labels can be added to an image. After
labeling an image, click the right arrow (or press D) in the upper right corner
of the image to switch to the next image and label the image.

4. Click Back to Data Labeling Preview in the upper left part of the page to
view the labeling information. In the dialog box that is displayed, click Yes to
save the labeling settings.
The selected images are automatically moved to the Labeled tab page. On
the Unlabeled and All statuses tab pages, the labeling information is
updated along with the labeling process, including the added label names and
the number of images for each label.

Table 5-28 Common icons on the labeling page

Button Features

Cancel the previous operation. You can also press Ctrl+Z.

Redo the previous operation. You can also press Ctrl+Shift+Z.

Zoom in an image. You can also use the mouse wheel to
zoom in.

Zoom out an image. You can also use the mouse wheel to
zoom out.

Delete all bounding boxes on the current image. You can also
press Shift+Delete.

Show or hide a bounding box. This operation can be
performed only on a labeled image. You can also press Shift
+H.

Drag a bounding box to another position or drag the edge of
the bounding box to resize it. You can also use X + left mouse
button.

Reset a bounding box. After dragging a bounding box, you
can click this button to quickly restore the bounding box to
its original shape and position. You can also press Esc.

Viewing Labeled Images
On the labeling job details page, click the Labeled tab to view the list of labeled
images. The labels of each image are displayed below the image.

Modelarts
Usermanual 5 Data Management

2024-04-30 162

Figure 5-56 Labels

Quick Review

To simplify operations, ModelArts provides quick review so that you can batch
review and modify labeled data.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the My Creations tab page, select the
target labeling job type from the All types drop-down list in the upper right
corner. (Only object detection and image segmentation support quick review.)

2. In the labeling job list, click the target labeling job. The labeling details page
is displayed.

3. Click Quick Review on the Labeled tab. On the displayed page, confirm the
labeling results.

Figure 5-57 Quick Review

4. Batch review images of the same label.

a. On the review page, select the label type from the drop-down list next to
Filter by Label.

b. Sort images of the selected label type by bounding box area or aspect
ratio.

c. Click an incorrectly labeled image, and then drag the labeling box to
relabel the image. (Modified is displayed on the modified images.)

d. You can select the incorrectly labeled images, and then click in the
upper right corner to delete the label. (Deleted is displayed on the
images whose label has been deleted.)

Modelarts
Usermanual 5 Data Management

2024-04-30 163

Figure 5-58 Modified

Figure 5-59 Deleted

e. You can also modify the label of a labeled image.

i. Select the target images and click in the All Labels area on the
right.

ii. Type a new label and click OK.

Figure 5-60 All Labels

Figure 5-61 Adding a label

5. After the modification, click Apply Modifications. In the displayed dialog box,
click OK. The system automatically returns to the labeling overview page and
overwrites the original labeling data.

Modelarts
Usermanual 5 Data Management

2024-04-30 164

Figure 5-62 Apply Modifications

6. If you are not satisfied with the modified data, you can click Cancel
Modifications to retain the original labeling data.

Figure 5-63 Cancel Modifications

Table 5-29 Buttons on the quick review page

Button Features

Delete the label.

Undo all operations on the current page.

Undo the previous operation.

Redo the previous operation.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying based on images

Modelarts
Usermanual 5 Data Management

2024-04-30 165

On the labeling job details page, click the Labeled tab and then the image to
be modified. The labeling page is displayed. Modify the image information in
the label information area on the right.
– Modifying a label: In the Labeling area, click the edit icon, enter the

correct label name in the text box, and click the check mark to complete
the modification. Alternatively, click a label. In the image labeling area,
adjust the position and size of the labeling box. After the adjustment,
right-click the labeling box and choose Modify from the shortcut menu.
Enter the new label and click Modify to save the modification.

– Deleting a label: In the Labeling area, click the deletion icon to delete a
label from the image.
After deleting the label, click Back to Data Labeling Preview in the
upper left corner of the page to exit the labeling page. In the dialog box
that is displayed, save the modification. After all labels of an image are
deleted, the image is displayed on the Unlabeled tab page.

Figure 5-64 Editing an object detection label

● Modifying based on labels
– On the labeling job details page, click Label Management on the right.

All label information is displayed.

▪ Modifying a label: Click Modify in the Operation column. In the
dialog box that is displayed, enter a new label name, select a new
label color, and click OK. After the modification, the images that
have been added with the label use the new label name.

▪ Deleting a label: Click Delete in the Operation column, or select the
label to be deleted and click Delete Label above the label list.

Modelarts
Usermanual 5 Data Management

2024-04-30 166

Figure 5-65 Label Management

Figure 5-66 All labels

– Alternatively, click Label in the Operation column of the target labeling
job to go to the label management page.

Figure 5-67 Accessing the label management page from the labeling job
list

▪ Click Modify in the Operation column of the target label to modify
it.

▪ Click Delete in the Operation column of the target label to delete it.

Adding Data
In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

Modelarts
Usermanual 5 Data Management

2024-04-30 167

Figure 5-68 Adding data

2. Configure the data source, import mode, import path, and labeling status.

Figure 5-69 Adding images

3. Click OK.
The images you have added will be automatically displayed in the image list
on the All statuses tab page. You can choose Add data > View historical
records to view task history.

Figure 5-70 Viewing historical data

Deleting Images

You can quickly delete the images you want to discard.

Modelarts
Usermanual 5 Data Management

2024-04-30 168

On the All statuses, Unlabeled, or Labeled tab page, select the images to be
deleted or click Select Images on Current Page, and click Delete. In the displayed
dialog box, select or deselect Delete the source files from OBS as required. After
confirmation, click Yes to delete the images.

Figure 5-71 Deleting images

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a

team labeling job is followed by .)
3. Choose More > Annotator Management in the Operation column.

Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 5-72 Annotator Management (1)

Modelarts
Usermanual 5 Data Management

2024-04-30 169

Figure 5-73 Annotator Management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

5.11.2.3 Image Segmentation

Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can label images on the ModelArts management
console. Alternatively, modify labels, or delete them and label them again.

Before labeling an image in image segmentation scenarios, pay attention to the
following:

● All objects whose contours need to be extracted from the image must be
labeled.

● Polygons can be used for labeling.
– In polygon labeling, draw a polygon based on the outline of the target

object.
● When labeling an image, ensure that the polygons are within the image.

Otherwise, an error will occur in subsequent operations.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.

Modelarts
Usermanual 5 Data Management

2024-04-30 170

2. On the right of the labeling job list, select a labeling type from the job type
drop-down list. Click the job to be performed based on the labeling type. The
details page of the job is displayed.

Figure 5-74 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in a dataset, on the All statuses, Unlabeled, or
Labeled tab page of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Filtering Data

On the All statuses, Unlabeled, or tab page, click in the filter criteria area and
add filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

Modelarts
Usermanual 5 Data Management

2024-04-30 171

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tab pages. The Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, click an image. The system automatically directs
you to the page for labeling the image. For details about how to use common
buttons on this page, see Table 5-31.

2. Select a labeling method.
On the labeling page, common labeling methods and buttons are provided
in the toolbar. By default, polygon labeling is selected.

NO TE

After you select a method to label the first image, the labeling method automatically
applies to subsequent images.

Figure 5-75 Toolbar

Table 5-30 Labeling methods

Icon Description

Polygon. In the area where the object to be labeled is
located, click to label a point, move the mouse and click
multiple points along the edge of the object, and then
click the first point again. All the points form a polygon. In
this way, the object to be labeled is within the bounding
box.

Table 5-31 Toolbar buttons

Button Features

Cancel the previous operation.

Redo the previous operation.

Zoom in an image.

Zoom out an image.

Modelarts
Usermanual 5 Data Management

2024-04-30 172

Button Features

Delete all bounding boxes on the current image.

Show or hide a bounding box. This operation can be
performed only on a labeled image.

Drag a bounding box to another position or drag the edge
of the bounding box to resize it.

Reset a bounding box. After dragging a bounding box,
you can click this button to quickly restore the bounding
box to its original shape and position.

Display the labeled image in full screen.

3. Label an object.

After labeling an image, click below the image to view in the image
list and click an unlabeled image to label the new image.

4. Click Back to Data Labeling Preview in the upper left part of the page to
view the labeling information. In the dialog box that is displayed, click Yes to
save the labeling settings.
The selected images are automatically moved to the Labeled tab page. On
the Unlabeled and All statuses tab pages, the labeling information is
updated along with the labeling process, including the added label names and
the number of images for each label.

Viewing Labeled Images
On the labeling job details page, click the Labeled tab to view the list of labeled
images. Click an image to view its labeling information in the File Labels area on
the right.

Quick Review
To simplify operations, ModelArts provides quick review so that you can batch
review and modify labeled data.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the My Creations tab page, select the
target labeling job type from the All types drop-down list in the upper right
corner. (Only object detection and image segmentation support quick review.)

2. In the labeling job list, click the target labeling job. The labeling details page
is displayed.

3. Click Quick Review on the Labeled tab. On the displayed page, confirm the
labeling results.

Modelarts
Usermanual 5 Data Management

2024-04-30 173

Figure 5-76 Quick Review

4. Batch review images of the same label.

a. On the review page, select the label type from the drop-down list next to
Filter by Label.

b. Sort images of the selected label type by bounding box area or aspect
ratio.

c. Click an incorrectly labeled image, and then drag the labeling box to
relabel the image. (Modified is displayed on the modified images.)

d. You can select the incorrectly labeled images, and then click in the
upper right corner to delete the label. (Deleted is displayed on the
images whose label has been deleted.)

Figure 5-77 Modified

Figure 5-78 Deleted

e. You can also modify the label of a labeled image.

i. Select the target images and click in the All Labels area on the
right.

ii. Type a new label and click OK.

Modelarts
Usermanual 5 Data Management

2024-04-30 174

Figure 5-79 All Labels

Figure 5-80 Adding a label

5. After the modification, click Apply Modifications. In the displayed dialog box,
click OK. The system automatically returns to the labeling overview page and
overwrites the original labeling data.

Figure 5-81 Apply Modifications

6. If you are not satisfied with the modified data, you can click Cancel
Modifications to retain the original labeling data.

Modelarts
Usermanual 5 Data Management

2024-04-30 175

Figure 5-82 Cancel Modifications

Table 5-32 Buttons on the quick review page

Button Features

Delete the label.

Undo all operations on the current page.

Undo the previous operation.

Redo the previous operation.

Modifying a Label

After labeling data, you can modify labeled data on the Labeled tab page.

On the labeling details page, click the Labeled tab and then the image to be
modified. On the labeling page that is displayed, modify the labeling information
in the File Labels area on the right.

● Modifying a label: In the Labeling area, click the edit icon, set the target label

name or color in the displayed dialog box, and click to save the
modification. Alternatively, click a label to be modified. In the image labeling
area, adjust the position and size of the bounding box. After the adjustment is
complete, click another label to save the modification.

● Deleting a label: In the Labeling area, click the deletion icon to delete a label
from the image. After all labels of an image are deleted, the image is
displayed on the Unlabeled tab page.

After the labeling information is modified, click Back to Data Labeling Preview in
the upper left part of the page to exit the labeling page. In the dialog box that is
displayed, click Yes to save the modification.

Modelarts
Usermanual 5 Data Management

2024-04-30 176

Adding Data

In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

Figure 5-83 Adding Data

2. Configure the data source, import mode, import path, and labeling status.

Figure 5-84 Adding images

3. Click OK.
The images you have added will be automatically displayed in the image list
on the All statuses tab page. You can choose Add data > View historical
records to view task history.

Modelarts
Usermanual 5 Data Management

2024-04-30 177

Figure 5-85 Viewing historical data

Deleting Images

You can quickly delete the images you want to discard.

On the All statuses, Unlabeled, or Labeled tab page, select the images to be
deleted or click Select Images on Current Page, and click Delete in the upper left
corner to delete them. In the displayed dialog box, select or deselect Delete the
source files from OBS as required. After confirmation, click Yes to delete the
images.

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

5.11.3 Text Labeling

5.11.3.1 Text Classification

Model training requires a large amount of labeled data. Therefore, before the
model training, add labels to the files that are not labeled. In addition, you can
modify, delete, and re-label the labeled text.

Text classification classifies text content based on labels. Before labeling text
content, pay attention to the following:

● Text labeling supports multiple labels. That is, you can add multiple labels to
a labeling object.

● A label name can contain a maximum of 1024 characters, including letters,
digits, hyphens (-), underscores (_), and special characters.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 178

Figure 5-86 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, on the Unlabeled tab page of
the labeling job details page, click Synchronize New Data.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Text Files

The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, the objects to be labeled are listed in the left
pane. In the list, click the text object to be labeled, and select a label in the
Label Set area in the right pane. Multiple labels can be added to a labeling
object.

You can repeat this operation to select objects and add labels to the objects.

Modelarts
Usermanual 5 Data Management

2024-04-30 179

Figure 5-87 Labeling for text classification

2. After all objects are labeled, click Save Current Page at the bottom of the
page.

Adding a Label
● Adding labels on the Unlabeled tab page: Click the plus sign (+) next to

Label Set. On the Add Label page that is displayed, add a label name, select
a label color, and click OK.

Figure 5-88 Adding a label (1)

● Adding labels on the Labeled tab page: Click the plus sign (+) next to Label
Set. On the Add Label page that is displayed, add a label name, select a label
color, and click OK.

Figure 5-89 Adding a label (2)

Viewing the Labeled Text

On the labeling job details page, click the Labeled tab to view the list of labeled
texts. You can also view all labels supported by the labeling job in the All Labels
area on the right.

Modelarts
Usermanual 5 Data Management

2024-04-30 180

Modifying Labeled Data
After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying based on texts
On the labeling job details page, click the Labeled tab and select the text to
be modified from the text list.
In the text list, click the text. When the text background turns blue, the text is
selected. If a text file has multiple labels, you can click above a label to
delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.
– Batch modification: In the All Labels area, click the edit icon in the

Operation column, modify the label name in the text box, select a label
color, and click OK.

– Batch deletion: In the All Labels area, click the deletion icon in the
Operation column to delete the label. In the dialog box that is displayed,
select Delete the label or Delete the label and objects with only the
label, and click OK.

Adding a File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see section "Importing Data".

Figure 5-90 Importing data

Modelarts
Usermanual 5 Data Management

2024-04-30 181

Deleting a File
You can quickly delete the files you want to discard.

● On the Unlabeled tab page, select the text to be deleted, and click Delete in
the upper left corner to delete the text.

● On the Labeled tab page, select the text to be deleted and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 5-91 Annotator Management (1)

Figure 5-92 Annotator Management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

Modelarts
Usermanual 5 Data Management

2024-04-30 182

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

5.11.3.2 Named Entity Recognition

Named entity recognition assigns labels to named entities in text, such as time
and locations. Before labeling, pay attention to the following:

A label name of a named entity can contain a maximum of 1024 characters,
including letters, digits, hyphens (-), underscores (_), and special characters.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-93 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

Modelarts
Usermanual 5 Data Management

2024-04-30 183

To quickly obtain the latest data in the datasets, on the Unlabeled tab page of
the labeling job details page, click Synchronize New Data.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Text Files
The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, the objects to be labeled are listed in the left
pane. In the list, click the text object to be labeled, select a part of text
displayed under Label Set for labeling, and select a label in the Label Set
area in the right pane.
You can repeat this operation to select objects and add labels to the objects.

2. Click Save Current Page in the lower part of the page to complete the
labeling.

Adding a Label
● Adding labels on the Unlabeled tab page: Click the plus sign (+) next to

Label Set. On the Add Label page that is displayed, add a label name, select
a label color, and click OK.

Figure 5-94 Adding a named entity label (1)

● Adding labels on the Labeled tab page: Click the plus sign (+) next to Label
Set. On the Add Label page that is displayed, add a label name, select a label
color, and click OK.

Figure 5-95 Adding a named entity label (2)

Modelarts
Usermanual 5 Data Management

2024-04-30 184

Viewing the Labeled Text
On the dataset details page, click the Labeled tab to view the list of the labeled
text. You can also view all labels supported by the dataset in the All Labels area
on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data on the Labeled tab page.

On the labeling job details page, click the Labeled tab, and modify the text
information in the label information area on the right.

● Modifying based on texts
On the labeling job details page, click the Labeled tab, and select the text to
be modified from the text list.
Manual deletion: In the text list, click the text. When the text background
turns blue, the text is selected. On the right of the page, click above a text
label to delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.
– Batch modification: In the All Labels area, click the edit icon in the

Operation column, add a label name in the text box, select a label color,
and click OK.

– Batch deletion: In the All Labels area, click the deletion icon in the
Operation column to delete the label. In the dialog box that is displayed,
select Delete the label or Delete the label and objects with only the
label, and click OK.

Adding a File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see section "Importing Data".

Modelarts
Usermanual 5 Data Management

2024-04-30 185

Figure 5-96 Importing data

Deleting a File
You can quickly delete the files you want to discard.

● On the Unlabeled tab page, select the text to be deleted, and click Delete in
the upper left corner to delete the text.

● On the Labeled tab page, select the text to be deleted and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 5-97 Annotator Management (1)

Modelarts
Usermanual 5 Data Management

2024-04-30 186

Figure 5-98 Annotator Management (2)

● Adding an annotator

Click Add Member, select a member name, and click OK.

Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information

Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator

Click Delete in the Operation column to delete the annotator.

5.11.3.3 Text Triplet

Triplet labeling is suitable for scenarios where structured information, such as
subjects, predicates, and objects, needs to be labeled in statements. With this
function, not only entities in statements, but also relationships between entities
can be labeled. Triplet labeling is often used in natural language processing tasks
such as dependency syntax analysis and information extraction.

Text triplet labeling involves two classes of important labels: Entity Label and
Relationship Label. For Relationship Label, set its Source entity and Target
entity.

● You can define multiple entity and relationship labels for a text object.

● The Entity Label defined during dataset creation cannot be deleted.

Precautions

Before labeling, ensure that the Entity Label and Relationship Label of a labeling
job have been defined. For Relationship Label, set its Source entity and Target
entity. Relationship Label must be between the defined Source entity and
Target entity.

For example, if two entities are labeled as Place, you cannot add any relationship
label between them. If a relationship label cannot be added, a red cross is
displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 187

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-99 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, on the Unlabeled tab page of
the labeling job details page, click Synchronize New Data.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Modelarts
Usermanual 5 Data Management

2024-04-30 188

Labeling Text Files

The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, the objects to be labeled are listed in the left
pane. In the list, click a text object, select the corresponding text content on
the right pane, and select an entity name from the displayed entity list to
label the content.

Figure 5-100 Labeling an entity

2. After labeling multiple entities, click the source entity and target entity in
sequence and select a relationship type from the displayed relationship list to
label the relationship.

Figure 5-101 Labeling a relationship

3. After all objects are labeled, click Save Current Page at the bottom of the
page.

NO TE

You cannot modify the labels of a dataset in the text triplet type on the labeling page.
Instead, click Label Management and modify the Entity Label and Relationship Label.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

On the labeling job details page, click the Labeled tab. Select a text object in the
left pane and the right pane displays the detailed label information. You can move
your cursor to the entity or relationship label, and right-click to delete it. You can
also click the source entity and target entity in sequence to add a relationship
label.

You can click Delete Labels on Current Item at the bottom of the page to delete
all labels in the selected text object.

Modelarts
Usermanual 5 Data Management

2024-04-30 189

Adding a File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see section "Importing Data".

Figure 5-102 Importing data

Deleting a File
You can quickly delete the files you want to discard.

● On the Unlabeled tab page, select the text to be deleted, and click Delete in
the upper left corner to delete the text.

● On the Labeled tab page, select the text to be deleted and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue. If no text is selected on the page, the
Delete button is unavailable.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

Modelarts
Usermanual 5 Data Management

2024-04-30 190

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 5-103 Annotator Management (1)

Figure 5-104 Annotator Management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

5.11.4 Audio Labeling

5.11.4.1 Sound Classification
Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label
audio files in batches by one click. In addition, you can modify the labels of audio
files, or remove their labels and label the audio files again.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Modelarts
Usermanual 5 Data Management

2024-04-30 191

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-105 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, on the Unlabeled or Labeled tab
page of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Modelarts
Usermanual 5 Data Management

2024-04-30 192

Labeling Audio Files
The labeling job details page displays the Unlabeled and Labeled tabs. The

Unlabeled tab page is displayed by default. Click on the left of the audio to
preview the audio.

1. On the Unlabeled tab page, select the audio files to be labeled.
– Manual selection: In the audio list, click the target audio. If the blue

check box is displayed in the upper right corner, the audio is selected. You
can select multiple audio files of the same type and label them together.

– Batch selection: If all audio files of the current page belong to one type,
you can click Select Current Page in the upper right corner of the list to
select all the audio files on the page.

2. Add labels.

a. In the label adding area on the right, set a label in the Label text box.
Method 1 (the required label already exists): In the right pane, select a
shortcut from the Shortcut drop-down list, select an existing label name
from the Label text box, and click OK.
Method 2 (adding a label): In the right pane, select a shortcut from the
Shortcut drop-down list, and enter a new label name in the Label text
box.

b. The selected audio files are automatically moved to the Labeled tab
page. On the Unlabeled tab page, the labeling information is updated
along with the labeling process, including the added label names and the
number of audio files corresponding to each label.

NO TE

Shortcut key description: After specifying a shortcut key for a label, you can select an
audio file and press the shortcut key to add a label for the audio file. Example: Specify
1 as the shortcut key for the aa label. Select one or more files and press 1. A message
is displayed, asking you whether to label the files with aa. Click OK.
Each label has a shortcut key. A shortcut key cannot be specified for different labels.
Shortcut keys can greatly improve the labeling efficiency.

Figure 5-106 Adding an audio label

Modelarts
Usermanual 5 Data Management

2024-04-30 193

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click an audio file. You can view the label information about the audio
file in the File Labels area on the right.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying based on audio
On the labeling job details page, click the Labeled tab. Select one or more
audio files to be modified from the audio list. Modify the label in the label
details area on the right.
– Modifying a label: In the File Labels area, click the edit icon in the

Operation column, enter the correct label name in the text box, and click
the check mark to complete the modification.

– Deleting a label: In the File Labels area, click the delete icon in the
Operation column to delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.

Figure 5-107 Information about all labels

– Modifying a label: Click the edit icon in the Operation column. In the
dialog box that is displayed, enter the new label name and click OK. After
the modification, the new label applies to the audio files that contain the
original label.

– Deleting a label: Click the deletion icon in the Operation column. In the
displayed dialog box, select the object to be deleted as prompted and
click OK.

Adding Audio Files

In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

Modelarts
Usermanual 5 Data Management

2024-04-30 194

1. On the labeling job details page, click the Unlabeled or Labeled tab, click
Add data in the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see section "Importing Data".

Figure 5-108 Importing data

Deleting Audio Files
You can quickly delete the audio files you want to discard.

On the Unlabeled or Labeled tab page, select the audio files to be deleted one by
one or tick Select Current Page to select all audio files on the page, and then
click Delete File in the upper left corner. In the displayed dialog box, select or
deselect Delete the source files from OBS as required. After confirmation, click
OK to delete the audio files.

If a tick is displayed in the upper right corner of an audio file, the audio file is
selected. If no audio file is selected on the page, the Delete File button is
unavailable.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

5.11.4.2 Speech Labeling
Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label

Modelarts
Usermanual 5 Data Management

2024-04-30 195

audio files in batches by one click. In addition, you can modify the labels of audio
files, or remove their labels and label the audio files again.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-109 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, on the Unlabeled tab page of
the labeling job details page, click Synchronize New Data.

Modelarts
Usermanual 5 Data Management

2024-04-30 196

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Audio Files
The labeling job details page displays the labeled and unlabeled audio files. The
Unlabeled tab page is displayed by default.

1. In the audio file list on the Unlabeled tab page, click the target audio file. In

the area on the right, the audio file is displayed. Click below the audio
file to play the audio.

2. In Speech Content, enter the speech content.
3. After entering the content, click Label to complete the labeling. The audio file

is automatically moved to the Labeled tab page.

Figure 5-110 Labeling speech content

Viewing the Labeled Audio Files
On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click the audio file to view the audio content in the Speech Content
text box on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data on the Labeled tab page.

On the labeling job details page, click the Labeled tab and select the audio file to
be modified from the audio file list. In the label information area on the right,
modify the content of the Speech Content text box, and click Label to complete
the modification.

Adding an Audio File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

Modelarts
Usermanual 5 Data Management

2024-04-30 197

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.

For details about how to import data, see section "Importing Data".

Figure 5-111 Importing data

Deleting Audio Files

You can quickly delete the audio files you want to discard.

On the Unlabeled or Labeled tab page, select the audio files to be deleted, and
then click Delete File in the upper left corner. In the displayed dialog box, select
or deselect Delete the source files from OBS as required. After confirmation, click
OK to delete the audio files.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

5.11.4.3 Speech Paragraph Labeling

Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label
audio files. In addition, you can modify the labels of audio files, or remove their
labels and label the audio files again.

Modelarts
Usermanual 5 Data Management

2024-04-30 198

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 5-112 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing Data Sources

ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the OBS bucket, click Synchronize Data
Source on the Unlabeled tab page of the labeling job details page to add the
data uploaded using OBS to the dataset.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Modelarts
Usermanual 5 Data Management

2024-04-30 199

Labeling Audio Files

The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab page is displayed by default.

1. In the audio file list on the Unlabeled tab page, click the target audio file. In

the area on the right, the audio file is displayed. Click below the audio
file to play the audio.

2. Select an audio segment based on the content being played, and enter the
audio file label and content in the Speech Content text box.

Figure 5-113 Speech paragraph labeling

3. After entering the content, click Label to complete the labeling. The audio file
is automatically moved to the Labeled tab page.

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click the audio file to view the labeling information on the right.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying a label: On the labeling details page, click the Labeled tab, and
select the audio file to be modified from the audio file list. In the right area,
modify labeling information and click Label to complete the modification.

● Deleting a label: Click Delete in the Operation column of the target number
to delete the label of the audio segment. Alternatively, you can click above
the labeled audio file to delete the label. Then click Label.

Adding an Audio File

In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.

Modelarts
Usermanual 5 Data Management

2024-04-30 200

Figure 5-114 Importing data

Deleting Audio Files
You can quickly delete the audio files you want to discard.

On the Unlabeled or Labeled tab page, select the audio files to be deleted, and
then click Delete File in the upper left corner. In the displayed dialog box, select
or deselect Delete the source files from OBS as required. After confirmation, click
OK to delete the audio files.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Modelarts
Usermanual 5 Data Management

2024-04-30 201

Figure 5-115 Annotator Management (1)

Figure 5-116 Annotator Management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

5.11.5 Video Labeling
Model training requires a large amount of labeled video data. Therefore, before
the model training, label the unlabeled video files. ModelArts enables you to label
video files. In addition, you can modify the labels of video files, or remove their
labels and label the video files again.

NO TE

● Video labeling applies only to video frames.

● Data management is being upgraded and is invisible to users who have not used data
management.

Starting Labeling
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling type from the All type drop-down list,

click the job to be performed based on the labeling type. The details page of
the job is displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 202

Figure 5-117 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing Data Sources
ModelArts automatically synchronizes data and labeling information from Input
Dataset Path to the dataset details page.

To quickly obtain the latest data in the OBS bucket, on the Labeled or Unlabeled
tab page of the labeling job details page, click Synchronize Data Source.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Video Labeling
The labeling job details page displays the Unlabeled, Labeled, and All statuses
tabs.

1. On the Unlabeled tab page, click the target video file in the video list on the
left. The labeling page is displayed.

2. Play the video. When the video is played to the time point to be labeled, click
the pause button in the progress bar to pause the video to a specific image.

3. In the upper pane, select a bounding box. By default, a rectangular box is
selected. Drag the mouse to select an object in the video image, enter a new
label name in the displayed Add Label text box, select a label color, and click
Add to label the object. Alternatively, select an existing label from the drop-

Modelarts
Usermanual 5 Data Management

2024-04-30 203

down list and click Add to label the object. Label all objects in the image.
Multiple labels can be added to an image.
The supported labeling boxes are the same as those for object detection. For
details, see Common icons on the labeling page.

Figure 5-118 Video labeling

4. After the previous image is labeled, click the play button on the progress bar
to resume the playback. Then, repeat 3 to complete labeling on the entire
video.
Click Label List in the upper right corner of the page. The time points when
the video is labeled are displayed.

Figure 5-119 File labels

5. Click Back to Data Labeling Preview in the upper left corner of the page.
The labeling job details page is displayed, and the labeled video file is
displayed on the Labeled tab page.

FAQs

Q: What can I do if the video dataset cannot be displayed or videos cannot be
played?

A: If this issue occurs, check the video format. Only MP4 videos can be displayed
and played.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

Modelarts
Usermanual 5 Data Management

2024-04-30 204

● On the Labeled tab page, click the target video file. In the upper right corner
of the labeling page, click Label List to go to the File Labels page. You can
click the triangle icon on the right of the time point to view details, modify
labels, and delete labels.

● Modifying a label: On the File Labels area, click the edit button on the right
of a label to modify it.

● Deleting a label: On the File Labels area, click the delete button on the right
of a label to delete it. If you click the delete icon on the right of the image
time, all labels on the image are deleted.

Figure 5-120 Modifying Labeled Data

Adding Video Files
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled or Labeled tab, click
Add data in the upper left corner.

2. Configure the data source, import mode, and other parameters, and click OK.

Modelarts
Usermanual 5 Data Management

2024-04-30 205

Figure 5-121 Importing data

Deleting a Video File

You can quickly delete the video files you want to discard.

On the All statuses, Unlabeled, or Labeled tab page, select the video files to be
deleted or click Select Images on Current Page to select all video files on the
page, and click Delete in the upper part to delete the video files. In the displayed
dialog box, select or deselect Delete the source files from OBS as required. After
confirmation, click OK to delete the videos.

If a tick is displayed in the upper left corner of a video file, the video file is
selected. If no video file is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, video files stored in the corresponding OBS
directory will be deleted when you delete the selected video files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

5.11.6 Viewing Labeling Jobs

5.11.6.1 Viewing My Created Labeling Jobs

On the ModelArts Data Labeling page, view your created labeling jobs on the My
Creations tab page.

Modelarts
Usermanual 5 Data Management

2024-04-30 206

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data. The Data Labeling page is
displayed.

2. On the My Creations tab, view all labeling jobs created by you. You can view
information about these labeling jobs.

Figure 5-122 My Creations

Copying a Labeling Job
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data. The Data Labeling page is
displayed.

2. On the My Creations tab, locate the labeling job you want to copy.
3. Choose More > Copy in the Operation column of the job.
4. In the Copy Task dialog box, enter the job description and job name Task

name-copy-xxxx, where xxxx is a randomly generated code to distinguish the
new job from the copied job. You can also change the name of the new job.
Click Yes.

Modelarts
Usermanual 5 Data Management

2024-04-30 207

5. After the labeling job is copied, you can obtain the new labeling job on the
labeling job list page. The new labeling job information includes the samples,
labels, and team labeling information.

5.11.6.2 Viewing My Participated Labeling Jobs

On the ModelArts Data Labeling page, view your participated labeling jobs on the
My Participations tab page.

Prerequisites

Team labeling is enabled when a labeling job is created.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data. The Data Labeling page is
displayed.

2. Click the My Participations tab page to view the labeling jobs you have
participated in, including the members in the labeling team and the labeling
progress.

5.12 Auto Labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 208

5.12.1 Creating an Auto Labeling Job
In addition to manual labeling, ModelArts also provides the auto labeling function
to quickly label data, reducing the labeling time by more than 70%. Auto labeling
means learning and training are performed based on the labeled images and an
existing model is used to quickly label the remaining images.

Context
● Only labeling jobs of image classification and object detection types support

auto labeling.

● There are at least two types of labels in the labeling job for auto labeling, and
each label has been added to at least five images.

● At least one unlabeled image must exist when you enable auto labeling.

● Before starting an auto labeling job, ensure that no auto labeling job is in
progress.

● Before starting an auto labeling job, ensure that the image data does not
contain any RGBA four-channel images. These images will cause the job to
fail. Delete them from the dataset if you find any.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management.

Starting an Auto Labeling Job
1. Log in to the ModelArts management console. In the left navigation pane,

choose Data Management > Label Data. The Data Labeling page is
displayed.

2. In the labeling job list, locate the row containing a labeling job of the object
detection or image classification type and click Auto Labeling in the
Operation column.

3. On the Enable Auto Labeling page, select Active learning or Pre-labeling.
For details, see Table 5-33 and Table 5-34.

Table 5-33 Active learning

Paramet
er

Description

Auto
Labeling
Type

Active learning: The system uses semi-supervised learning and
hard example filtering to perform auto labeling, reducing
manual labeling workload and helping you find hard examples.

Algorith
m Type

For a dataset of the image classification type, set the following
parameters:
Fast: Use the labeled samples for training.

Specificat
ions

Resource specifications used by an auto labeling job. Only GPU
specifications are supported.

Modelarts
Usermanual 5 Data Management

2024-04-30 209

Paramet
er

Description

Compute
Nodes

The default value is 1, indicating the single-node system mode.
Only this parameter value is supported.

Table 5-34 Pre-labeling

Paramet
er

Description

Auto
Labeling
Type

Pre-labeling: Select a model on the My AI Applications tab
page. Ensure that the model type matches the dataset labeling
type. After the pre-labeling is complete, if the labeling result
complies with the standard labeling format defined by the
platform, the system filters hard examples. This step does not
affect the pre-labeling result.

Model
and
Version

● My AI Applications: Select a model as required. Click the
drop-down arrow on the left of the target AI application and
select a proper version. For details about how to import a
model, see Creating an AI Application

NO TE

For labeling jobs of the object detection type, only rectangular boxes can be
recognized and labeled when Active learning is selected.

Figure 5-123 Enabling auto labeling (pre-labeling)

4. After setting the parameters, click Submit to enable auto labeling.
5. In the labeling job list, click a labeling job name to go to the labeling job

details page.

Modelarts
Usermanual 5 Data Management

2024-04-30 210

6. Click the To Be Confirmed tab page to view the auto labeling progress.

You can also enable auto labeling or view the auto labeling history on this tab
page.

Figure 5-124 Labeling progress

NO TE

If there are too many auto labeling jobs, they may have to wait in a queue due to
limited free resources. This means that they will stay in the labeling state until their
turn comes. To ensure that your labeling job can run properly, you are advised to avoid
peak hours.

7. After auto labeling is complete, all the labeled images are displayed on the To
Be Confirmed page.

– Image classification labeling job

On the To Be Confirmed page, check whether labels are correct, select
the correctly labeled images, and click OK to confirm the auto labeling
results. The confirmed image will be categorized to the Labeled page.

– Object detection labeling job

On the To Be Confirmed page, click images to view their labeling details
and check whether labels and target bounding boxes are correct. For the
correctly labeled images, click Labeled to confirm the auto labeling
results. The confirmed image will be categorized to the Labeled page.

FAQs
● What can I do if auto labeling fails?

Auto labeling is free of charge. If there are too many auto labeling jobs, they
may have to wait in a queue due to limited free resources. Create an auto
labeling job again or avoid peak hours.

● What can I do if auto labeling takes a long time?

Auto labeling is free of charge. If there are too many auto labeling jobs, they
may have to wait in a queue due to limited free resources. You are advised to
avoid peak hours.

Modelarts
Usermanual 5 Data Management

2024-04-30 211

5.13 Team Labeling

5.13.1 Team Labeling Overview
Generally, a small data labeling job can be completed by an individual. However,
team work is required to label a large dataset. ModelArts provides the team
labeling function. A labeling team can be formed to manage labeling for the same
dataset.

NO TE

Team labeling is available only to datasets for image classification, object detection, text
classification, named entity recognition, text triplet, and speech paragraph labeling.

Generally, a small data labeling job can be completed by an individual. However,
team work is required to label a large dataset. ModelArts provides the team
labeling function. A labeling team can be formed to manage labeling for the same
dataset.

The team labeling function supports only datasets for image classification, object
detection, text classification, named entity recognition, text triplet, and speech
paragraph labeling.

For labeling jobs with team labeling enabled, you can create team labeling jobs
and assign them to different teams so that team members can complete the
labeling jobs together. During data labeling, members can initiate acceptance,
continue acceptance, and view acceptance reports.

Team labeling is managed in a unit of teams. To enable team labeling for a
dataset, a team must be specified. Multiple members can be added to a team.

● An account can have a maximum of 10 teams.

● An account must have at least one team to enable team labeling for datasets.
If the account has no team, add a team by referring to Adding a Team.

5.13.2 Creating and Managing Teams

5.13.2.1 Managing Teams

Team labeling is managed in a unit of teams. To enable team labeling for a
dataset, a team must be specified. Multiple members can be added to a team.

Background
● An account can have a maximum of 10 teams.

● An account must have at least one team to enable team labeling for datasets.
If the account has no team, add a team by referring to Adding a Team.

Modelarts
Usermanual 5 Data Management

2024-04-30 212

Adding a Team
1. In the left navigation pane of the ModelArts management console, choose

Data Management > Labeling Teams. The Labeling Teams page is
displayed.

2. On the Labeling Teams page, click Add Team.
3. In the displayed Add Team dialog box, enter a team name and description

and click OK. The labeling team is added.
The new team is displayed on the Labeling Teams page. You can view team
details in the right pane. There is no member in the new team. Add members
to the new team by referring to Adding a Member.

Deleting a Team

You can delete a team that is no longer used.

On the Labeling Teams page, select the target team and click Delete. In the
dialog box that is displayed, click OK.

5.13.2.2 Managing Team Members

There is no member in a new team. You need to add members who will
participate in a team labeling job.

A maximum of 100 members can be added to a team. If there are more than 100
members, add them to different teams for better management.

Adding a Member
1. In the left navigation pane of the ModelArts management console, choose

Data Management > Labeling Teams. The Labeling Teams page is
displayed.

2. On the Labeling Teams page, select a team from the team list on the left
and click a team name. The team details are displayed in the right pane.

3. In the Team Details area, click Add Member.
4. An email address uniquely identifies a team member. Different members

cannot use the same email address. The email address you enter will be
recorded and saved in ModelArts. It is used only for ModelArts team labeling.
After a member is deleted, the email address will also be deleted.
Possible values of Role are Labeler, Reviewer, and Team Manager. Only one
Team Manager can be set.
No annotator cannot be deleted from a labeling team with labeling tasks
assigned. The labeling result of an annotator can be synchronized to the
overall labeling result only after the annotator's labeling is approved, and the
labeling result cannot be filtered.
Information about the added member is displayed in the Team Details area.

Modifying Member Information

You can modify member information if it is changed.

Modelarts
Usermanual 5 Data Management

2024-04-30 213

1. In the Team Details area, select the desired member.
2. In the row containing the desired member, click Modify in the Operation

column. In the displayed dialog box, modify the description or role.
The email address of a member cannot be changed. To change the email
address of a member, delete the member, and set a new email address when
adding a member.
Possible values of Role are Labeler, Reviewer, and Team Manager. Only one
Team Manager can be set.

Deleting Members
● Deleting a single member

In the Team Details area, select the desired member, and click Delete in the
Operation column. In the dialog box that is displayed, click OK.

● Batch Deletion
In the Team Details area, select members to be deleted and click Delete. In
the dialog box that is displayed, click OK.

5.13.3 Creating a Team Labeling Job
If you enable team labeling when creating a labeling job and assign a team to
label the dataset, the system creates a labeling job based on the team by default.
After creating the labeling job, you can view the job on the My Creations tab
page of the dataset.

You can also create a team labeling job and assign it to different members in the
same team or to other labeling teams.

Methods
● Choose Data Management > Label Data on the console. When creating a

labeling job, enable Team Labeling and select a team or task manager.

Modelarts
Usermanual 5 Data Management

2024-04-30 214

Figure 5-125 Enabling team labeling

● Choose Data Management > Datasets on the console. In the Operation
column of the target dataset, click Labeling. On the Create Labeling Job
page that is displayed, enable Team Labeling. You can create multiple team
labeling jobs for the same dataset.

Figure 5-126 Enabling team labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 215

NO TE

● Team members receive emails for team labeling jobs. No email will be sent when
you create a labeling team or add members to a labeling team. Additionally, after
all samples are labeled, no email will be sent when you create a team labeling job.

● After a team labeling job is created, all unlabeled samples are assigned to
annotators randomly and evenly.

Procedure
You can create multiple team labeling jobs for the same dataset and assign them
to different members in the same team or to other labeling teams.

1. Log in to the ModelArts management console. In the left navigation pane,
choose Data Management > Datasets.

2. In the dataset list, select a dataset that supports team labeling, and click the
dataset name to go to the Dashboard tab page of the dataset.

3. In the Labeling Job area, view existing labeling jobs of the dataset. Click
Create to create a job.
Alternatively, you can choose Data Management > Label Data and click
Create Labeling Job.

4. In the displayed Create Labeling Job page, set parameters and click Create.
– Name: Enter a job name.
– Labeling Scene: Select the type of the labeling job.
– Label Set: All existing labels and label attributes of the dataset are

displayed.
– Team Labeling: Click the button on the right and set the following

parameters:

▪ Type: Select a job type, Team or Task Manager.

▪ Select Team: If Type is set to Team, select a team and members for
labeling. The drop-down list displays the labeling teams and their
members created by the current account.

▪ Select Task Manager: If Type is set to Task Manager, select one
Team Manager member from all teams as the task manager.

▪ Automatically synchronize new files to the team labeling task:
New files in the dataset will be automatically synchronized to the
labeling job that has been started.

▪ Automatically load the intelligent labeling results to files that
need to be labeled: Files are automatically labeled. Annotators can
then accept or modify the labels.

Modelarts
Usermanual 5 Data Management

2024-04-30 216

NO TE

The process of loading auto labeling results to a team labeling job is as
follows:
● If you set Type to Team, you are required to create a team labeling task

before executing the job.
● If you set Type to Task Manager, select a team labeling job on the My

Participations tab page and click Assign Task.

After the job is created, you can view the new job on the My Creations
tab page.

5.13.4 Logging In to ModelArts
Typically, users label data in Data Management of the ModelArts console. Data
Management provides data management capabilities such as dataset
management, data labeling, data import and export, auto labeling, and team
labeling and management. After a team labeling job is created, team members
can log in to the ModelArts console to view the job.

1. After a labeling job is created, receive a labeling notification email as a team
member to which the job is assigned.

Figure 5-127 Task email

2. Click the labeling job link in the email. The Data Management > Data
Labeling > My Participations tab page on the ModelArts console is
displayed.

Modelarts
Usermanual 5 Data Management

2024-04-30 217

Figure 5-128 Logging in to ModelArts

3. On the My Participations tab page, you can view your labeling jobs.

Figure 5-129 My Participations

If a team member has bound an email address, the team member can receive a
job notification email and access the data labeling console using the address
provided in the email.

Upon your login, only the team labeling jobs and related data of the current user
(the mailbox user) are displayed.

5.13.5 Starting a Team Labeling Job
After logging in to the data labeling page on the management console, you can
click the My Participations tab page to view the assigned labeling job and click
the job name to go to the labeling page. The labeling method varies depending on
the labeling job type. For details, see the following:

● Image Classification
● Object Detection
● Text Classification
● Named Entity Recognition
● Text Triplet
● Speech Paragraph Labeling

Modelarts
Usermanual 5 Data Management

2024-04-30 218

On the labeling page, each member can view the images that are not labeled, to
be confirmed, rejected, to be reviewed, approved, and accepted. Pay attention to
the images rejected by the administrator and the images to be corrected.

If the Reviewer role is assigned for a team labeling job, the labeling result needs
to be reviewed. After the labeling result is reviewed, it is submitted to the
administrator for acceptance.

Figure 5-130 Labeling platform

5.13.6 Reviewing Team Labeling Results
After team labeling is complete, the reviewer can review the labeling result.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the Data Labeling page, click My
Participations. Locate the row containing the target labeling job and click
Review in the Operation column to initiate the review.

Figure 5-131 Initiating review

2. On the review page, check the samples that are not reviewed, reviewed,
approved, or rejected.

Figure 5-132 Labeling result review

Modelarts
Usermanual 5 Data Management

2024-04-30 219

3. Choose Confirm or Reject on the right of the review page.
If you choose Confirm, set Rating to A, B, C, or D. Option A indicates the
highest score. If you choose Reject, enter the rejection reason in the text box.

Figure 5-133 Pass

Figure 5-134 Reject

5.13.7 Accepting Team Labeling Results

Task Acceptance (Administrator)
● Initiating acceptance

After team members complete data labeling, the labeling job creator can
initiate acceptance to check labeling results. The acceptance can be initiated
only when a labeling member has labeled data. Otherwise, the acceptance
initiation button is unavailable.

a. Log in to the ModelArts management console. In the left navigation
pane, choose Data Management > Label Data.

b. On the My Participations tab page, click a team labeling job to go to its
details page. Choose Team Labeling > Accept in the upper right corner.

Modelarts
Usermanual 5 Data Management

2024-04-30 220

Figure 5-135 Initiating acceptance

c. In the displayed dialog box, set Sample Policy to By percentage or By
quantity. Click OK to start the acceptance.
By percentage: Sampling is performed based on a percentage for
acceptance.
By quantity: Sampling is performed based on quantity for acceptance.

d. After the acceptance is initiated, an acceptance report is displayed on the
console. In the Acceptance Result area on the right, click Pass or Reject.
If you click Pass, set Rating to A, B, C, or D. Option A indicates the
highest score. If you click Reject, enter your rejection reasons in the text
box.

● Continuing acceptance
You can continue accepting tasks whose acceptance is not completed. For
tasks for which an acceptance process is not initiated, the Continue
Acceptance button is unavailable.
In the Labeling Progress pane on the Task Statistics tab page, click
Continue Acceptance to continue accepting jobs. The Real-Time Acceptance
Report page is displayed. You can continue to accept the images that are not
accepted.

● Finishing acceptance
After the continue acceptance is complete, click Stop Acceptance in the
upper right corner. On the page that is displayed, view the acceptance status
of the labeling job, such as the number of sampled files, configure
parameters, and perform the acceptance. The labeling information is
synchronized to the Labeled tab page of the labeling job only after the
acceptance is complete.

Modelarts
Usermanual 5 Data Management

2024-04-30 221

Once the labeled data is accepted, team members cannot modify the labeling
information. Only the dataset creator can modify the labeling information.

Table 5-35 Parameters for finishing acceptance

Parameter Description

Modifying
Labeled Data

● Not overwrite: For the same data, do not overwrite
the existing data with the labeling result of the
current team.

● Overlays: For the same data, overwrite the existing
data with the labeling result of the current team.
Overwritten data cannot be recovered.

Acceptance Scope ● All passed: All items, including the rejected ones will
pass the review.

● All rejects: All items, including the ones that have
passed the review will be rejected. In this case, the
passed items must be labeled and reviewed again in
the next acceptance.

● All remaining items pass: The rejected items are
still rejected, and the remaining items will
automatically pass the review.

● All remaining items rejects: The selected items that
have passed the review do not need to be labeled.
All the selected items that have been rejected and
the items that have not been selected must be
labeled again for acceptance.

Viewing an Acceptance Report
You can view the acceptance report of an ongoing or finished labeling job. Log in
to the management console and choose Data Management > Label Data. On
the Data Labeling page, select My Creations and click the name of a team
labeling job. The job details page is displayed. In the upper right corner of the
page, click Acceptance Report. In the displayed dialog box, view report details.

Deleting a Labeling Job
After a job is accepted, delete it if the labeling job is no longer used. After a job is
deleted, the labeling details that are not accepted will be lost. However, the
original data in the dataset and the labeled data that has been accepted are still
stored in the corresponding OBS bucket.

Modelarts
Usermanual 5 Data Management

2024-04-30 222

6 Devenviron

6.1 Introduction to DevEnviron
NO TE

This document describes the DevEnviron notebook functions of the new version.

Software development is a process of reducing developer costs and improving
development experience. In AI development, ModelArts is dedicated to improving
AI development experience and simplifying the development process. ModelArts
DevEnviron uses cloud native resources and integrates the development tool chain
to provide better in-cloud AI development experience for AI development,
exploration, and teaching.

ModelArts notebook for seamless in-cloud and on-premises collaboration

● In-cloud JupyterLab, local IDE, and ModelArts plug-ins for remote
development and debugging, tailored to your needs

● In-cloud development environment with AI compute resources, cloud storage,
and built-in AI engines

● Custom runtime environment saved as an image for training and inference

Feature 1: Remote development, allowing remote access to notebook from a
local IDE

The notebook of the new version provides remote development. After enabling
remote SSH, you can remotely access the ModelArts notebook development
environment to debug and run code from a local IDE.

Due to limited local resources, developers using a local IDE run and debug code
typically on a CPU or GPU server shared between team members. Building and
maintaining the CPU or GPU server are costly.

ModelArts notebook instances are out of the box with various built-in engines and
flavors for you to select. You can use a dedicated container environment. Only
after simple configurations, you can remotely access the environment to run and
debug code from your local IDE.

Modelarts
Usermanual 6 Devenviron

2024-04-30 223

Figure 6-1 Remotely accessing notebook from a local IDE

ModelArts notebook can be regarded as an extension of a local development
environment. The operations such as data reading, training, and file saving are the
same as those performed in a local environment.

ModelArts notebook allows you to use in-cloud resources while with local coding
habits unchanged.

A local IDE supports Visual Studio (VS) Code, PyCharm, and SSH. In addition, the
PyCharm Toolkit and VS Code Toolkit plug-ins allow you to easily use cloud
resources.

Feature 2: One-click image saving to save a development environment
ModelArts notebook of the new version allows you to save a running notebook
instance as a custom image with one click.

When an image is saved, the installed pip dependency package is retained. In
remote development through VS Code, the plug-ins installed on the server are
retained.

Feature 3: Preset images that are out-of-the-box with optimized
configurations and supporting mainstream AI engines

The AI engines and versions preset in each image are fixed. When creating a
notebook instance, specify an AI engine and version, including the chip type.

ModelArts DevEnviron provides a group of preset images, including PyTorch,
TensorFlow, and MindSpore images. You can use a preset image to start your
notebook instance. After the development in the instance, submit a training job
without any adaptation.

The image versions preset in ModelArts are determined based on user feedback
and version stability. If your development can be carried out using the versions

Modelarts
Usermanual 6 Devenviron

2024-04-30 224

preset in ModelArts, for example, MindSpore 1.5, use preset images. These images
have been fully verified and have many commonly-used installation packages built
in. They are out-of-the-box, relieving you from configuring the environment.

The images preset in ModelArts DevEnviron include:

● Common preset packages: common AI engines such as PyTorch and
MindSpore based on standard Conda, common data analysis software
packages such as Pandas and Numpy, and common tool software such as
CUDA and CUDNN, meeting common AI development requirements.

● Preset Conda environments: A Conda environment and basic Conda Python
(excluding any AI engine) are created for each preset image. The following
figure shows the Conda environment for a preset MindSpore image.

Select a Conda environment based on whether the AI engine is used for
debugging.

● Notebook: a web application that enables you to code on the GUI and
combine the code, mathematical equations, and visualized content into a
document.

● JupyterLab plug-ins: enable flavor changing and instance stopping to
improving user experience.

● Remote SSH: allows you to remotely debug a notebook instance from a local
PC.

NO TE

● To simplify operations, ModelArts notebook of the new version supports switchover
between AI engines in a notebook instance.

● AI engines vary based on regions. For details about the AI engines available in a region,
see the AI engines displayed on the management console.

Feature 4: JupyterLab, an online interactive development and debugging
tool

ModelArts integrates open-source JupyterLab for online interactive development
and debugging. You can use the notebook on the ModelArts management console
to compile and debug code and train models based on the code, without
concerning environment installation or configuration.

JupyterLab is an interactive development environment. It is the next-generation
product of Jupyter Notebook. JupyterLab enables you to compile notebooks,
operate terminals, edit Markdown text, enable interaction, and view CSV files and
images.

Modelarts
Usermanual 6 Devenviron

2024-04-30 225

6.2 Application Scenarios
ModelArts provides flexible, open development environments. Select a
development environment based on site requirements.

● In-cloud notebook, which is out of the box, relieving you from concerning
environment installation or configuration. For details, see JupyterLab
Overview and Common Operations.

● Local IDE for model development. After enabling remote SSH, you can
remotely access the ModelArts notebook development environment to debug
and run code from a local IDE. The local IDE allows you to use the in-cloud
notebook development environment while with local coding habits
unchanged.
A local IDE supports Visual Studio (VS) Code, PyCharm, and SSH. Additionally,
PyCharm Toolkit and VS Code Toolkit are provided for convenient remote
access. For details, see and .

6.3 Managing Notebook Instances

6.3.1 Creating a Notebook Instance
Before developing a model, create a notebook instance and access it for coding.

Constraints and Limitations
● Only running notebook instances can be accessed or stopped.
● A maximum of 10 notebook instances can be created under one account.

Procedure
1. Log in to the ModelArts management console. In the navigation pane, choose

Settings and check whether the access authorization has been configured. If
not, configure access authorization. For details, see "Configuring Access
Authorization".

Figure 6-2 Configuring authorization

2. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

3. Click Create in the upper right corner. On the Create Notebook page,
configure parameters.

a. Configure basic information of the notebook instance, including its name,
description, and auto stop status. For details, see Table 6-1.

Modelarts
Usermanual 6 Devenviron

2024-04-30 226

Table 6-1 Basic parameters

Paramete
r

Description

Name Name of the notebook instance, which is automatically
generated by the system. You can rename it based on
service requirements. A name consists of a maximum of
128 characters and cannot be empty. It can contain only
digits, letters, underscores (_), and hyphens (-).

Descriptio
n

Brief description of the notebook instance

Auto Stop Automatically stops the notebook instance at a specified
time. This function is enabled by default. The default value
is 1 hour, indicating that the notebook instance
automatically stops after running for 1 hour. The options
are 1 hour, 2 hours, 4 hours, 6 hours, and Custom. You
can select Custom to specify any integer from 1 to 24
hours.
● Stop as scheduled: If this option is enabled, the

notebook instance automatically stops when the
running duration exceeds the specified duration.

NOTE
To protect in-progress jobs, a notebook instance does not
automatically stop immediately at the auto stop time. Instead,
there is a period of 2 to 5 minutes provided for you to renew the
auto stop time.

b. Configure notebook parameters, such as the image and instance flavor.

For details, see Table 6-2.

Table 6-2 Notebook instance parameters

Paramete
r

Description

Image Public and private images are supported.
● Public images are the AI engines built in ModelArts.
● Private images can be created using an instance that is

created using a public image.
An image corresponds to an AI engine. When you select an
image during instance creation, the AI engine is specified
accordingly. Select an image as required. Enter a keyword
of the image name in the search box on the right to
quickly search for the image.
You can change an image on a stopped notebook instance.

Resource
Type

Select a resource pool as required.

Modelarts
Usermanual 6 Devenviron

2024-04-30 227

Paramete
r

Description

Type Processor type, which can be CPU, ASCEND, or GPU.
The chips vary depending on the selected image.

Flavor The flavor of your notebook instance. Select a flavor based
on your needs.

Storage The storage configuration varies based on resource types
and specifications. Configure this parameter based on your
needs.
All storage paths of EVS and SFS are mounted to the /
home/ma-user/work directory. All read and write
operations on files in the notebook instance are stored in
this directory, not in OBS.

The data is retained in /home/ma-user/work, even if the
notebook instance is stopped or restarted.
When a notebook instance is deleted, the EVS storage is
released and the stored data is not retained. SFS can be
mounted to a new notebook instance and data can be
retained.

Remote
SSH

● After you enable this function, you can remotely access
the development environment of the notebook instance
from your local development environment.

● When a notebook instance is stopped, you can update
the SSH configuration on the instance details page.

NOTE
The notebook instances with remote SSH enabled have VS Code
plug-ins (such as Python and Jupyter) and the VS Code server
package pre-installed, which occupy about 1 GB persistent storage
space.

Key Pair Set a key pair after remote SSH is enabled.
Select an existing key pair.
Alternatively, click Create on the right of the text box to
create one on the DEW console. To do so, choose Key Pair
Service > Private Key Pairs and click Create Key Pair.
After a notebook instance is created, you can change the
key pair on the instance details page.
CAUTION

Download the created key pair and properly keep it. When you use
a local IDE to remotely access the notebook development
environment, the key pair is required for authentication.

Modelarts
Usermanual 6 Devenviron

2024-04-30 228

Paramete
r

Description

Whitelist Set a whitelist after remote SSH is enabled. This parameter
is optional.
Add the IP addresses for remotely accessing the notebook
instance to the whitelist, for example, the IP address of
your local PC or the public IP address of the source device.
A maximum of five IP addresses can be added and
separated by commas (,). If the parameter is left blank, all
IP addresses will be allowed for remote SSH access.
If your source device and ModelArts are isolated from each
other in network, obtain the public IP address of your
source device using a mainstream search engine, for
example, by entering "IP address lookup", but not by
running ipconfig or ifconfig/ip locally.

Figure 6-3 IP address lookup

After a notebook instance is created, you can change the
whitelist IP addresses on the instance details page.

4. Click Next.
5. After confirming the parameter settings, click Submit.

Switch to the notebook instance list. The notebook instance is being created.
It will take several minutes when its status changes to Running. Then, the
notebook instance is created.

6. In the notebook instance list, click the instance name. On the instance details
page that is displayed, view the instance configuration.

If Remote SSH is enabled, you can click the modification icon on the right of
the whitelist to modify it. You can click the modification icon on the right of
Authentication to update the key pair of a stopped notebook instance.
If an EVS disk is used, click Expansion on the right of Storage Capacity to
dynamically expand the EVS disk capacity. For details, see Dynamically
Expanding EVS Disk Capacity.

6.3.2 Accessing a Notebook Instance
Access a notebook instance in the Running state for coding.

The methods of accessing notebook instances vary depending on the AI engine
based on which the instance was created.

Modelarts
Usermanual 6 Devenviron

2024-04-30 229

● Remote access: Use PyCharm, VS Code, or SSH in the local IDE. For details,
see and Connecting to a Notebook Instance Through VS Code with One
Click.

● Online access: Use JupyterLab. For details, see JupyterLab Overview and
Common Operations.

Create an instance and mount the persistent storage to /home/ma-user/work.

The data stored in only the work directory is retained after the instance is stopped
or restarted. When you use a development environment, store the data for
persistence in /home/ma-user/work.

6.3.3 Searching for, Starting, Stopping, or Deleting a
Notebook Instance

Searching for an Instance
All created instances are displayed on the notebook page. To display a specific
instance, search for it based on filter criteria. Click the search box and select one
or more search criteria.

● Enable View all to check all notebook instances created by all sub-users in
the IAM project.

● Select search criteria, such as name, ID, status, image, flavor, description, and
creation time.

Customizing Table Columns

Click to customize the columns to be displayed in the table.

Starting or Stopping an Instance
Stop the notebook instances that are not needed. You can also restart a stopped
instance.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

2. Start or stop the target notebook instance.
– To start a notebook instance, click Start in the Operation column of the

target notebook instance. Only stopped notebook instances can be
started.

– To stop a notebook instance, click Stop in the Operation column of the
target notebook instance. Only running notebook instances can be
stopped.

Modelarts
Usermanual 6 Devenviron

2024-04-30 230

CA UTION

After a notebook instance is stopped:
● The data stored only in /home/ma-user/work is retained. For

example, the external dependency packages installed in other
directories in the development environment will be deleted.

Deleting an Instance

Delete the notebook instances that are not needed.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

2. In the notebook list, locate the target notebook instance, and click Delete in
the Operation column. In the displayed dialog box, confirm the information,
enter DELETE in the text box, and click OK.

CA UTION

Deleted notebook instances cannot be recovered. After a notebook instance is
deleted, the data stored in the mounted directory will be deleted.

6.3.4 Changing a Notebook Instance Image
ModelArts allows you to change images on a notebook instance to flexibly adjust
its AI engine.

Constraints

The target notebook instance is stopped.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose DevEnviron > Notebook.
2. In the notebook list, click More in the Operation column of the target

notebook instance and select Change Image.
3. In the Change Image dialog box, select a new image and click OK. After the

modification, you can view the new image on the notebook list page.

6.3.5 Changing the Flavor of a Notebook Instance
ModelArts allows you to change the node flavor for a notebook instance.

Constraints

Specifications of a notebook instance can be modified only when the notebook
instance is in the Stopped, Running, or Startup failed state.

Modelarts
Usermanual 6 Devenviron

2024-04-30 231

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose DevEnviron > Notebook.
2. In the notebook instance list, locate the row that contains the target

notebook instance and choose More > Modify Specifications in the
Operation column. In the Modify Specifications dialog box that appears,
select the required flavor.

6.3.6 Selecting Storage in DevEnviron
Storage varies depending on performance, usability, and cost. No storage media
can cover all scenarios. Learning about in-cloud storage application scenarios for
better usage.

NO TE

Only OBS parallel file systems (PFS) and object storage in the same region can be mounted.

Table 6-3 In-cloud storage application scenarios

Storag
e

Application Scenario Advantage Disadvantage

EVS Data and algorithm
exploration only in
the development
environment.

Block storage SSDs feature
better overall I/O
performance than NFS. The
storage capacity can be
dynamically expanded to
up to 4096 GB.
As persistent storage, EVS
disks are mounted to /
home/ma-user/work. The
data in this directory is
retained after the instance
is stopped. The storage
capacity can be expanded
online based on demand.

This type of
storage can
only be used in
a single
development
environment.

Modelarts
Usermanual 6 Devenviron

2024-04-30 232

Storag
e

Application Scenario Advantage Disadvantage

PFS NOTE
PFS is a whitelist
function. To use this
function, contact
technical support.

PFS buckets mounted
as persistent storage
for AI development
and exploration.
- Storage for
datasets. Datasets are
directly mounted to
notebooks for
browsing and data
processing and can
be directly used
during training. For
details, see How Do I
Upload Data to OBS?

2. Storage for code.
After debugging on a
notebook instance,
specify the OBS path
as the code path for
starting training,
facilitating temporary
modification.
- Storage for
checking training.
Mount storage to the
training output path
such as the path to
training logs. In this
way, view and check
training on the
notebook instance in
real time. This is
especially suitable for
analyzing the output
of jobs trained using
TensorBoard or
notebook.

PFS is an optimized high-
performance object storage
file system with low
storage costs and large
throughput. It can quickly
process high-performance
computing (HPC)
workloads. PFS mounting is
recommended if OBS is
used.
NOTE

Package or split the data to
be uploaded by 128 MB or 64
MB. Download and
decompress the data in local
storage for better I/O and
throughput performance.

Due to average
performance in
frequent read
and write of
small files, PFS
storage is not
suitable for
large model
training or file
decompression.
NOTE

Before
mounting PFS
storage to a
notebook
instance, grant
ModelArts with
full read and
write
permissions on
the PFS bucket.
The policy will
be retained even
after the
notebook
instance is
deleted.

Modelarts
Usermanual 6 Devenviron

2024-04-30 233

Storag
e

Application Scenario Advantage Disadvantage

OBS NOTE
OBS is a whitelist
function. To use this
function, contact
technical support.

When uploading or
downloading a large
amount of data in
the development
environment, you can
use OBS buckets to
transfer data.

Low storage cost and high
throughput, but average
performance in reading
and writing small files. It is
a good practice to package
or split the file by 128 MB
or 64 MB. In this way, you
can download the
packages, decompress
them, and use them locally.

The object
storage
semantics is
different from
the Posix
semantics and
needs to be
further
understood.

SFS Available only in
dedicated resource
pools. Use SFS
storage in informal
production scenarios
such as exploration
and experiments. One
SFS device can be
mounted to both a
development
environment and a
training environment.
In this way, you do
not need to
download data each
time your training job
starts. This type of
storage is not
suitable for heavy I/O
training on more
than 32 cards.

SFS is implemented as NFS
and can be shared between
multiple development
environments and between
development and training
environments. This type of
storage is preferred for
non-heavy-duty distributed
training jobs, especially for
the ones not requiring to
download data additionally
when the training jobs
start.

The
performance of
the SFS storage
is not as good
as that of the
EVS storage.

Modelarts
Usermanual 6 Devenviron

2024-04-30 234

Storag
e

Application Scenario Advantage Disadvantage

Local
storage

First choice for heavy-
duty training jobs.

High-performance SSDs for
the target VM or BMS,
featuring high file I/O
throughput. For heavy-duty
training jobs, store data in
the target directory and
then start training.
By default, the storage is
mounted to the /cache
directory. For details about
the available space of the /
cache directory, see What
Are Sizes of the /cache
Directories for Different
Notebook Specifications
in DevEnviron?.

The storage
lifecycle is
associated with
the container
lifecycle. Data
needs to be
downloaded
each time the
training job
starts.

Using the Storage
How do I use EVS in a development environment?

When creating a notebook instance, select a small-capacity EVS disk. You can
scale out the disk as needed. For details, see Dynamically Expanding EVS Disk
Capacity.

6.3.7 Dynamically Expanding EVS Disk Capacity

Overview
If a notebook instance uses an EVS disk for storage, the disk is mounted to /
home/ma-user/work/ of the notebook container and the disk capacity can be
expanded by up to 100 GB at a time when the instance is running.

Application Scenarios
During notebook development, select a small EVS disk capacity, for example, 5 GB,
when creating a notebook instance because the storage requirements are low at
the initial stage. After the development, a large volume of data must be trained.
Then, expand the disk capacity to cost-effectively meet your service needs.

Restrictions
● The target notebook instance must use EVS for storage.
● Up to 100 GB can be expanded at a time. Additionally, the total capacity after

expansion cannot exceed 4096 GB.
● If the original capacity of an EVS disk is 4096 GB, the disk capacity cannot be

expanded.

Modelarts
Usermanual 6 Devenviron

2024-04-30 235

● After the instance is stopped, the expanded capacity still takes effect.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose DevEnviron > Notebook.

2. Click the name of a running notebook instance. On the instance details page,
click Expansion.

Figure 6-4 Instance details page

3. Set the capacity to be expanded and click OK. Expanding shows that the
capacity expansion is in progress. After the expansion, the displayed storage
capacity is the expanded capacity.

6.3.8 Modifying the SSH Configuration for a Notebook
Instance

ModelArts allows you to modify the SSH configuration for notebook instances.

If a notebook instance is created with remote SSH disabled, you can enable
remote SSH on the notebook details page.

During the creation of a notebook instance, if you set a whitelist for remotely
accessing it, you can change the IP addresses in the whitelist on the notebook
instance details page. You can also change the key pair.

Constraints

The target notebook instance must be stopped.

Changing the Key Pair and Remote Connection IP Address
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose DevEnviron > Notebook.

2. Click the target notebook instance. Enable remote SSH and change the key
pair and whitelist.

Modelarts
Usermanual 6 Devenviron

2024-04-30 236

NO TE

For manually enabled remote SSH, see Figure 6-5. After the SSH configuration is
updated, the remote SSH function cannot be disabled.

For remote SSH enabled by default in the selected image, see Figure 6-6.

Figure 6-5 Update SSH Configuration

Figure 6-6 Changing the whitelist and key pair

– Click and choose an existing key pair, or click Create to create a new
key pair.

– For details about how to configure a whitelist, see Setting an IP Address
for Remotely Accessing a Notebook Instance. After you change the IP
addresses, the existing links are still valid. After the links are released, the
new links only from the changed IP addresses can be set up.

Setting an IP Address for Remotely Accessing a Notebook Instance

Figure 6-7 Setting an IP address for remotely accessing a notebook instance

Ensure that public IP addresses are set. If your source device and the ModelArts
are isolated from each other in network, obtain the public IP address of your
source device using a mainstream search engine, for example, by entering "IP
address lookup", but not by running ipconfig or ifconfig/ip locally.

Modelarts
Usermanual 6 Devenviron

2024-04-30 237

Figure 6-8 IP address lookup

6.3.9 Viewing the Notebook Instances of All IAM Users Under
One Tenant Account

Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all IAM users in the
current IAM project.

NO TE

Users granted with these permissions can also access OBS and SWR of all users in the
current IAM project.

Assigning the Required Permissions
1. Log in to the ModelArts management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 6-9.
– Policy Name: Enter a custom policy name, for example, Viewing all

notebook instances.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:notebook:listAllNotebooks, and default resources.

Modelarts
Usermanual 6 Devenviron

2024-04-30 238

Figure 6-9 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.
– Policy Name: Enter a custom policy name, for example, Viewing all

users of the current IAM project.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, Identity and Access Management,

iam:users:listUsers, and default resources.
3. In the navigation pane, choose User Groups. Then, click Authorize in the

Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Starting Notebook Instances of Other IAM Users
If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6789 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for a Notebook Instance.

Erro message: ModelArts.6789: Failed to use SSH key pair KeyPair-xxx. Update the
key pair and try again later.

6.4 JupyterLab

Modelarts
Usermanual 6 Devenviron

2024-04-30 239

6.4.1 Operation Process in JupyterLab
ModelArts allows you to access notebook instances online using JupyterLab and
develop AI models based on the PyTorch, TensorFlow, or MindSpore engines. The
following figure shows the operation process.

Figure 6-10 Using JupyterLab to develop and debug code online

1. Create a notebook instance.
On the ModelArts management console, create a notebook instance with a
proper AI engine. For details, see Creating a Notebook Instance.

2. Use JupyterLab to access the notebook instance. For details, see Accessing
JupyterLab.

3. Upload training data and code files to JupyterLab. For details, see Uploading
Files from a Local Path to JupyterLab.

4. Compile and debug code in JupyterLab. For details, see JupyterLab Overview
and Common Operations.

5. In JupyterLab, call the ModelArts SDK to create a training job for in-cloud
training.
For details, see Using ModelArts SDK.

6.4.2 JupyterLab Overview and Common Operations
JupyterLab is the next-generation web-based interactive development
environment of Jupyter Notebook, enabling you to compile notebooks, operate
terminals, edit Markdown text, enable interaction, and view CSV files and images.

JupyterLab is the future mainstream development environment for developers. It
has the same components as Jupyter Notebook, but offering more flexible and
powerful functions.

Accessing JupyterLab
To access JupyterLab from a running notebook instance, perform the following
operations:

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

2. Click Open in the Operation column of a running notebook instance to
access JupyterLab.

Figure 6-11 Accessing a notebook instance

Modelarts
Usermanual 6 Devenviron

2024-04-30 240

3. The Launcher page is automatically displayed. Perform required operations.
For details, see JupyterLab Documentation.

– Notebook: Select a kernel for running notebook, for example, TensorFlow
or Python.

– Console: Call the terminal for command control.

– Other: Edit other files.

Creating an IPYNB File in JupyterLab

On the JupyterLab homepage, click a proper AI engine in the Notebook area to
create an IPYNB file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

The created IPYNB file is displayed in the navigation pane on the left.

Creating a Notebook File and Accessing the Console

A console is a Python terminal, which is similar to the native IDE of Python,
displaying the output after a statement is entered.

On the JupyterLab homepage, click a proper AI engine in the Console area to
create a notebook file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

After the file is created, the console page is displayed.

Figure 6-12 Creating a notebook file (console)

Editing a File in JupyterLab

JupyterLab allows you to open multiple notebook instances or files (such as
HTML, TXT, and Markdown files) in one window and displays them on different
tab pages.

In JupyterLab, you can customize the display of multiple files. In the file display
area on the right, you can drag a file to adjust its position. Multiple files can be
concurrently displayed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 241

https://jupyterlab.readthedocs.io/en/stable/

Figure 6-13 Customized display of multiple files

When writing code in a notebook instance, you can create multiple views of a file
to synchronously edit the file and view execution results in real time.

To open multiple views, open an IPYNB file and choose File > New View for
Notebook.

Figure 6-14 Multiple views of a file

Before coding in the code area of an IPYNB file in JupyterLab, add an exclamation
mark (!) before the code.

For example, install an external library Shapely.

!pip install Shapely

For example, obtain PythonPath.

!echo $PYTHONPATH

Modelarts
Usermanual 6 Devenviron

2024-04-30 242

Figure 6-15 Running code

Renewing or Automatically Stopping a Notebook Instance

If you enable auto stop when you created or started a notebook instance, the
remaining duration for stopping the instance is displayed in the upper right corner
of JupyterLab. You can click the time for renewal.

Figure 6-16 Remaining duration

Common JupyterLab Buttons and Plug-ins

Figure 6-17 Common JupyterLab buttons and plug-ins

Table 6-4 JupyterLab buttons

Button Description

Quickly open notebook instances and terminals. Open the
Launcher page, on which you can quickly create notebook
instances, consoles, or other files.

Create a folder.

Modelarts
Usermanual 6 Devenviron

2024-04-30 243

Button Description

Upload files.

Refresh the file directory.

Git plug-in, which can be used to access the GitHub code library
associated with the notebook instance.

Table 6-5 JupyterLab plug-ins

Plug-in Description

List files. Click this button to show all files in the notebook
instance.

Display the terminals and kernels that are running in the
current instance.

Git plug-in, which can be used to quickly access the GitHub
code library.

Property inspector.

Show the document organization.

Figure 6-18 Buttons in the navigation bar

Table 6-6 Buttons in the navigation bar

Button Description

File Actions related to files and directories, such as creating, closing,
or saving notebooks.

Edit Actions related to editing documents and other activities in the
IPYNB file, such as undoing, redoing, or cutting cells.

View Actions that alter the appearance of JupyterLab, such as
showing the bar or expanding code.

Run Actions for running code in different activities such as
notebooks and code consoles.

Modelarts
Usermanual 6 Devenviron

2024-04-30 244

Button Description

Kernel Actions for managing kernels, such as interrupting, restarting,
or shutting down a kernel.

Git Actions on the Git plug-in, which can be used to quickly access
the GitHub code library.

Tabs A list of the open documents and activities in the dock panel.

Settings Common settings and an advanced settings editor.

Help A list of JupyterLab and kernel help links.

Figure 6-19 Buttons in the menu bar of an IPYNB file

Table 6-7 Buttons in the menu bar of an IPYNB file

Button Description

Save a file.

Add a new cell.

Cut the selected cell.

Copy the selected cell.

Paste the selected cell.

Execute the selected cell.

Terminate a kernel.

Restart a kernel.

Restart a kernel and run all code of the current notebook
again.

There are four options in the drop-down list:
Code (Python code), Markdown (Markdown code, typically
used for comments), Raw (a conversion tool), and - (not
modified)

Modelarts
Usermanual 6 Devenviron

2024-04-30 245

Button Description

View historical code versions.

Git plug-in. The gray button indicates that the plug-in is
unavailable in the current region.

Instance flavor.

Kernel for you to select.

Code running status. indicates the code is being executed.

Monitoring Resources
To obtain resource usage, select Resource Monitor in the right pane. The CPU
usage and memory usage can be viewed.

Figure 6-20 Resource usage

6.4.3 Code Parametrization Plug-in
The code parametrization plug-in simplifies notebook cases. You can quickly adjust
parameters and train models based on notebook cases without complex code. This
plug-in can be used to customize notebook cases for competitions and learning.

Use Guide
● The Add Form and Edit Form buttons are available only to the shortcut

menu of code cells.

Figure 6-21 Viewing a code cell

Modelarts
Usermanual 6 Devenviron

2024-04-30 246

● After opening new code, add a form before editing it.

Figure 6-22 Shortcut menu of code cells

Add Form
If you click Add Form, a code cell will be split into the code and form edit area.
Click Edit on the right of the form to change the default title.

Figure 6-23 Two edit areas

Edit Form
If you click Edit Form, four sub-options will be displayed: Add new form field,
Hide code, Hide form, and Show All.

● You can set the form field type to dropdown, input, and slider. See Figure
6-24. Each time a field is added, the corresponding variable is added to the
code and form areas. If a value in the form area is changed, the
corresponding variable in the code area is also changed.

NO TE

When creating a dropdown form, click ADD Item and add at least two items. See
Figure 6-25.

Figure 6-24 Form style of dropdown, input, and slider

Modelarts
Usermanual 6 Devenviron

2024-04-30 247

Figure 6-25 Creating a dropdown form

Figure 6-26 Deleting a form

– If the form field type is set to dropdown, the supported variable types
are raw and string.

– If the form field type is set to input, the supported variable types are
boolean, date, integer, number, raw, and string.

– If the form field type is set to slider, the minimum value, maximum
value, and step can be set.

● If you click Hide code, the code area will be hidden.
● If you click Hide form, the form area will be hidden.
● If you click Show All, both the code and form areas will be displayed.

6.4.4 Using ModelArts SDK
Notebook instances allow you to use ModelArts SDK to manage OBS, training
jobs, models, and real-time services.

Your notebook instances have automatically obtained your AK/SK for
authentication and the region. Therefore, SDK sessions are automatically
authenticated.

Example Code
● Create a training job.

from modelarts.session import Session
from modelarts.estimator import Estimator
session = Session()
estimator = Estimator(

Modelarts
Usermanual 6 Devenviron

2024-04-30 248

 modelarts_session=session,
 framework_type='PyTorch', # AI engine name
 framework_version='PyTorch-1.0.0-python3.6', # AI engine version
 code_dir='/obs-bucket-name/src/', # Training script directory
 boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training boot script
directory
 log_url='/obs-bucket-name/log/', # Training log directory
 hyperparameters=[
 {"label":"classes",
 "value": "10"},
 {"label":"lr",
 "value": "0.001"}
],
 output_path='/obs-bucket-name/output/', # Training output directory
 train_instance_type='modelarts.vm.gpu.p100', # Training environment
specifications
 train_instance_count=1, # Number of training nodes
 job_description='pytorch-sentiment with ModelArts SDK') # Training job description
job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False,
job_name='my_training_job')

● Obtain a model list.
from modelarts.session import Session
from modelarts.model import Model
session = Session()
model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit",
order="desc")

● Obtain service details.
from modelarts.session import Session
from modelarts.model import Predictor
session = Session()
predictor_instance = Predictor(session, service_id="input your service_id")
predictor_info_resp = predictor_instance.get_service_info()

6.4.5 Using the Git Plug-in
In JupyterLab, you can use the Git plug-in to clone the GitHub open-source code
repository, quickly view and edit data, and submit the modified data.

Prerequisites
The notebook instance is running.

Starting the Git Plug-in of JupyterLab
In the notebook instance list, locate the target instance and click Open in the
Operation column to go to the JupyterLab page.

Figure 6-27 shows the Git plug-in of JupyterLab.

Modelarts
Usermanual 6 Devenviron

2024-04-30 249

Figure 6-27 Git plug-in

Cloning a GitHub Open-Source Code Repository
Access a GitHub open-source code repository at https://github.com/jupyterlab/
extension-examplesitHub. Click , enter the repository address, and click OK to
start cloning. After the cloning is complete, the code library folder is displayed in
the navigation pane of JupyterLab.

Figure 6-28 Using the Git plug-in to clone a GitHub open-source code repository

Cloning a GitHub Private Code Repository
When you clone a GitHub private code repository, a dialog box will be displayed,
asking you to enter your personal credentials. In this case, enter the personal
access token in GitHub.

Modelarts
Usermanual 6 Devenviron

2024-04-30 250

To obtain a personal access token, perform the following operations:

1. Log in to GitHub and open the configuration page.
2. Click Developer settings.
3. Choose Personal access tokens > Generate new token.
4. Verify the account.
5. Describe the token, select permissions to access the private repository, and

click Generate token to generate a token.
6. Copy the generated token to CloudBuild.

NO TICE

● Save the token securely once it is generated. It will be unavailable after you
refresh the page. If it is not obtained, generate a new token.

● Enter a valid token description so that it can be easily identified. If the token is
deleted by mistake, the building will fail.

● Delete the token when it is no longer used to prevent information leakage.

Figure 6-29 Cloning a GitHub private code repository (only authorization using a
personal access token is supported)

Modelarts
Usermanual 6 Devenviron

2024-04-30 251

https://github.com/join

Figure 6-30 Obtaining a personal access token

Viewing a Code Repository
In the list under Name, double-click the folder you want to use and click the Git
plug-in icon on the left to access the code repository corresponding to the folder.

Figure 6-31 Opening the folder and starting the Git plug-in

You can view the information current code repository, such as the repository
name, branch, and historical submission records.

Modelarts
Usermanual 6 Devenviron

2024-04-30 252

Figure 6-32 Viewing a code repository

NO TE

By default, the Git plug-in clones the master branch. To switch another branch, click
Current Branch to expand all branches and click the target branch name.

Viewing Modifications

If a file in the code repository has been modified, you can view the modified file
under Changed on the Changes tab page. Click Diff this file on the right of the
file name to view the modifications.

Modelarts
Usermanual 6 Devenviron

2024-04-30 253

Figure 6-33 Viewing modifications

Committing Modifications
After confirming that the modifications are correct, click Stage this change on the
right of the file name, which is equivalent to running the git add command. The
file enters the Staged state. Enter the message to be committed in the lower left
corner and click Commit that is equivalent to running the git commit command.

Figure 6-34 Committing modifications

On the History tab page, view the committing status.

Figure 6-35 Checking whether the committing is successful

Click the push icon, which is equivalent to running the git push command, to
push the code to the GitHub repository. After the pushing is successful, the
message "Successfully completed" is displayed. If the token used for OAuth
authentication has expired, a dialog box is displayed asking you to enter the user
token or account information. Enter the information as prompted. This section
describes the authorization using a personal access token. If you use a password
for authorization but the password becomes unavailable, perform the operations
described in What Do I Do If the Git Plug-in Password Is Invalid?

Modelarts
Usermanual 6 Devenviron

2024-04-30 254

Figure 6-36 Pushing code to the GitHub repository

After the preceding operations are complete, on the History tab page of the
JupyterLab Git plug-in page, you can see that origin/HEAD and origin/master
point to the latest push. In addition, you can find the corresponding information in
the committing records of the GitHub repository.

6.4.6 Visualized Model Training

6.4.6.1 Introduction to Training Job Visualization

ModelArts notebook of the new version supports TensorBoard and MindInsight for
visualizing training jobs. In the development environment, use small datasets to
train and debug algorithms, during which you can check algorithm convergence
and detect issues to facilitate debugging.

You can create visualization jobs of TensorBoard and MindInsight types on
ModelArts.

Both TensorBoard and MindInsight effectively display the change trend of a
training job and the data used in the training.

● TensorBoard
TensorBoard effectively displays the computational graph of TensorFlow in the
running process, the trend of all metrics in time, and the data used in the
training. For more details about TensorBoard, see TensorBoard official
website.
TensorBoard visualization training jobs support only CPU and GPU flavors
based on TensorFlow 2.1, and PyTorch 1.4 and 1.8 images. Select images and
flavors based on the site requirements.

● MindInsight
MindInsight visualizes information such as scalars, images, computational
graphs, and model hyperparameters during training. It also provides functions
such as training dashboard, model lineage, data lineage, and performance
debugging, helping you train and debug models efficiently. MindInsight
supports MindSpore training jobs. For more information about MindInsight,
see MindSpore official website.

Modelarts
Usermanual 6 Devenviron

2024-04-30 255

https://www.tensorflow.org/guide/#tensorboard
https://www.tensorflow.org/guide/#tensorboard
https://www.mindspore.cn/mindinsight/docs/en/master/index.html

The following shows the images and flavors supported by MindInsight
visualization training jobs, and select images and flavors based on the site
requirements.
– MindSpore 1.2.0 (CPU or GPU)
– MindSpore 1.5.x or later (Ascend)

You can use the summary file generated during model training to create a
visualization job in Notebook of DevEnviron.

● For details about how to create a MindInsight visualization job in a
development environment, see MindInsight Visualization Jobs.

● For details about how to create a TensorBoard visualization job in a
development environment, see TensorBoard Visualization Jobs.

6.4.6.2 MindInsight Visualization Jobs

ModelArts notebook of the new version supports MindInsight visualization jobs. In
a development environment, use a small dataset to train and debug an algorithm.
This is used to check algorithm convergence and detect training issues, facilitating
debugging.

MindInsight visualizes information such as scalars, images, computational graphs,
and model hyperparameters during training. It also provides functions such as
training dashboard, model lineage, data lineage, and performance debugging,
helping you train and debug models efficiently. MindInsight supports MindSpore
training jobs. For more information about MindInsight, see MindSpore official
website.

MindSpore allows you to save data into the summary log file and obtain the data
on the MindInsight GUI.

Prerequisites

When using MindSpore to edit a training script, add the code for collecting the
summary record to the script to ensure that the summary file is generated in the
training result.

For details, see Collecting Summary Record.

Note
● To run a MindInsight training job in a development environment, start

MindInsight and then the training process.
● Only one-card single-node training is supported.

Creating a MindInsight Visualization Job in a Development Environment

Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start MindInsight

Step 4 View Visualized Data on the Training Dashboard

Modelarts
Usermanual 6 Devenviron

2024-04-30 256

https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/en/r1.5/summary_record.html

Step 1 Create a Development Environment and Access It Online

Log in to ModelArts management console, choose DevEnviron > Notebook, and
create a development environment instance for the MindSpore engine. After the
instance is created, click Open in the Operation column of the instance to access
it online.

The images and resource types supported by MindInsight visualization training
jobs are as follows:
● MindSpore 1.2.0 (CPU or GPU)
● MindSpore 1.5.x or later (Ascend)

Step 2 Upload the Summary Data

Summary data is required for MindInsight visualization in a development
environment.

Upload the summary data to the /home/ma-user/work/ directory in a
development environment or store it in an OBS parallel file system.

● For details about how to upload the summary data to /home/ma-user/
work/, see Uploading and Downloading Data in Notebook.

● To store the summary data in an OBS parallel file system that is mounted to a
notebook instance, upload the summary file generated during model training
to the OBS parallel file system. When MindInsight is started in a notebook
instance, the notebook instance automatically reads the summary data from
the mounted OBS parallel file system.

Step 3 Start MindInsight

Choose a way you like to start MindInsight in JupyterLab.

Figure 6-37 Starting MindInsight in JupyterLab

Method 1

Modelarts
Usermanual 6 Devenviron

2024-04-30 257

1. Click to go to the JupyterLab development environment. An
IPYNB file will be automatically created.

2. Enter the following command in the dialog box:
%reload_ext mindinsight
%mindinsight --port {PORT} --summary-base-dir {SUMMARY_BASE_DIR}

Parameters:
– port {PORT}: web service port for visualization, which defaults to 8080. If

the default port 8080 has been used, specify a port ranging from 1 to
65535.

– summary-base-dir{SUMMARY_BASE_DIR}: data storage path in the
development environment

▪ Local path to the development environment: ./work/xxx (relative
path) or /home/ma-user/work/xxx (absolute path)

▪ Path to the OBS parallel file system bucket: obs://xxx/
For example:
If the summary data is stored in /home/ma-user/work/ of a development environment, run the
following command:
%mindinsight --summary-base-dir /home/ma-user/work/xxx
Or
If the summary data is stored in an OBS parallel file system, run the following command. Then, the
development environment will automatically mount the storage path to the OBS parallel file system
and read data from the path.
%mindinsight --summary-base-dir obs://xxx/

Figure 6-38 MindInsight page (1)

Modelarts
Usermanual 6 Devenviron

2024-04-30 258

Method 2

Click to go to the MindInsight page.

Data is read from /home/ma-user/work/ by default.

If there are two projects or more, select the target project to view its logs.

Figure 6-39 MindInsight page (2)

Method 3

1. Choose View > Activate Command Palette, enter MindInsight in the search
box, and click Create a new MindInsight.

Figure 6-40 Create a new MindInsight

2. Enter the path to the summary data or the storage path to the OBS parallel
file system, and click CREATE.
– Local path to the development environment: ./summary (relative path)

or /home/ma-user/work/summary (absolute path)
– Path to the OBS parallel file system: obs://xxx/

Modelarts
Usermanual 6 Devenviron

2024-04-30 259

Figure 6-41 Path to the summary data

Figure 6-42 MindInsight page (3)

NO TE

A maximum of 10 MindInsight instances can be started using method 2 or 3.

Method 4

Click and run the following command (the UI will not be displayed):
mindinsight start --summary-base-dir ./summary_dir

Figure 6-43 Opening MindInsight through Terminal

Modelarts
Usermanual 6 Devenviron

2024-04-30 260

Step 4 View Visualized Data on the Training Dashboard

The training dashboard is important for MindInsight visualization. It allows
visualization for scalars, parameter distribution, computational graphs, dataset
graphs, images, and tensors.

For more information, see Viewing Training Dashboard on the MindSpore official
website.

Related Operations

To stop a MindInsight instance, use one of the following methods:

● Method 1: Enter the following command in the .ipynb file window of
JupyterLab. in which the port number is configured in Start MindInsight
(8080 by default):
!mindinsight stop --port 8080

● Method 2: Click . The MindInsight instance management page is
displayed, which shows all started MindInsight instances. Click SHUT DOWN
next to the target instance to stop it.

Figure 6-44 Stopping an instance

● Method 3: Click in the following figure to close all started MindInsight
instances.

Figure 6-45 Stopping all started MindInsight instances

● Method 4 (not recommended): Close the MindInsight window on JupyterLab.
In this way, only the visualization window is closed, but the instance is still
running on the backend.

Modelarts
Usermanual 6 Devenviron

2024-04-30 261

https://www.mindspore.cn/mindinsight/docs/en/master/index.html

6.4.6.3 TensorBoard Visualization Jobs

ModelArts supports TensorBoard for visualizing training jobs. TensorBoard is a
visualization tool package of TensorFlow. It provides visualization functions and
tools required for machine learning experiments.

TensorBoard effectively displays the computational graph of TensorFlow in the
running process, the trend of all metrics in time, and the data used in the training.

Prerequisites

When you write a training script, add the code for collecting the summary record
to the script to ensure that the summary file is generated in the training result.

For details about how to add the code for collecting the summary record to a
TensorFlow-powered training script, see TensorFlow official website.

Process of Creating a TensorBoard Visualization Job in a Development
Environment

Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start TensorBoard

Step 4 View Visualized Data on the Training Dashboard

Step 1 Create a Development Environment and Access It Online

On the ModelArts management console, choose DevEnviron > Notebook, and
create an instance using a TensorFlow or PyTorch image. After the instance is
created, click Open in the Operation column of the instance to access it online.

Only CPU and GPU flavors with TensorFlow2.1, PyTorch1.4, or PyTorch1.8 and later
images can support TensorBoard visualization for training jobs. Select images and
flavors based on the site requirements.

Step 2 Upload the Summary Data

Summary data is required for using TensorBoard visualization functions in
DevEnviron.

You can upload the summary data to the /home/ma-user/work/ directory in the
development environment or store it in the OBS parallel file system.

● For details about how to upload the summary data to the notebook path /
home/ma-user/work/, see Uploading Files to JupyterLab.

● To store the summary data in an OBS parallel file system that is mounted to a
notebook instance, upload the summary file generated during model training
to the OBS parallel file system. When TensorBoard is started in a notebook
instance, the notebook instance automatically mounts the OBS parallel file
system directory and reads the summary data.

Modelarts
Usermanual 6 Devenviron

2024-04-30 262

https://www.tensorflow.org/tensorboard/get_started

Step 3 Start TensorBoard
There are multiple methods to open TensorBoard in JupyterLab in the
development environment. Select one based on your habits.

Figure 6-46 Starting TensorBoard in JupyterLab

Method 1 (recommended):

1. Open JupyterLab, in the navigation pane on the left, create the summary
folder, and upload data to /home/ma-user/work/summary. The folder name
must be summary.

2. Go to the summary folder and click to go to the
TensorBoard page. See Figure 6-47.

Modelarts
Usermanual 6 Devenviron

2024-04-30 263

Figure 6-47 TensorBoard page (1)

Method 2

NO TICE

You can upgrade TensorBoard to any version except 2.4.0. After the upgrade, the
new version of TensorBoard is used only in method 2. For other methods, use
TensorBoard 2.1.1.

1. Click to go to the JupyterLab development environment.
The .ipynb file is automatically created.

2. Enter the following command in the dialog box:
%reload_ext ma_tensorboard
%ma_tensorboard --port {PORT} --logdir {BASE_DIR}

Parameters:
– port {PORT}: web service port for visualization, which defaults to 8080. If

the default port 8080 has been used, specify a port ranging from 1 to
65535.

– logdir {BASE_DIR}: data storage path in the development environment

▪ Local path of the development environment: ./work/xxx (relative
path) or /home/ma-user/work/xxx (absolute path)

▪ Path of the OBS parallel file system: obs://xxx/
Example:
If the summary data is stored in /home/ma-user/work/ of the development environment, run the
following command:
%ma_tensorboard --port {PORT} --logdir /home/ma-user/work/xxx
or
If the summary data is stored in the OBS parallel file system, run the following command and the
development environment automatically mounts the storage path of the OBS parallel file system and

Modelarts
Usermanual 6 Devenviron

2024-04-30 264

reads data.
%ma_tensorboard --port {PORT} --logdir obs://xxx/

Figure 6-48 TensorBoard page (2)

Method 3

1. Choose View > Activate Command Palette, enter TensorBoard in the search
box, and click Create a new TensorBoard.

Figure 6-49 Create a new TensorBoard

2. Enter the path of the summary data you want to view or the storage path of
the OBS parallel file system.

Modelarts
Usermanual 6 Devenviron

2024-04-30 265

– Local path of the development environment: ./summary (relative path)
or /home/ma-user/work/summary (absolute path)

– Path of the OBS parallel file system bucket: obs://xxx/

Figure 6-50 Entering the summary data path

Figure 6-51 TensorBoard page (3)

Method 4

Click and run the following command. The UI will not be displayed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 266

tensorboard --logdir ./log

Figure 6-52 Opening TensorBoard through Terminal

Step 4 View Visualized Data on the Training Dashboard
For TensorBoard visualization, you need the training dashboard. It lets you
visualize scalars, images, and computational graphs.

For more functions, see Get started with TensorBoard.

Related Operations
To stop a TensorBoard instance, use any of the following methods:

● Method 1: Click . The TensorBoard instance management page is
displayed, which shows all started TensorBoard instances. Click SHUT DOWN
next to an instance.

Figure 6-53 Clicking SHUT DOWN to stop an instance

● Method 2: Enter the following command in the .ipynb file window in
JupyterLab (Obtain PID on the startup screen or using the command ps -ef |
grep tensorboard):
!kill PID

● Method 3: Click as shown in the following figure to stop all started
TensorBoard instances.

Modelarts
Usermanual 6 Devenviron

2024-04-30 267

https://www.tensorflow.org/tensorboard/get_started

Figure 6-54 Stopping all started TensorBoard instances

● (Not recommended) Method 4: Close the TensorBoard window in JupyterLab.
This method closes only the window, but the instance is still running on the
backend.

6.4.7 Uploading and Downloading Data in Notebook

6.4.7.1 Uploading Files to JupyterLab

6.4.7.1.1 Scenarios

Easy and fast file uploading is a common requirement in AI development.

Before the optimization, ModelArts only allowed local files not exceeding 100 MB
to be directly uploaded to a notebook instance. However, the files to be uploaded
are not all stored locally, which may be from an open-source repository of GitHub,
an open-source dataset (https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-
x64.tar.xz), or OBS. Additionally, ModelArts did not show the file uploading
progress or speed.

ModelArts has been optimized for better file uploading experience. It not only
provides more file upload functions, but also displays more file upload details.

Optimized file uploading:

● Supports local files.
● Supports cloning files from open-source repositories in GitHub.
● Supports OBS files.
● Supports remote files.
● Supports visualized upload progress.

6.4.7.1.2 Uploading Files from a Local Path to JupyterLab

Upload Scenarios and Entries

JupyterLab provides multiple methods for uploading files.

Methods for Uploading a File
● For a file that does not exceed 100 MB, directly upload it, and details such as

the file size, upload progress, and upload speed are displayed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 268

https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-x64.tar.xz
https://nodejs.org/dist/v12.4.0/node-v12.4.0-linux-x64.tar.xz

● For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to
OBS (an object bucket or a parallel file system), and then download the file
from OBS to a notebook instance. After the download is complete, the file is
deleted from OBS.

● For a file that exceeds 5 GB, upload it by calling ModelArts SDK or MoXing.
● For a file that shares the same name with an existing file in the current

directory of a notebook instance, overwrite the existing file or cancel the
upload.

● A maximum of 10 files can be uploaded at a time. The other files are in
awaiting upload state. No folders can be uploaded. If a folder is required,
compress it into a package, upload the package to notebook, and decompress
the package in Terminal.
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream
search engines.

● When multiple files are uploaded in a batch, the total number of files to be
uploaded and the number of files that have been uploaded are displayed at
the bottom of the JupyterLab window.

Prerequisites
You have used JupyterLab to open a running notebook environment.

Upload Entry 1: Dragging a File to the File Browser Window
Drag the file to the blank area on the left of the JupyterLab window and upload it.

Upload Entry 2: Clicking the File Upload Icon and Uploading a File

Click in the navigation bar on the top of the window. In the displayed dialog
box, drag or select a local file and upload it.

Modelarts
Usermanual 6 Devenviron

2024-04-30 269

Figure 6-55 File upload icon

Figure 6-56 File upload page

Uploading a Local File Less Than 100 MB to JupyterLab
For a file not exceeding 100 MB, directly upload it to the target notebook instance.
Detailed information, such as the file size, upload progress, and upload speed are
displayed.

Figure 6-57 Uploading a file less than 100 MB

A message is displayed after the file is uploaded.

Modelarts
Usermanual 6 Devenviron

2024-04-30 270

Figure 6-58 Uploaded

Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab

For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to OBS
(an object bucket or a parallel file system), and then download the file from OBS
to the target notebook instance. After the download is complete, the file is
automatically deleted from OBS.

For example, in the scenario shown in the following figure, upload the file through
OBS.

Figure 6-59 Uploading a large file through OBS

To upload a large file through OBS, set an OBS path.

Modelarts
Usermanual 6 Devenviron

2024-04-30 271

Figure 6-60 Uploading a file through OBS

NO TE

Set an OBS path for uploading local files to JupyterLab. After the setting, this path is used

by default in follow-up operations. To change the path, click in the lower left corner of
the file upload window.

● Method 1: Enter a valid OBS path in the text box and click OK.

Figure 6-61 Configuring an OBS path

● Method 2: Select an OBS path in OBS File Browser and click OK.

Modelarts
Usermanual 6 Devenviron

2024-04-30 272

Figure 6-62 OBS File Browser

● Method 3: Use the default path.

Figure 6-63 Using the default path to upload a file

Figure 6-64 Setting an OBS path for uploading a local file

Modelarts
Usermanual 6 Devenviron

2024-04-30 273

After the OBS path is set, upload a file.

Figure 6-65 Uploading a file

Decompressing a package

After a large file is uploaded to Notebook JupyterLab as a compressed package,
you can decompress the package in Terminal.

unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream search
engines.

Uploading a Local File Larger Than 5 GB to JupyterLab

A file exceeding 5 GB cannot be directly uploaded to JupyterLab.

Figure 6-66 Failed to upload a file over 5 GB

To upload files exceeding 5 GB, upload them to OBS. Then, call the ModelArts
MoXing or SDK API in the target notebook instance to read and write the files in
OBS.

Modelarts
Usermanual 6 Devenviron

2024-04-30 274

Figure 6-67 Uploading and downloading large files in a notebook instance

The procedure is as follows:

1. Upload the file from a local path to OBS.
2. Download the file from OBS to the notebook instance by calling the

ModelArts SDK or MoXing API.
– Method 1: Call the ModelArts SDK to download a file from OBS.

Example code:
from modelarts.session import Session
session = Session()
session.obs.copy("obs://bucket-name/obs_file.txt","/home/ma-user/work/")

– Method 2: Call the ModelArts MoXing API for reading an OBS file.
import moxing as mox

Download the OBS folder sub_dir_0 from OBS to a notebook instance.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/home/ma-user/work/sub_dir_0')
Download the OBS file obs_file.txt from OBS to a notebook instance.
mox.file.copy('obs://bucket_name/obs_file.txt', '/home/ma-user/work/obs_file.txt')

If a .zip file is downloaded, run the following command on the terminal
to decompress the package:
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

After the code is executed, open the terminal shown in Figure 6-68 and
run the ls /home/ma-user/work command to view the file downloaded
to the notebook instance. Alternatively, view the downloaded file in the
left navigation pane of Jupyter. If the file is not displayed, refresh the
page.

Figure 6-68 Opening the terminal

Modelarts
Usermanual 6 Devenviron

2024-04-30 275

Figure 6-69 File downloaded to a notebook instance

Error Handling

If you download a file from OBS to your notebook instance and the system
displays error message "Permission denied", perform the following operations for
troubleshooting:

● Ensure that the target OBS bucket and notebook instance are in the same
region. If the OBS bucket and notebook instance are in different regions, the
access to OBS is denied.

● Ensure that the notebook account has the permission to read data in the OBS
bucket.

6.4.7.1.3 Cloning an Open-Source Repository in GitHub

Files can be cloned from a GitHub open-source repository to JupyterLab.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed dialog box, click on the left to go to the page for cloning files
from a GitHub open-source repository.

Figure 6-70 File upload icon

Modelarts
Usermanual 6 Devenviron

2024-04-30 276

Figure 6-71 Page for cloning files from a GitHub open-source repository

3. Enter a valid address of a GitHub open-source repository, select files from the
displayed files and folders, and click Clone.

GitHub open-source repository address: https://github.com/jupyterlab/
extension-examples

Figure 6-72 Entering a valid address of a GitHub open-source repository

4. View the clone process.

Figure 6-73 Process of cloning a repository

5. Complete the clone.

Modelarts
Usermanual 6 Devenviron

2024-04-30 277

Figure 6-74 Repository cloned

Error Handling
● Failing to clone the repository may be caused by network issues. In this case,

run the git clone https://github.com/jupyterlab/extension-examples.git
command on the Terminal page to test the network connectivity.

Figure 6-75 Failed to clone the repository

● If the repository already exists in the current directory of the notebook
instance, the system displays a message indicating that the repository name
already exists. In this case, you can overwrite the existing repository or click

 to cancel the cloning.

Modelarts
Usermanual 6 Devenviron

2024-04-30 278

6.4.7.1.4 Uploading OBS Files to JupyterLab

In JupyterLab, you can download files from OBS to a notebook instance. Ensure
that the file is not larger than 10 GB. Otherwise, the upload will fail.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the OBS file upload page.

Figure 6-76 File upload icon

Figure 6-77 OBS file upload

3. Set an OBS file path in either of the following ways:
– Method 1: Enter a valid OBS file path in the text box and click Upload.

Figure 6-78 Entering a valid OBS file path

NO TE

Enter an OBS file path instead of a folder path. Otherwise, the upload fails.

● Method 2: Open OBS File Browser, select an OBS file path, and click Upload.

Modelarts
Usermanual 6 Devenviron

2024-04-30 279

Figure 6-79 Uploading an OBS File

Figure 6-80 File uploaded

Error Handling

There are three typical scenarios in which uploading a file failed.

● Scenario 1

Figure 6-81 File uploading failure

Modelarts
Usermanual 6 Devenviron

2024-04-30 280

Possible causes:
– The OBS path is set to a folder instead of a file path.
– The file in OBS is encrypted. In this case, go to the OBS console and

ensure that the file is encrypted.

– The OBS bucket and notebook instance are not in the same region.
Ensure that the OBS bucket to be read is in the same region as the
notebook instance. You cannot access an OBS bucket in another region.

– The account does not have the permission to access the OBS bucket. In
this case, ensure that the notebook account has the permission to read
data in the OBS bucket.

– The OBS file has been deleted. In this case, make sure that the OBS file
to be uploaded is available.

● Scenario 2

Figure 6-82 File uploading failure

Possible causes:
The file name contains special characters such as <>'";\`=#$%^&.

● Scenario 3

Modelarts
Usermanual 6 Devenviron

2024-04-30 281

Figure 6-83 File uploading failure

Possible causes:
The uploaded file exceeded 10 GB.

6.4.7.1.5 Uploading Remote Files to JupyterLab
Files can be downloaded through remote file addresses to JupyterLab.

Method: Enter the URL of a remote file in the text box of a browser, and the file is
directly downloaded.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the remote file upload page.

Figure 6-84 File upload icon

Figure 6-85 Remote file upload page

Modelarts
Usermanual 6 Devenviron

2024-04-30 282

3. Enter a valid remote file URL, and the system automatically identifies the file
name. Then, click Upload.

Figure 6-86 Entering a valid remote file URL

Figure 6-87 Remote file uploaded

Error Handling
Failing to upload the remote file may be caused by network issues. In this case,
enter the URL of the remote file in the text box of a browser to check whether the
file can be downloaded.

Modelarts
Usermanual 6 Devenviron

2024-04-30 283

Figure 6-88 Failed to upload the remote file

6.4.7.2 Downloading a File from JupyterLab to a Local Path
Files created in JupyterLab can be downloaded to a local path.

● If a file is less than or equal to 100 MB, directly download it from JupyterLab.
For details, see Downloading a File Less Than or Equal to 100 MB.

● If a file is larger than 100 MB, use OBS to transfer it to your local path. For
details, see Downloading a File Larger Than 100 MB.

Downloading a File Less Than or Equal to 100 MB
In the JupyterLab file list, right-click the file to be downloaded and choose
Download from the shortcut menu. The file is downloaded to your browser's
downloads folder.

Modelarts
Usermanual 6 Devenviron

2024-04-30 284

Figure 6-89 Downloading a file

Downloading a File Larger Than 100 MB
Use OBS to transfer the file from the target notebook instance to the local path.
To do so, perform the following operations:

1. In the notebook instance, create an IPYNB file larger than 100 MB and use
MoXing to upload it to OBS. Example code is as follows:
import moxing as mox
mox.file.copy('/home/ma-user/work/obs_file.txt', 'obs://bucket_name/obs_file.txt')

/home/ma-user/work/obs_file.txt is the path to the file stored in the
notebook instance. obs://bucket_name/obs_file.txt is the path of the file
uploaded to OBS, where bucket_name is the name of the bucket created in
OBS, and obs_file.txt is the uploaded file.

2. Use OBS or ModelArts SDK to download the file from OBS to the local path.
– Method 1: Use OBS to download the file.
– Download obs_file.txt from OBS to the local path. If a large amount of

data is to be downloaded, use OBS Browser+ to download.
– Method 2: Use ModelArts SDK to download the file.

i. Download and install the SDK locally.
ii. Authenticate sessions.
iii. Download the file from OBS to the local path. Example code is as

follows:
from modelarts.session import Session

Modelarts
Usermanual 6 Devenviron

2024-04-30 285

Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store them
in the configuration file or environment variables.
In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
__AK = os.environ["HUAWEICLOUD_SDK_AK"]
__SK = os.environ["HUAWEICLOUD_SDK_SK"]
Decrypt the password if it is encrypted.
session = Session(access_key=__AK,secret_key=__SK, project_id='***', region_name='***')

session.download_data(bucket_path="/bucket_name/obs_file.txt",path="/home/user/
obs_file.txt")

6.5 Local IDE

6.5.1 Operation Process in a Local IDE
ModelArts allows you to remotely access notebook instances from a local IDE to
develop AI models based on PyTorch, TensorFlow, or MindSpore. The following
figure shows the operation process.

1. Configure a local IDE.
Configure a local IDE on your PC.
You can use PyCharm, VS Code, or SSH tools to access a notebook instance
from a local IDE. PyCharm and VS Code can be automatically configured
using plug-ins or manually configured.

2. Create a notebook instance.
On the ModelArts management console, create a notebook instance with a
proper AI engine and remote SSH enabled.

3. Use the local IDE to remotely access ModelArts DevEnviron.
4. Upload data and code to the development environment.

– Copy the code to the local IDE, which will automatically synchronize the
code to the in-cloud development environment.

– If the data is less than or equal to 500 MB, directly copy the data to the
local IDE.

– When creating a training job, if the volume of data is greater than 500
MB, upload the data to OBS and then to EVS.

5. Upload the training script and dataset to the OBS directory.
6. Submit a training job.

– Submit a training job in the local IDE.
– Submit a training job on the ModelArts management console. .

6.5.2 Local IDE (PyCharm)

6.5.2.1 Connecting to a Notebook Instance Through PyCharm Toolkit

6.5.2.1.1 PyCharm Toolkit

AI developers use PyCharm tools to develop algorithms or models. Therefore,
ModelArts provides PyCharm Toolkit to help AI developers quickly submit locally

Modelarts
Usermanual 6 Devenviron

2024-04-30 286

developed code to a training environment on ModelArts. With PyCharm Toolkit,
developers can quickly upload code, submit training jobs, and obtain training logs
for local display so that they can better focus on local code development. For
details about how to download and install PyCharm Toolkit, see Installing
Through Marketplace.

Constraints
● Currently, only PyCharm 2019.2 or later is supported, including the

community and professional editions.
● Only PyCharm of the professional edition can be used to access the notebook

development environment. PyCharm Toolkit cannot be used to remotely
access notebook instances using RightCloud accounts.

● You can use a community or professional edition of PyCharm Toolkit to
submit training jobs. The latest version of PyCharm Toolkit can be used only
to submit training jobs of the new version.

● PyCharm Toolkit supports PyCharm of the Window version.

Available Functions

Table 6-8 Toolkit functions of the latest version

Function Description Reference

Remote SSH The notebook development
environment can be accessed
through remote SSH.

Connecting to a
Notebook Instance
Through PyCharm
Toolkit

Model
training

Code developed locally can be
quickly submitted to ModelArts and
a training job of the new version is
automatically created. During the
running of the training job, training
logs can be obtained and displayed
on a local host.

● Submitting a Training
Job (New Version)

● Stopping a Training
Job

● Viewing Training Logs

OBS-based
upload and
download

Local files or folders can be
uploaded to OBS and files or folders
can be downloaded from OBS to a
local directory.

Uploading Data to a
Notebook Instance Using
PyCharm

6.5.2.1.2 Downloading and Installing PyCharm Toolkit

Before using PyCharm Toolkit, install and configure it in PyCharm by following the
instructions provided in this section.

Prerequisites

PyCharm community or professional 2019.2 or later has been installed locally.

Modelarts
Usermanual 6 Devenviron

2024-04-30 287

● Only PyCharm of the professional edition can be used to access the notebook
development environment.

● You can use a community or professional edition of PyCharm Toolkit to
submit training jobs. PyCharm Toolkit 2.x can be used to submit only the old
version of training jobs, and the latest version of PyCharm Toolkit can be used
to submit only the new version of training jobs.

Installing Through Marketplace
In PyCharm, choose File > Settings > Plugins, search for ModelArts in
Marketplace, and click Install.

Figure 6-90 Installing through Marketplace

NO TE

● The version installed in Marketplace is the latest version.
● If ModelArts cannot be found in Marketplace, your network may be restricted. Ensure

that you can access the Internet.

6.5.2.1.3 Connecting to a Notebook Instance Through PyCharm Toolkit

ModelArts provides the PyCharm plug-in PyCharm Toolkit for you to remotely
access a notebook instance through SSH, upload code, submit a training job, and
obtain training logs for local display.

Prerequisites
PyCharm professional 2019.2 or later has been installed locally. Remote SSH
applies only to the PyCharm professional edition. Download PyCharm and install
it.

PyCharm Toolkit cannot be used to remotely access notebook instances using
RightCloud accounts.

Step 1 Create a Notebook Instance
Create a notebook instance with remote SSH enabled and whitelist configured.
Ensure that the instance is running. For details, see Creating a Notebook
Instance.

Modelarts
Usermanual 6 Devenviron

2024-04-30 288

https://www.jetbrains.com/pycharm/download/other.html

Step 2 Download and Install PyCharm Toolkit

In PyCharm, choose File > Settings > Plugins, search for ModelArts in
Marketplace, and click Install. For details, see Downloading and Installing
PyCharm Toolkit.

Step 3 Add More Regions
1. On the PyCharm interface, choose ModelArts > Edit Credential. The Edit

Credential dialog box is displayed.
2. Contact the region operations company to obtain the YAML configuration file

and host information. In the Edit Credential dialog box, click Config to
import the downloaded YAML file. After the file is imported, the message
Import successful is displayed, indicating that the region information is
configured.

Step 4 Log In to the Plug-in

To use the AK/SK pair for login authentication, perform the following steps:

1. Open PyCharm with Toolkit installed. Choose ModelArts > Edit Credential
from the menu bar.

Figure 6-91 Edit Credential

2. In the displayed dialog box, select the region where ModelArts is located,
enter the AK and SK, and click OK. For details about how to obtain the AK
and SK, see How Do I Obtain an Access Key?.
– Region: Select a region from the drop-down list. It must be the same as

the region of the ModelArts console.
– Project: After the region is selected, the project is automatically filled.
– Access Key ID: Enter the AK.
– Secret Access Key: Enter the SK.

3. View the verification result.
In the Event Log area, if information similar to the following is displayed, the
access key has been successfully added:
16:01Validate Credential Success: The credential is valid.

If an authentication fails, refer to What Should I Do If an Error Occurs
When I Edit a Credential in PyCharm Toolkit? for the solution.

Step 5 Automatically Configure PyCharm Toolkit
1. In the local PyCharm development environment, choose ModelArts >

Notebook > Remote Config... and configure PyCharm Toolkit.

Modelarts
Usermanual 6 Devenviron

2024-04-30 289

Figure 6-92 Remotely connecting to PyCharm Toolkit

2. Choose the target instance from the drop-down list, where all notebook
instances with remote SSH enabled under the account are displayed.

Figure 6-93 Notebook list

– KeyPair: Select the locally stored key pair of the notebook instance for
authentication. The key pair created during the notebook instance
creation is saved in your browser's default downloads folder.

– PathMappings: Synchronization directory for the local IDE project and
notebook, which defaults to /home/ma-user/work/Project name and is
adjustable.

3. Click Apply. After the configuration is complete, restart the IDE for the
configuration to take effect.
After the restart, it takes about 20 minutes to update the Python interpreter
for the first time.

Step 6 Access a Notebook Instance Through PyCharm Toolkit
Click the notebook instance name and connect it to the local IDE as prompted.
The connection is kept for 4 hours by default.

Modelarts
Usermanual 6 Devenviron

2024-04-30 290

Figure 6-94 Starting the connection

To interrupt the connection, click the notebook name and disconnect it from the
local IDE as prompted.

Figure 6-95 Interrupting the connection

Step 7 Upload Local Files to the Notebook Instance
Code in a local file can be copied to the local IDE, which will automatically
synchronize the code to the in-cloud development environment.

Initial synchronization

In the Project directory of the local IDE, right-click Deployment and choose
Upload to Notebook name from the shortcut menu to upload the local project file
to the specified notebook instance.

Modelarts
Usermanual 6 Devenviron

2024-04-30 291

Figure 6-96 Synchronizing local data to a notebook instance

Follow-up synchronization

After modifying the code, press Ctrl+S to save it. The local IDE will automatically
synchronize the modification to the specified notebook instance.

After PyCharm Toolkit is installed, Automatic Upload is automatically enabled in
the local IDE for automatically uploading the files in the local directory to the
target notebook instance. If Automatic Upload is not enabled, enable it by
referring to the following figure.

Modelarts
Usermanual 6 Devenviron

2024-04-30 292

Figure 6-97 Enabling Automatic Upload

Step 8 Remotely Debug the Code

Click Interpreter in the lower right corner of the local IDE and select a notebook
Python interpreter.

Figure 6-98 Selecting a Python interpreter

Run the code in the notebook instance. The logs are displayed locally.

Figure 6-99 Runtime logs

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

Modelarts
Usermanual 6 Devenviron

2024-04-30 293

Figure 6-100 Setting runtime parameters (1)

Select the Python interpreter that remotely connects to the target notebook
instance.

Figure 6-101 Setting runtime parameters (2)

To debug code, set breakpoints and run the program in debug mode.

Figure 6-102 Running the program in debug mode

Modelarts
Usermanual 6 Devenviron

2024-04-30 294

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 6-103 Viewing variable values in debug mode

6.5.2.2 Manually Connecting to a Notebook Instance Through PyCharm
A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use PyCharm to access a notebook instance.

Prerequisites
● PyCharm professional 2019.2 or later has been installed locally. The PyCharm

professional edition is available because remote SSH applies only to the
professional edition.

● A notebook instance has been created with remote SSH enabled. Ensure that
the instance is running. For details, see Creating a Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

Figure 6-104 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Modelarts
Usermanual 6 Devenviron

2024-04-30 295

Step 1 Configure SSH
1. In your local PyCharm development environment, choose File > Settings >

Tools > SSH Configurations and click + to add an SSH configuration.
– Host: address for accessing the cloud development environment. Obtain

the address on the page providing detailed information of the target
notebook instance .

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– User name: consistently set to ma-user.
– Authentication type: key pair
– Private key file: locally stored private key file of the cloud development

environment. It is the key pair file automatically downloaded when you
created the notebook instance.

2. Click to rename the connection. Then, click OK.
3. After the configuration is complete, click Test Connection to test the

connectivity.
4. Select Yes. If "Successfully connected" is displayed, the network is accessible.

Then, click OK.
5. Click OK at the bottom to save the configuration.

Figure 6-105 Configuring SSH

Step 2 Obtain the Path to the Virtual Environment Built in the Development
Environment

1. Choose Tools > Start SSH Session to access the cloud development
environment.

2. Run the following command to view the Python virtual environments built in
the current environment in the README file in /home/ma-user/:
cat /home/ma-user/README

Modelarts
Usermanual 6 Devenviron

2024-04-30 296

3. Run the source command to switch to a specific Python environment.

4. Run which python to obtain the Python path and copy it for configuring the
Python interpreter on the cloud.

Figure 6-106 Obtaining the path to the virtual environment built in the
development environment

Step 3 Configure a Python Interpreter
1. Choose File > Settings > Project: Python project > Python Interpreter. Then,

click and Add to add an interpreter.

2. Select Existing server configuration, choose the SSH configuration from the
drop-down list, and click Next.

3. Configure the Python interpreter.

– Interpreter: Enter the Python path copied in step 1, for example, /
home/ma-user/anaconda3/envs/Pytorch-1.0.0/bin/python.

If the path is ~/anaconda3/envs/Pytorch-1.0.0/bin/python, replace ~
with /home/ma-user.

– Sync folders: Set this parameter to a directory in the cloud development
environment for synchronizing local project directory files. A directory in /
home/ma-user is recommended, for example, /home/ma-user/work/
projects, because other directories may be prohibited from accessing.

4. Click ! on the right and select Automatically upload so that the locally
modified file can be automatically uploaded to the container.

5. Click Finish.

The local project file has been automatically uploaded to the cloud
environment. Each time a local file is modified, the modification is
automatically synchronized to the cloud environment.

In the lower right corner, the current interpreter is displayed as a remote
interpreter.

Modelarts
Usermanual 6 Devenviron

2024-04-30 297

Figure 6-107 Configuring a Python interpreter

Step 4 Install the Dependent Library for the Cloud Environment
After accessing the development environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

Choose Tools > Start SSH Session and select the configured development
environment. Run the pip install command to install the required dependency
packages.

Step 5 Debug Code in the Development Environment
You have accessed the cloud development environment. Then, you can write,
debug, and run the code in the local PyCharm. The code is actually executed in
the cloud development environment, and the Ascend AI resources on the cloud are
used. In this way, you compile and modify code locally and run the code in the
cloud.

Run the code in the local IDE. The logs can be displayed locally.

Modelarts
Usermanual 6 Devenviron

2024-04-30 298

Figure 6-108 Debugging code

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

Figure 6-109 Setting runtime parameters

To debug code, set breakpoints and run the program in debug mode.

Modelarts
Usermanual 6 Devenviron

2024-04-30 299

Figure 6-110 Code breakpoint

Figure 6-111 Debugging in debug mode

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 6-112 Debug mode

Modelarts
Usermanual 6 Devenviron

2024-04-30 300

Before debugging code in debug mode, ensure that the local code is the same as
the cloud code. If they are different, the line where a breakpoint is added locally
may be different from the line of the cloud code, leading to errors.

When configuring a Python interpreter in the cloud development environment,
select Automatically upload so that any local file modification can be
automatically uploaded to the cloud. If you do not select Automatically upload,
manually upload the directory or code after you modify the local code. For details,
see Step 7 Upload Local Files to the Notebook Instance.

6.5.2.3 Submitting a Training Job Using PyCharm Toolkit

6.5.2.3.1 Submitting a Training Job (New Version)

You can use PyCharm Toolkit of the latest version to quickly submit the locally
developed training code to ModelArts for training.

Prerequisites
● A training code project exists in the local PyCharm.
● You have created a bucket and folders in OBS for storing datasets and trained

models. Data used by the training job has been uploaded to OBS.
● The credential has been configured. For details, see Using Access Keys for

Login.
● PyCharm Toolkit of the latest version is available for submitting a training job

of the new version only.

Configuring Training Job Parameters
1. In PyCharm, open the training code project and training boot file, and choose

ModelArts > Training Job > New... on the menu bar.

Figure 6-113 Edit training job configuration

2. In the displayed dialog box, configure the training job parameters. For details,
see Table 6-9.

Modelarts
Usermanual 6 Devenviron

2024-04-30 301

Table 6-9 Training job parameters

Parameter Description

Job Name Name of a training job
The system automatically generates a name. You can
rename it based on the following naming rules:
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_) are

allowed.

Job Description Brief description of a training job

Algorithm
Source

Source of the training algorithm. The options are
Frequently-used and Custom.
Frequently-used refers to the frequently-used AI
engines supported by ModelArts Training Management.
If the AI engine you use is not in the supported list, you
are advised to create a training job using a custom
image.

AI Engine Select the AI engine and the version used in code. The
supported AI engines are the same as on the ModelArts
management console.

Boot File Path Training boot file. The selected boot file must be a file in
the current PyCharm training project. This parameter is
displayed if Algorithm Source is set to Frequently-
used.

Code Directory Training code directory. The system automatically sets
this parameter to the directory where the training boot
file is located. You can change the parameter value to a
directory that is in the current project and contains the
boot file.
If the algorithm source is a custom image and the
training code has been built in the image, this
parameter can be left blank.

Image
Path(optional)

URL of the SWR image

Boot Command Command for starting a training job, for example,
bash /home/work/run_train.sh python {Python boot
file and parameters}. This parameter is displayed if
Algorithm Source is set to Custom.
If the command does not contain the --data_url or --
train_url parameter, the tool automatically adds the
two parameters to the end of the command when
submitting the training job. The two parameters
correspond to the OBS path for storing training data and
the OBS path for storing training output, respectively.

Modelarts
Usermanual 6 Devenviron

2024-04-30 302

Parameter Description

Data OBS Path OBS path for storing training data, for example, /test-
modelarts2/mnist/dataset-mnist/, in which test-
modelarts2 indicates a bucket name.

Training OBS
Path

OBS path. A directory is automatically created in the
path for storing a trained model and training logs.

Running
Parameters

Running parameters. If you want to add some running
parameters to your code, add them here. Separate
multiple running parameters with semicolons (;), for
example, key1=value1;key2=value2. This parameter
can be left blank.

Specifications Type of resources used for training. Currently, public
resource pools and dedicated resource pools are
supported.
Dedicated resource pool specifications are identified by
Dedicated Resource Pool.

Compute Nodes Number of compute nodes. If this parameter is set to 1,
the system runs in standalone mode. If this parameter is
set to a value greater than 1, the distributed computing
mode is used at the background.

Available/Total
Nodes

When Specifications is set to a dedicated resource pool,
the number of available nodes and the total number of
nodes are displayed. The value of Compute Nodes
cannot exceed the number of available nodes.

Figure 6-114 Configuring training job parameter (public resource pool)

Modelarts
Usermanual 6 Devenviron

2024-04-30 303

Figure 6-115 Configuring training job parameter (dedicated resource pool)

Figure 6-116 Configuring training job parameter (custom image)

3. After setting the parameters, click Apply and Run. Then, local code is
automatically uploaded to the cloud and training is started. The training job
running status is displayed in the Training Log area in real time. If
information similar to Current training job status: Successful is displayed in
the training log, the training job has been successfully executed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 304

NO TE

● After you click Apply and Run, the system automatically executes the training job.
To stop the training job, choose ModelArts > Training Job > Stop on the menu
bar.

● If you click Apply, the job is not started directly, and the training job settings are
saved instead. To start the job, click Apply and Run.

Figure 6-117 Training log example

6.5.2.3.2 Stopping a Training Job

You can stop a running training job.

Stopping a Job
When a training job is running, choose ModelArts > Training Job > Stop on the
PyCharm menu bar to stop the job.

Figure 6-118 Stopping a job

6.5.2.3.3 Viewing Training Logs

This section describes how to view training job logs.

Viewing Training Logs in OBS
When you submit a training job, the system automatically creates a folder with
the same name as the training job in the configured OBS path to store the model,
logs, and code outputted after training is complete.

For example, when the train-job-01 job is submitted, a folder named train-job-01
is created in the test-modelarts2 bucket. In this folder, three sub-folders (output,
log, and code) are created to store the outputted model, logs, and training code,
respectively. Sub-folders will be created in the output folder based on your
training job version. The following is an example of the folder structure:
test-modelarts2
 |---train-job-01
 |---output
 |---log
 |---code

Modelarts
Usermanual 6 Devenviron

2024-04-30 305

Viewing Training Logs in Toolkit
In PyCharm, click ModelArts Training Log in the lower right corner of the page.
The training logs are displayed.

Figure 6-119 Viewing Training Logs

6.5.2.4 Uploading Data to a Notebook Instance Using PyCharm
If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

If the data is larger than 500 MB, upload the code to OBS and then to the
notebook instance.

1. Upload data to OBS.
2. Call the mox.file.copy_parallel MoXing API provided by ModelArts in the

terminal of the local IDE to transfer data from OBS to the notebook instance.

Figure 6-120 Uploading data to a notebook Instance through OBS

The following shows how to enable terminal in PyCharm.

Modelarts
Usermanual 6 Devenviron

2024-04-30 306

Figure 6-121 Enabling the terminal in PyCharm

The following shows how to use MoXing in the terminal of the local IDE to
download files from OBS to a development environment:

Manually access the development environment.
cat /home/ma-user/README
Select the source environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64
Enter python and press Enter to enter the Python environment.
python
Use MoXing for access.
import moxing as mox
Download a folder from OBS to EVS.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/tmp/sub_dir_0')

6.5.3 Local IDE (VS Code)

6.5.3.1 Connecting to a Notebook Instance Through VS Code
After creating a notebook instance with remote SSH enabled, you can use VS Code
to access the development environment in any of the following ways:

● Connecting to a Notebook Instance Through VS Code with One Click
(Recommended)
In this mode, click Access VS Code in the Operation column of a notebook
instance on the ModelArts console to open VS Code and connect to the
instance.

● Connecting to a Notebook Instance Through VS Code Toolkit
(Recommended)
In this mode, log in to the ModelArts VS Code Toolkit plug-in and use it to
connect to an instance.

Modelarts
Usermanual 6 Devenviron

2024-04-30 307

● Manually Connecting to a Notebook Instance Through VS Code
In this mode, use the VS Code Remote-SSH plug-in to configure connection
information and connect to an instance.

6.5.3.2 Installing VS Code
Download URL:

● Download address: https://code.visualstudio.com/updates/v1_85

Figure 6-122 VS Code download URL

VS Code version requirements:

You are advised to use VS Code 1.85.2 or the latest version for remote connection.

VS Code installation guide:

In Linux, run the command sudo dpkg -i code_1.85.2-1705561292_amd64.deb to
install VS Code.

NO TE

Linux system users must install VS Code as a non-root user.

6.5.3.3 Connecting to a Notebook Instance Through VS Code with One Click

Prerequisites
● The notebook instance with remote SSH enabled is running. For details, see

Creating a Notebook Instance.
● You have downloaded the key file of the instance to a following local

directory or its subdirectory based on your operating system:
Windows: C:\Users\{{user}}
Mac or Linux: Users/{{user}}

Procedure

Step 1 Log in to the ModelArts management console. In the left navigation pane, choose
DevEnviron > Notebook.

Step 2 The created notebook instance is running. Access a VS Code connection in either
of the following ways: Click More in the Operation column and choose Access VS
Code from the drop-down list. Alternatively, click Open in the Operation column.
On the Launcher tab of the JupyterLab page, click VS Code. The Access VS Code
dialog box is displayed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 308

https://code.visualstudio.com/updates/v1_85

Figure 6-123 Accessing VS Code on the management console

Figure 6-124 Accessing VS Code on the launcher page

Step 3 If you have installed VS Code, click Access VS Code. The Visual Studio Code page
is displayed.

Figure 6-125 Opening Visual Studio Code

If VS Code has not been installed, click Windows or other OS as required to
download and install VS Code. For details about how to install VS Code, see
Installing VS Code.

Modelarts
Usermanual 6 Devenviron

2024-04-30 309

Figure 6-126 Downloading and Installing VS Code

Step 4 If the ModelArts VS Code plug-in has not been installed, click Install and Open. If
you have installed the plug-in, perform 5.

Figure 6-127 Installing the VS Code plug-in

The installation takes about 1 to 2 minutes. After the installation is complete, a
dialog box is displayed in the lower right corner. Then, click Reload Window and
Open.

NO TE

This section uses VS Code 1.78.2 as an example. The Reload Window and Open dialog box
may not be displayed when you install other versions of VS Code. In this case, perform 5.

Modelarts
Usermanual 6 Devenviron

2024-04-30 310

Figure 6-128 Reload Window and Open

In the displayed dialog box, select Don't ask again for this extension and click
Open.

Step 5 Remotely connect to a notebook instance.
● Before the remote connection is executed, the system automatically searches

for the key file. If the key is found, a new window will be displayed and the
system connects to the instance. In this case, you do not need to select the
key.

Modelarts
Usermanual 6 Devenviron

2024-04-30 311

Figure 6-129 Remotely connecting to a notebook instance

● If the key file is not found, a dialog box is displayed. Select the correct key as
prompted.

NO TE

The key file name cannot contain Chinese characters.

Figure 6-130 Selecting a key file

● If an incorrect key is selected, a message will be displayed. Then, select the
correct key as prompted.

Modelarts
Usermanual 6 Devenviron

2024-04-30 312

Figure 6-131 Selecting the correct key file

When the information shown in the following figure is displayed, the instance
is accessed.

Figure 6-132 Connection successful

The following error message indicates that accessing the instance failed. In
this case, close the dialog box and view the output logs in the OUTPUT
window. Then, check the FAQs and locate the cause.

Modelarts
Usermanual 6 Devenviron

2024-04-30 313

Figure 6-133 Connection failed

----End

6.5.3.4 Connecting to a Notebook Instance Through VS Code Toolkit
This section describes how to use the ModelArts VS Code Toolkit plug-in to
remotely connect to a notebook instance.

Prerequisites
You have downloaded and installed VS Code. For details, see Installing VS Code.

Step 1 Install the VS Code Plug-in
1. Search for ModelArts in the EXTENSIONS text box and click Install.

Modelarts
Usermanual 6 Devenviron

2024-04-30 314

Figure 6-134 Installing the VS Code plug-in

2. Wait for about 1 to 2 minutes.

Figure 6-135 Installation process

3. After the installation is complete, check the message displayed in the lower

right corner. If the ModelArts icon and remote SSH icon are
displayed in the navigation pane on the left, the VS Code plug-in is installed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 315

Figure 6-136 Installation completion message

Figure 6-137 Installation completed

Network issues may cause an installation failure. If this occurs, proceed with
follow-up operations. After 1 in Step 5 Access the Notebook Instance is
performed, the system will automatically display a dialog box shown in the
following figure. In this case, click Install and Reload.

Figure 6-138 Reconnecting remote SSH

Modelarts
Usermanual 6 Devenviron

2024-04-30 316

Step 2 Add More Regions
1. Import the configuration file in the VS Code plug-in.

Contact the region operations company to obtain the YAML configuration file

and host information. Open the VS Code plug-in, click , choose Import
Region Profile, click From local file in the lower right corner, enter the path
to the local YAML file, and press Enter.

2. Log in to the VS Code plug-in to use more functions.
After the configuration file is imported, the region changes to your region.
Enter the account name and AK/SK to log in to the plug-in.

Step 3 Log In to the VS Code Plug-in

1. In the local VS Code development environment, click and User Settings,
and configure the login information.

Modelarts
Usermanual 6 Devenviron

2024-04-30 317

Figure 6-139 Logging in to the plug-in

Enter the login information and click Log in.

– Name: Custom username, which is displayed only on the VS Code page
and is not associated with any account.

– AK and SK: Access key pair. To create a key pair, choose My Credentials >
API Credentials > Access Keys, and click Create Access Key.

– Region: must be the same as that of the notebook instance to be
remotely connected. Otherwise, the connection will fail.

2. After the login, check the notebook instance list.

Figure 6-140 Login succeeded

Modelarts
Usermanual 6 Devenviron

2024-04-30 318

Step 4 Create a Notebook Instance

CA UTION

● Create a notebook instance with remote SSH enabled, and download the key
file to either of the following directories based on your OS:
Windows: C:\Users\{{user}}
macOS or Linux: Users/{{user}}

● A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Create a notebook instance with remote SSH enabled. For details, see Creating a
Notebook Instance.

Step 5 Access the Notebook Instance
1. In the local VS Code development environment, right-click the instance name

and choose Connect to Instance from the shortcut menu to start and
connect to the notebook instance.
The notebook instance can either be running or stopped. If it is stopped, the
VS Code plug-in starts the instance and then connects to it.

Figure 6-141 Connecting to a notebook instance

Alternatively, click the instance name. On the instance details page, click
Connect. Then, the system automatically starts and connects to the notebook
instance.

Figure 6-142 Viewing details about a notebook instance

Modelarts
Usermanual 6 Devenviron

2024-04-30 319

2. When you connect to a notebook instance for the first time, the system
prompts you in the lower right corner to configure the key file. In this case,
select the local .pem key file and click OK.

Figure 6-143 Configuring the key file

3. Wait for about 1 to 2 minutes until the notebook instance is accessed. After
information similar to the following is displayed in the lower left corner of the
VS Code environment, the connection is succeeded.

Figure 6-144 Connection succeeded

Related Operations
For details about uninstalling the VS Code plug-in, see Figure 6-145.

Modelarts
Usermanual 6 Devenviron

2024-04-30 320

Figure 6-145 Uninstalling the VS Code plug-in

6.5.3.5 Manually Connecting to a Notebook Instance Through VS Code
A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use VS Code to access a notebook instance.

Prerequisites
● You have downloaded and installed VS Code. For details, see Installing VS

Code.
● Python has been installed on your local PC or server. For details, see VS Code

official documentation.
● A notebook instance has been created with remote SSH enabled. Ensure that

the instance is running. For details, see Creating a Notebook Instance.
● The address and port number of the development environment are available.

To obtain the information, go to the notebook instance details page.

Modelarts
Usermanual 6 Devenviron

2024-04-30 321

https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites
https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites

Figure 6-146 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Add the Remote-SSH Plug-in

In the local VS Code development environment, click , enter SSH in the
search box, and click install of the Remote-SSH plug-in to install the plug-in.

Figure 6-147 Adding the Remote-SSH plug-in

Modelarts
Usermanual 6 Devenviron

2024-04-30 322

Step 2 Configure SSH

1. In the local VS Code development environment, click on the left, select

SSH Targets from the drop-down list box, and click . The SSH
configuration file path is displayed.

Figure 6-148 Configuring SSH Targets

2. Click the SSH configuration path and configure SSH.

Modelarts
Usermanual 6 Devenviron

2024-04-30 323

Figure 6-149 SSH configuration file path

HOST remote-dev
 hostname <Instance connection host>
 port <Instance connection port>
 user ma-user
 IdentityFile ~/.ssh/test.pem
 UserKnownHostsFile=/dev/null
 StrictHostKeyChecking no

– HOST: name of the cloud development environment
– HostName: address for accessing the cloud development environment.

Obtain the address on the page providing detailed information of the
target notebook instance.

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– user: ma-user
– IdentityFile: locally stored private key file of the cloud development

environment. It is the key pair file in Prerequisites.
3. Choose File > Preference > Settings > Extensions > Remote-SSH. On the

Remote Platform page, click Add Item, set Item and Value, and click OK.

Figure 6-150 Configuring Remote Platform

Item: host name configured in SSH configuration
Value: remote development environment platform

Modelarts
Usermanual 6 Devenviron

2024-04-30 324

4. Go back to the SSH Targets page and click on the right. Then, click the
development environment name to open the development environment.

Figure 6-151 Opening the development environment

After the page shown in the following figure is displayed, the connection is
succeeded.

Figure 6-152 Remote connection succeeded

Modelarts
Usermanual 6 Devenviron

2024-04-30 325

Figure 6-153 Complete configuration example

Step 3 Install the Python Plug-in in the Cloud Development Environment

On the displayed VS Code page, click on the left, enter Python in the
search box, and click Install.

Figure 6-154 Installing the Python plug-in in the cloud development environment

If the Python plug-in fails to be installed on the cloud, install it using an offline
package.

Step 4 Install the Dependent Library for the Cloud Environment

After accessing the container environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

1. In VS Code, press Ctrl+Shift+P.

Modelarts
Usermanual 6 Devenviron

2024-04-30 326

2. Search for Python: Select Interpreter and select the target Python.
3. Choose Terminal > New Terminal. The CLI of the remote container is

displayed.
4. Run the following command to install the dependency package:

pip install spacy

6.5.3.6 Remotely Debugging in VS Code

Prerequisites
A notebook instance has been accessed through VS Code.

Step 1 Upload Local Code to the Cloud Development Environment
1. On the VS Code page, choose File > Open Folder to access the cloud path.

Figure 6-155 Open Folder

2. Select a path and click OK.

Modelarts
Usermanual 6 Devenviron

2024-04-30 327

Figure 6-156 Selecting a file path

3. In the displayed directory structure on the left of the IDE, drag the code and
files you want to upload to the corresponding folders. Then, the code is
uploaded to the cloud development environment.

Step 2 Debug Code Remotely

Open the code file to be debugged in VS Code. Before running the code, click the
default Python version in the lower left part and select a version as required.

Figure 6-157 Selecting a Python version

Modelarts
Usermanual 6 Devenviron

2024-04-30 328

● Click the execution button to run the code. The code output is shown on the
TERMINAL tab page.

● If a training job takes a long time to execute, run the job at the backend
through the nohup command. This prevents the disconnection of an SSH
session or a network failure from affecting job execution. The following shows
an example nohup command:
nohup your_train_job.sh > output.log 2>&1 & tail -f output.log

● To debug the code, perform the following operations:

a. Choose Run > Run and Debug on the left.
b. Select the default Python code file.
c. Click on the left of the code to set breakpoints.
d. Debug the code according to the debug procedure which is displayed

above the code, and the debug information is displayed on the left of the
page.

6.5.3.7 Uploading and Downloading Files in VS Code

Uploading Data from a Local IDE to a Notebook Instance
If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

If the data is larger than 500 MB, upload it to OBS and then to the notebook
instance.

Figure 6-158 Uploading data to a notebook instance through OBS

Procedure

1. Upload data to OBS. Alternatively, use ModelArts SDK on a local VS Code
terminal.
Open the terminal in the local VS Code environment.

Modelarts
Usermanual 6 Devenviron

2024-04-30 329

Figure 6-159 Opening the terminal in the local VS Code environment

Enter python and press Enter to access the Python environment.
python

In the terminal of the local VS Code, use ModelArts SDK to upload the target
local file to OBS. For details, "OBS Management" > "Transferring Files
(Recommended)" in SDK Reference.

2. Use ModelArts SDK in the terminal of the remote VS Code environment to
download the file from OBS to a development environment.

Figure 6-160 Opening the terminal in the remote VS Code environment

Manually access the development environment using the source command.
cat /home/ma-user/README
Select the target environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64

Modelarts
Usermanual 6 Devenviron

2024-04-30 330

Enter python and press Enter to access the Python environment.
python

Then, perform OBS transfer operations by referring to "OBS Management" >
"Transferring Files (Recommended)" in SDK Reference.

Downloading Files from a Notebook Instance to a Local Directory
Files created in Notebook can be downloaded to a local path. In the Project
directory of the local IDE, right-click the Notebook2.0 project and choose
Download from the shortcut menu to download the project file to the local PC.

Figure 6-161 Downloading files from a notebook instance to a local directory in
VS Code

6.5.4 Local IDE (Accessed Using SSH)
This section describes how to use PuTTY to remotely log in to a notebook instance
on the cloud in the Windows environment.

Prerequisites
● You have created a notebook instance with remote SSH enabled and whitelist

configured. Ensure that the instance is running. For details, see Creating a
Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

Figure 6-162 Instance details page

Modelarts
Usermanual 6 Devenviron

2024-04-30 331

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Install the SSH Tool

Download and install the SSH remote access tool, for example, PuTTY.

Step 2 Use PuTTYgen to Convert the .pem Key Pair File to a .ppk Key Pair
File

1. Download PuTTYgen and double-click it to run it.
2. Click Load to load the .pem key file created and saved during notebook

instance creation.
3. Click Save private key to save the generated .ppk file. The file name can be

customized, for example, key.ppk.

Figure 6-163 Converting the .pem key pair file to a .ppk key pair file

Step 3 Use SSH to Connect to a Notebook Instance
1. Run PuTTY.
2. Click Session and set the following parameters:

a. Host Name (or IP address): address for accessing the in-cloud notebook
instance. Obtain the address on the page providing detailed information
of the target notebook instance .

Modelarts
Usermanual 6 Devenviron

2024-04-30 332

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

b. Port: port number for accessing the in-cloud notebook instance. Obtain
the port number on the page providing detailed information of the target
notebook instance, for example, 32701.

c. Connection type: SSH
d. Saved Sessions: task name, which can be clicked for remote access when

you use PuTTY next time

Figure 6-164 Configuring Session

3. Choose Window > Translation and select UTF-8 from the drop-down list box
in the Remote character set area.

Modelarts
Usermanual 6 Devenviron

2024-04-30 333

Figure 6-165 Setting the character format

4. Choose Connection > Data and enter ma-user for Auto-login username.

Modelarts
Usermanual 6 Devenviron

2024-04-30 334

Figure 6-166 Entering a username

5. Choose Connection > SSH > Auth, click Browse, and select the .ppk file
generated in step 2.

Modelarts
Usermanual 6 Devenviron

2024-04-30 335

6. Click Open. If you are logging in to the instance for the first time, PuTTY
displays a security warning dialog box, asking if you want to accept the
instance security certificate. Click Accept to save the certificate to your local
registry.

Figure 6-167 Asking if you want to accept the instance security certificate

7. Connect to the notebook instance.

Modelarts
Usermanual 6 Devenviron

2024-04-30 336

Figure 6-168 Connecting to a notebook instance

6.6 Using Notebook to Develop Ascend Operators

Overview
In training and inference scenarios, you need to develop your own operator if the
original operator is not supported when a third-party framework is used. During
debugging, if the performance of some operators combined is low, you need to
develop high-performance operators. You can use VS Code to connect to
notebooks on the cloud and use cloud resources to develop and debug operators
on VS Code. The environment has been configured in the notebook instance. You
can perform project-based development without installing the CANN software or
configuring environment variables.

NO TE

This document provides a set of operator project sample code, which you can directly use.
For details about the programming model of the Ascend operator, see Quick Start. The
environment has been configured in notebook. You do not need to install the CANN
software or configure environment variables. You can directly perform operator analysis and
subsequent operations in the remote VS Code environment.

Prerequisites
● You have downloaded the operator sample from Ascend samples and

uploaded it to the OBS bucket.
● You have created a notebook instance based on the mindspore_2.2.0-

cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b engine and enabled remote
SSH development. The notebook instance must be in the Running state. For
details, see Creating a Notebook Instance.

NO TE

This document uses the mindspore_2.2.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b
engine as an example to describe how to debug operators. If other AI engines are
used, an error may be reported.

● Open JupyterLab and click to upload the sample files in the OBS
bucket to notebook. For details, see Uploading OBS Files to JupyterLab.

Modelarts
Usermanual 6 Devenviron

2024-04-30 337

https://www.hiascend.com/document/detail/en/canncommercial/700/operatordev/Ascendcopdevg/atlas_ascendc_10_0006.html
https://github.com/ascend/samples/tree/master/cplusplus/level1_single_api/4_op_dev/6_ascendc_custom_op/kernel_invocation

Connecting to a Notebook Instance on the Cloud Through VS Code
1. After a notebook is created and is in the Running state, locate it in the list,

and click More > Access VS Code in the Operation column. For details about
how to connect to a cloud development environment, see Connecting to a
Notebook Instance Through VS Code with One Click.

2. After the cloud development environment is connected, projects downloaded
from the cloud are displayed on the VS Code page, as shown in Figure 6-169.

Modelarts
Usermanual 6 Devenviron

2024-04-30 338

Figure 6-169 Project directory

Debugging the Add Operator in VS Code
1. In Terminal, run the following command to access the directory where the

Add operator is stored:
cd samples/cplusplus/level1_single_api/4_op_dev/6_ascendc_custom_op/kernel_invocation/Add

2. Run the following commands to compile and run the script.

a. Run the following command in CPU mode:
bash run.sh add_custom ascend910B1 VectorCore cpu

add_custom indicates the operator to be run, ascend910B1 indicates the
AI processor model, VectorCore indicates that the operator runs on
VectorCore, and cpu indicates that the operator runs in CPU mode.
The output is shown in the following figure. In this example, md5sum is
used to compare all output bin files. If the values of md5 are the same,
the actual output data is in consistent with the true data.

Modelarts
Usermanual 6 Devenviron

2024-04-30 339

Figure 6-170 Command output in CPU mode

b. Run the following command in NPU mode:
bash run.sh add_custom ascend910B1 VectorCore npu

The output is shown in the following figure. In this example, md5sum is
used to compare all output bin files. If the values of md5 are the same,
the actual output data is in consistent with the true data.

Figure 6-171 Command output in NPU mode

Debugging the matmul Operator in VS Code
1. The matmul operator is stored in the samples/cplusplus/level1_single_api/

4_op_dev/6_ascendc_custom_op/kernel_invocation/Matmul directory.
2. Run the following command in the work directory:

Modelarts
Usermanual 6 Devenviron

2024-04-30 340

cd samples/cplusplus/level1_single_api/4_op_dev/6_ascendc_custom_op/kernel_invocation/Matmul

3. Run the following command to modify the main.cpp file, which is the
application file for calling the operator:
vim main.cpp

Set param4FileSize to 192.

Figure 6-172 Setting param4FileSize to 192

4. Run the following command to modify the vim matmul_custom.cpp file:
vim matmul_custom.cpp

Change tiling.K in matmul_custom.cpp to tiling.Ka.

Figure 6-173 Changing tiling.Ka to tiling.Ka

5. Create a folder output in the Matmul directory.

Modelarts
Usermanual 6 Devenviron

2024-04-30 341

Figure 6-174 Creating the output folder

6. Run the following commands to compile and run the script.

a. Run the following command in CPU mode:
bash run.sh matmul_custom ascend910B1 AiCore cpu ONBOARD CUSTOM_TILING

The output is shown in the following figure. In this example, md5sum is
used to compare all output bin files. If the values of md5 are the same,
the actual output data is in consistent with the true data.

Modelarts
Usermanual 6 Devenviron

2024-04-30 342

Figure 6-175 Command output in CPU mode

b. Run the following command in NPU mode:
bash run.sh matmul_custom ascend910B1 AiCore npu ONBOARD CUSTOM_TILING

The output is shown in the following figure. In this example, md5sum is
used to compare all output bin files. If the values of md5 are the same,
the actual output data is in consistent with the true data.

Figure 6-176 Command output in NPU mode

Generating a Profile
After NPU debugging, the matmul_custom_npu executable file is generated in
the project directory. Run the following command to generate a profile:

Modelarts
Usermanual 6 Devenviron

2024-04-30 343

msprof --application="matmul_custom_npu" --output="./output"

Figure 6-177 Generating a profile

Backing Up Files Before Stopping a Notebook Instance
After a notebook instance is stopped, the corresponding container environment is
deleted. Only the content in the /home/ma-user/work directory is persistently
stored. Modifications in other directories are lost.

Backup method

Copy the files to the /home/ma-user/work directory before stopping a notebook
instance.

The files to be copied are as follows:

1. Self-built projects in the /home/ma-user/ AscendProjects directory
2. OM file, configuration file, and evaluation report in the /home/ma-user/

modelzoo/ directory after model conversion
3. SSH configuration in the /home/ma-user/.mindstudio directory
4. Other modified content

After a notebook instance is restarted, copy the above files to the original
directory so that the instance can run properly.

6.7 ModelArts CLI Command Reference

6.7.1 ModelArts CLI Overview

Description
ModelArts CLI, also called ma-cli, is a cross-platform command line tool used to
connect to ModelArts and run management commands on ModelArts resources.
You can use the interactive command prompt or script to run commands on a
terminal. ma-cli allows you to interact with cloud services through ModelArts
notebook and on-premises VMs. You can run ma-cli commands for command
autocomplete and authentication, as well as creating images, submitting
ModelArts training jobs and DLI Spark jobs, and copying OBS data.

Modelarts
Usermanual 6 Devenviron

2024-04-30 344

Application Scenarios
● ma-cli has been integrated into ModelArts notebook and can be directly used.

Log in to the ModelArts console, choose DevEnviron > Notebook, create a
notebook instance, start a terminal, and run ma-cli commands.

● In local Windows or Linux, install ma-cli and then use it on a local terminal.
For details, see (Optional) Installing ma-cli Locally.

NO TE

● ma-cli cannot be used in Git Bash.
● Terminals such as Linux Bash, Zsh, Fish, WSL, and PowerShell are recommended. To

ensure the security of your sensitive information, it is important to prevent any
potential leakage when using terminals.

Command Preview
$ ma-cli -h
Usage: ma-cli [OPTIONS] COMMAND [ARGS]...

Options:
 -V, -v, --version 1.2.1
 -C, --config-file TEXT Configure a file path for authorization.
 -D, --debug Debugging mode, in which the full stack trace will be displayed when an error occurs.
 -P, --profile TEXT CLI connection profile to be used. The default profile is DEFAULT.
 -h, -H, --help Show the help information and exit.

Commands:
 configure Configure authentication and endpoints for the CLI.
 image Obtain registered images, register or unregister images, debug images, and create images in
Notebook.
 obs-copy Copy files or directories between OBS and a local path.
 ma-job Submit ModelArts jobs and obtain jod details.
 dli-job Submit DLI spark jobs and obtain jod details.
 auto-completion Auto complete ma-cli command in terminal, support "bash(default)/zsh/fish".

Among the preceding parameters, parameters -C, -D, -P, and -h are globally
optional.

● -C indicates that you can manually specify the authentication configuration
file when running this command. By default, the ~/.modelarts/ma-cli-
profile.yaml configuration file is used.

● -P indicates a group of authentication information in the authentication file.
The default value is DEFAULT.

● -D indicates whether to enable the debugging mode (disabled by default).
After the debugging mode is enabled, the error stack information of the
command will be printed. If this mode is disabled, only the error information
will be printed.

● -h indicates that the help information about the command will be displayed.

Modelarts
Usermanual 6 Devenviron

2024-04-30 345

Commands

Table 6-10 ma-cli commands

Command Description

configure ma-cli authentication using a username and password or an
SK/SK

image ModelArts image creation, registration, and registered image
query

obs-copy Copying files or folders between a local path and OBS

ma-job Managing ModelArts training jobs, including job submission and
resource query

dli-job DLI Spark job submission and resource management

auto-
completion

Command autocomplete

6.7.2 (Optional) Installing ma-cli Locally

Application Scenarios

This document describes how to install ma-cli on Windows.

Step 1: Install ModelArts SDKs

Install ModelArts SDKs by referring to ModelArts SDK Reference > Preparations >
Installing the ModelArts SDK Locally.

Step 2: Download ma-cli
1. .

2. Verify the software package signature.

a. .

b. Install OpenSSL and run the following command to verify the signature:
openssl cms -verify -binary -in D:\ma_cli-latest-py3-none-any.whl.cms -inform DER -content
D:\ma_cli-latest-py3-none-any.whl -noverify > ./test

NO TE

In this example, the software package is stored in D:\. Replace it with the actual
path.

Modelarts
Usermanual 6 Devenviron

2024-04-30 346

Step 3: Install ma-cli
1. Run python --version in the command prompt of your local environment to

check whether Python has been installed. The Python version must be later
than 3.7.x and earlier than 3.10.x. Version 3.7.x is recommended.
C:\Users\xxx>python --version
Python *.*.*

2. Run pip --version to check whether the general package management tool
pip is available.
C:\Users\xxx>pip --version
pip **.*.* from c:\users\xxx\appdata\local\programs\python\python**\lib\site-packages\pip (python *.*)

3. Install ma-cli.
pip install {Path to the ma-cli software package}\ma_cli-latest-py3-none-
any.whl
C:\Users\xxx>pip install C:\Users\xxx\Downloads\ma_cli-latest-py3-none-any.whl
......
Successfully installed ma_cli.*.*.*

When ma-cli is installed, dependency packages are installed by default. If
message "Successfully installed" is displayed, ma-cli has been installed.

NO TE

If an error message is displayed during the installation, indicating that a dependency
package is missing, run the following command to install the dependency package as
prompted:

pip install xxxx

xxxx is the name of the dependency package.

6.7.3 Autocompletion for ma-cli Commands
CLI autocomplete enables you to get a list of supported ma-cli commands by
typing a command prefix and pressing Tab on your terminal. Autocomplete for
ma-cli commands needs to be enabled in Terminal. After running the ma-cli
auto-completion command, you can copy and run the commands as prompted
on the current terminal to automatically complete the ma-cli commands. Bash,
Fish, and Zsh shells are supported. The default shell is Bash.

Take the Bash command as an example. Run the eval "$
(_MA_CLI_COMPLETE=bash_source ma-cli)" command in Terminal to enable
autocomplete.
eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

Run the ma-cli auto-completion Zsh or ma-cli auto-completion Fish command
to view the autocomplete command in Zsh or Fish.

Available Commands
$ ma-cli auto-completion -h
Usage: ma-cli auto-completion [OPTIONS] [[Bash|Zsh|Fish]]

 Auto complete ma-cli command in terminal.

 Example:

 # print bash auto complete command to terminal
 ma-cli auto-completion Bash

Modelarts
Usermanual 6 Devenviron

2024-04-30 347

Options:
 -H, -h, --help Show this message and exit.

By default, the autocomplete command for Bash is displayed.

$ ma-cli auto-completion

Tips: please paste following shell command to your terminal to activate auto complation.

[OK] eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

After the preceding command is executed, autocomplete has been enabled on the terminal.

$ eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

The autocomplete command for Fish is displayed.
$ ma-cli auto-completion Fish
Tips: please paste following shell command to your terminal to activate auto complation.

[OK] eval (env _MA_CLI_COMPLETE=fish_source ma-cli)

6.7.4 ma-cli Authentication

Overview
● VMs and personal computers require the configuration of authentication.

Both a username and password (default) and an AK/SK can be used for
authentication.

● When using an account for authentication, specify a username and password.
When using an IAM account for authentication, specify an account, username,
and password.

● In ModelArts notebook, you do not need to manually configure
authentication because an agency is used for authentication by default.

● If you have configured authentication in ModelArts notebook, the specified
authentication is preferentially used.

NO TE

To ensure the security of your sensitive information, it is important to prevent any
potential leakage during authentication.

CLI Parameters
$ ma-cli configure -h
Usage: ma-cli configure [OPTIONS]

Options:
 -auth, --auth [PWD|AKSK|ROMA] Authentication type.
 -rp, --region-profile PATH ModelArts region file path.
 -a, --account TEXT Account of an IAM user.
 -u, --username TEXT Username of an IAM user.
 -p, --password TEXT Password of an IAM user
 -ak, --access-key TEXT User access key.
 -sk, --secret-key TEXT User secret key.
 -r, --region TEXT The region you want to visit.
 -pi, --project-id TEXT User project id.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Modelarts
Usermanual 6 Devenviron

2024-04-30 348

Table 6-11 Authentication CLI parameters

Parameter Type Man
dator
y

Description

-auth / --
auth

String No Authentication mode, which can be PWD
(username and password) or AKSK (AK/SK).
The default value is PWD.

-rp / --
region-
profile

String No ModelArts region configuration file

-a / --
account

String No IAM tenant account, which needs to be
specified when authentication using an IAM
account is used. It is required in
authentication using a username and
password.

-u / --
username

String No Username, which is a username or an IAM
username for authentication using an account
or an IAM account. It is required in
authentication using a username and
password.

-p / --
password

String No Password, which is required in authentication
using a username and password

-ak / --
access-key

String No Access key, which is required in authentication
using an AK/SK

-sk / --
secret-key

String No Secret key, which is required in authentication
using an AK/SK

-r / --region String No Region name. If this parameter is left blank,
the value of the REGION_NAME environment
variable will be used by default.

-pi / --
project-id

String No Project ID. If this parameter is left blank, the
region value (default) or the value of the
PROJECT_ID environment variable will be
used.

-P / --profile String No Authentication configuration, which defaults
to DEFAULT

-C / --config-
file

String No Local path to the configuration file, which
defaults to ~/.modelarts/ma-cli-profile.yaml

Authentication Using Username and Password
The following describes how to use the ma-cli configure command on a VM to
configure authentication using the user name and password. On a local VM,

Modelarts
Usermanual 6 Devenviron

2024-04-30 349

specify the YAML file and region endpoint. Obtain the information from the region
operations company. The usage is as follows:

NO TE

In the following example, any string with ${} is a variable. You can specify a value.
For example, ${your_password} indicates that you need to type your password.

The DEFAULT authentication configuration is used by default. You need to type the account, username,
and password one by one. If the account and username are not required, press Enter to skip them.
$ ma-cli configure --auth PWD --region ${your_region} --region-profile ${your_region-profile path}
account: ${your_account}
username: ${your_username}
password: ${your_password} # The input is not displayed on the console.

${your_region-profile path} indicates the local relative path of the YAML file, for
example, ./ModelArts-region-profile.yaml.

Authentication Using an AK/SK
This command uses an AK/SK for authentication, which means you have to enter
them interactively. Your AK/SK will not be visible on the console.

CA UTION

In the following example, any string with ${} is a variable. You can specify a value.
For example, you need to replace ${access key} with your access key.

ma-cli configure --auth AKSK
access key [***]: ${access key}
secret key [***]: ${secret key}

After the authentication command is executed, the authentication information will
be saved in the ~/.modelarts/ma-cli-profile.yaml configuration file.

6.7.5 ma-cli Image Building Command

6.7.5.1 ma-cli Image Building Command
The ma-cli image command can be used to obtain registered images, obtain or
load image creation templates, create images using Dockerfiles, obtain or clear
image creation caches, register or deregister images, and debug whether images
can be used in notebook instances. For details, run the ma-cli image -h
command.

Commands for Creating an Image
$ ma-cli image -h
Usage: ma-cli image [OPTIONS] COMMAND [ARGS]...
 Obtain registered images, register or unregister images, debug images, and create images in Notebook.

Options:
 -H, -h, --help Show this message and exit.

Commands:
 add-template, at List build-in dockerfile templates.

Modelarts
Usermanual 6 Devenviron

2024-04-30 350

 build Build docker image in Notebook.
 debug Debug SWR image as a Notebook in ECS.
 df Query disk usage.
 get-image, gi Query registered image in ModelArts.
 get-template, gt List build-in dockerfile templates.
 prune Prune image build cache.
 register Register image to ModelArts.
 unregister Unregister image from ModelArts.

Table 6-12 Commands for creating an image

Comma
nd

Description

get-
templat
e

Obtain an image creation template.

add-
templat
e

Load an image creation template.

get-
image

Obtain registered ModelArts images.

register Register SWR images with ModelArts image management.

unregist
er

Deregister a registered image from ModelArts image management.

build Build an image using a Dockerfile (only supported in ModelArts
Notebook).

df Obtain image creation cache, which can only be used in ModelArts
notebook.

prune Clear image creation cache, which can only be used in ModelArts
notebook.

debug Debug an SWR image on an ECS to check whether the image can be
used in ModelArts notebook. (Only the ECSs with Docker installed
can be used.)

6.7.5.2 Obtaining an Image Creation Template
ma-cli provides some common image creation templates, in which the guidance
for developing Dockerfiles on ModelArts notebook is provided.

$ ma-cli image get-template -h
Usage: ma-cli image get-template [OPTIONS]

 List build-in dockerfile templates.

 Example:

 # List build-in dockerfile templates
 ma-cli image get-template [--filer <filter_info>] [--page-num <yourPageNum>] [--page-size
<yourPageSize>]

Modelarts
Usermanual 6 Devenviron

2024-04-30 351

Options:
 --filter TEXT filter by keyword.
 -pn, --page-num INTEGER RANGE Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [x>=1]
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.
(PyTorch-1.4) [ma-user work]$

Table 6-13 Parameters

Parameter Type Mandatory Description

--filter String No Filter templates based on
the template name keyword.

-pn / --page-
num

Int No Image page index. The
default value is page 1.

-ps / --page-
size

Int No Number of images displayed
on each page. The default
value is 20.

Examples

Obtain an image creation template.

ma-cli image get-template

6.7.5.3 Loading an Image Creation Template

The add-template command is used to load image templates to a specified
folder. By default, the path where the current command is located is used,

for example, ${current_dir}/.ma/${template_name}/. You can also run the --dest
command to specify the path. If a template folder with the same name already
exists in the target path, run the --force | -f parameter to forcibly overwrite the
existing template folder.

$ ma-cli image add-template -h
Usage: ma-cli image add-template [OPTIONS] TEMPLATE_NAME

 Add buildin dockerfile templates into disk.

 Example:

 # List build-in dockerfile templates
 ma-cli image add-template customize_from_ubuntu_18.04_to_modelarts --force

Options:
 --dst TEXT target save path.
 -f, --force Override templates that has been installed.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.

Modelarts
Usermanual 6 Devenviron

2024-04-30 352

 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-14 Parameters

Paramete
r

Type Mandat
ory

Description

--dst String No Load templates to a specified path.
The current path is used by default.

-f / --
force

Bool No Whether to forcibly overwrite an
existing template with the same name.
By default, the template is not
overwritten.

Examples
Load the customize_from_ubuntu_18.04_to_modelarts image creation template.

ma-cli image add-template customize_from_ubuntu_18.04_to_modelarts

6.7.5.4 Obtaining Registered ModelArts Images
A path to a base image is provided in a Dockerfile typically. Public images and
SWR public or private images can be obtained from open-source image
repositories such as Docker Hub. ma-cli allows you to obtain ModelArts preset
images and registered images and their SWR addresses.

$ma-cli image get-image -h
Usage: ma-cli image get-image [OPTIONS]

 Get registered image list.

 Example:

 # Query images by image type and only image id, show name and swr_path
 ma-cli image get-image --type=DEDICATED

 # Query images by image id
 ma-cli image get-image --image-id ${image_id}

 # Query images by image type and show more information
 ma-cli image get-image --type=DEDICATED -v

 # Query images by image name
 ma-cli image get-image --filter=torch

Options:
 -t, --type [BUILD_IN|DEDICATED|ALL]
 Image type(default ALL)
 -f, --filter TEXT Image name to filter
 -v, --verbose Show detailed information on image.
 -i, --image-id TEXT Get image details by image id
 -n, --image-name TEXT Get image details by image name
 -wi, --workspace-id TEXT The workspace where you want to query image(default "0")
 -pn, --page-num INTEGER RANGE Specify which page to query [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query [x>=1]

Modelarts
Usermanual 6 Devenviron

2024-04-30 353

 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-15 Parameters

Parameter Type Man
dato
ry

Description

-t / --type String No Type of the images to be obtained. The options are
BUILD_IN, DEDICATED, and ALL.
● BUILD_IN: preset images
● DEDICATED: custom images registered with

ModelArts
● ALL: all images

-f / --filter String No Keyword of an image name, which is used to filter
images

-v / --
verbose

Bool No Whether to display detailed information. This
function is disabled by default.

-i / --
image-id

String No Obtain details about an image with a specified ID.

-n / --
image-
name

String No Obtain details about an image with a specified
name.

-wi / --
workspace
-id

String No Obtain images in a specified workspace.

-pn / --
page-num

Int No Image page index. The default value is page 1.

-ps / --
page-size

Int No Number of images displayed on each page. The
default value is 20.

Examples
Obtain custom images registered with ModelArts.

ma-cli image get-image --type=DEDICATED

Modelarts
Usermanual 6 Devenviron

2024-04-30 354

6.7.5.5 Creating an Image in ModelArts Notebook
Run the ma-cli image build command to create an image based on a specified
Dockerfile. This command is available only in ModelArts notebook instances.

$ ma-cli image build -h
Usage: ma-cli image build [OPTIONS] FILE_PATH

 Build docker image in Notebook.

 Example:

 # Build a image and push to SWR
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr my_organization/
my_image:0.0.1

 # Build a image and push to SWR, dockerfile context path is current dir
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr my_organization/
my_image:0.0.1 -context .

 # Build a local image and save to local path and OBS
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile --target ./build.tar --
obs_path obs://bucket/object --swr-path my_organization/my_image:0.0.1

Options:
 -t, --target TEXT Name and optionally a tag in the 'name:tag' format.
 -swr, --swr-path TEXT SWR path without swr endpoint, eg:organization/image:tag. [required]
 --context DIRECTORY build context path.
 -arg, --build-arg TEXT build arg for Dockerfile.
 -obs, --obs-path TEXT OBS path to save local built image.
 -f, --force Force to overwrite the existing swr image with the same name and tag.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Modelarts
Usermanual 6 Devenviron

2024-04-30 355

Table 6-16 Parameters

Parameter Type Ma
nda
tory

Description

FILE_PATH String Yes Directory where the Dockerfile is stored

-t / --
target

String No Local path for storing the generated TAR
package. The current directory is used by
default.

-swr / --
swr-path

String Yes SWR image name, which is in the format of
"organization/image_name:tag". This parameter
can be omitted when a TAR package is saved for
creating an image.

--context String No Path of the context information for data copying
when creating a Dockerfile

-arg / --
build-arg

String No Parameter for creating an image. If there are
multiple parameters, run --build-arg
VERSION=18.04 --build-arg ARCH=X86_64.

-obs / --
obs-path

String No Automatically upload the generated TAR
package to OBS.

-f / --force Bool No Whether to forcibly overwrite an existing SWR
image with the same name. By default, the SWR
image is not overwritten.

Examples
Create an image in ModelArts notebook.

ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr
notebook_test/my_image:0.0.1

In this command, .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile
is the path where the Dockerfile is stored, and notebook_test/my_image:0.0.1 is
the SWR path of the new image.

Modelarts
Usermanual 6 Devenviron

2024-04-30 356

6.7.5.6 Obtaining Image Creation Caches in ModelArts Notebook
Run the ma-cli image df command to obtain image creation caches. This
command is available only in ModelArts notebook instances.

$ ma-cli image df -h
Usage: ma-cli image df [OPTIONS]

 Query disk usage used by image-building in Notebook.

 Example:

 # Query image disk usage
 ma-cli image df

Options:
 -v, --verbose Show detailed information on disk usage.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.

 -h, -H, --help Show this message and exit.

Table 6-17 Parameters

Parameter Type Mandator
y

Description

-v / --verbose Bool No Whether to display detailed
information. This function is
disabled by default.

Examples
● View all image caches in ModelArts notebook.

ma-cli image df

● View details about an image.
ma-cli image df --verbose

Modelarts
Usermanual 6 Devenviron

2024-04-30 357

6.7.5.7 Clearing Image Creation Caches in ModelArts Notebook

Run the ma-cli image prune command to clear image creation caches. This
command is available only in ModelArts notebook instances.

$ ma-cli image prune -h
Usage: ma-cli image prune [OPTIONS]

 Prune image build cache by image-building in Notebook.

 Example:

 # Prune image build cache
 ma-cli image prune

Options:
 -ks, --keep-storage INTEGER Amount of disk space to keep for cache below this limit (in MB) (default: 0).
 -kd, --keep-duration TEXT Keep cache newer than this limit, support second(s), minute(m) and hour(h)
(default: 0s).
 -v, --verbose Show more verbose output.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -h, -H, --help Show this message and exit.

Table 6-18 Parameters

Parameter Type Mand
atory

Description

-ks / --keep-
storage

Int No Size of the cache to be retained, in MB. The
default value is 0, indicating that all caches
will be cleared.

-kd / --keep-
duration

String No Whether to retain the latest caches and clear
only historical caches. The unit can be s
(second), m (minute), or h (hour). The default
value is 0, indicating that all caches will be
cleared.

-v / --
verbose

Bool No Whether to display detailed information. This
function is disabled by default.

Modelarts
Usermanual 6 Devenviron

2024-04-30 358

Examples
Retain 1 MB of image cache when clearing caches.

ma-cli image prune -ks 1

6.7.5.8 Registering SWR Images with ModelArts Image Management
After an image is debugged, run the ma-cli image register command to register
it with ModelArts image management so that the image can be used in
ModelArts.

$ma-cli image register -h
Usage: ma-cli image register [OPTIONS]

 Register image to ModelArts.

 Example:

 # Register image into ModelArts service
 ma-cli image register --swr-path=xx

 # Share SWR image to DLI service
 ma-cli image register -swr xx -td

 # Register image into ModelArts service and specify architecture to be 'AARCH64'
 ma-cli image register --swr-path=xx --arch AARCH64

Options:
 -swr, --swr-path TEXT SWR path without swr endpoint, eg:organization/image:tag. [required]
 -a, --arch [X86_64|AARCH64] Image architecture (default: X86_64).
 -s, --service [NOTEBOOK|MODELBOX]
 Services supported by this image(default NOTEBOOK).
 -rs, --resource-category [CPU|GPU|ASCEND]
 The resource category supported by this image (default: CPU and GPU).
 -wi, --workspace-id TEXT The workspace to register this image (default: "0").
 -v, --visibility [PUBLIC|PRIVATE]
 PUBLIC: every user can use this image. PRIVATE: only image owner can use this
image (Default: PRIVATE).
 -td, --to-dli Register swr image to DLI, which will share SWR image to DLI service.
 -d, --description TEXT Image description (default: "").
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-19 Parameters

Parameter Type Mand
atory

Description

-swr / --swr-
path

String Yes SWR path to the image to be registered

Modelarts
Usermanual 6 Devenviron

2024-04-30 359

Parameter Type Mand
atory

Description

-a / --arch String No Architecture of the registered image. The
value can be X86_64 or AARCH64. The
default value is X86_64.

-s / --service String No Service type of the registered image. The
value can be NOTEBOOK or MODELBOX.
The default value is NOTEBOOK.
You can also specify both values, -s
NOTEBOOK -s MODELBOX.

-rs / --resource-
category

String No Resource type that can be used by the
registered image. The value can be CPU,
GPU, or ASCEND. The default value is CPU
and GPU.

-wi / --
workspace-id

String No Register an image into a specified
workspace. The default workspace ID is 0.

-v / --visibility Bool No Available scope of the registered image.
The value can be PRIVATE (available only
to the image owner) or PUBLIC (available
to all users). The default value is PRIVATE.

-td / --to-dli Bool No Register an image with DLI.

-d/ --
description

String No Describe an image. By default, this
parameter is left blank.

Examples
Register an SWR image with ModelArts.

ma-cli image register --swr-path=xx

Modelarts
Usermanual 6 Devenviron

2024-04-30 360

6.7.5.9 Deregistering a Registered Image from ModelArts Image
Management

Run the ma-cli image unregister command to deregister a registered image from
ModelArts.

$ ma-cli image unregister -h
Usage: ma-cli image unregister [OPTIONS]

 Unregister image from ModelArts.

 Example:

 # Unregister image
 ma-cli image unregister --image-id=xx

 # Unregister image and delete it from swr
 ma-cli image unregister --image-id=xx -d

Options:
 -i, --image-id TEXT Unregister image details by image id. [required]
 -d, --delete-swr-image Delete the image from swr.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-20 Parameters

Parameter Type Manda
tory

Description

-i / -image-id String Yes ID of the image to be deregistered

-d / --delete-swr-
image

Bool No Whether to delete a deregistered
SWR image. This function is
disabled by default.

Examples
Deregister a registered image from ModelArts image management.

ma-cli image unregister --image-id=xx

6.7.5.10 Debugging an SWR Image on an ECS
ma-cli allows you to debug an SWR image on an ECS to determine whether to use
the image in a ModelArts development environment.

Modelarts
Usermanual 6 Devenviron

2024-04-30 361

Table 6-21 Parameters

Paramet
er

Type Manda
tory

Description

-swr / --
swr-path

String Yes SWR path to the image to be debugged

-r / --
region

String Yes Region where the image to be debugged is
located

-s / --
service

String No Service type of the debugged image. The value
can be NOTEBOOK or MODELBOX. The
default value is NOTEBOOK.

-a / --
arch

String No Architecture of the debugged image. The value
can be X86_64 or AARCH64. The default value
is X86_64.

-g / --gpu Bool No GPU debugging status. This function is
disabled by default.

6.7.6 Using the ma-cli ma-job Command to Submit a
ModelArts Training Job

6.7.6.1 ma-cli ma-job Command Overview
Run the ma-cli ma-job command to submit training jobs, obtain training job logs,
events, used AI engines, and resource specifications, and stop training jobs.

Modelarts
Usermanual 6 Devenviron

2024-04-30 362

$ ma-cli ma-job -h
Usage: ma-cli ma-job [OPTIONS] COMMAND [ARGS]...

 ModelArts job submission and query jod details.

Options:
 -h, -H, --help Show this message and exit.

Commands:
 delete Delete training job by job id.
 get-engine Get job engines.
 get-event Get job running event.
 get-flavor Get job flavors.
 get-job Get job details.
 get-log Get job log details.
 get-pool Get job engines.
 stop Stop training job by job id.
 submit Submit training job.

Table 6-22 Commands supported by training jobs

Command Description

get-job Obtain ModelArts training jobs and their details.

get-log Obtain runtime logs of a ModelArts training job.

get-engine Obtain ModelArts AI engines for training.

get-event Obtain ModelArts training job events.

get-flavor Obtain ModelArts resource specifications for training.

get-pool Obtain ModelArts resource pools dedicated for training.

stop Stop a ModelArts training job.

submit Submit a ModelArts training job.

delete Delete a training job with a specified job ID.

6.7.6.2 Obtaining ModelArts Training Jobs
Run the ma-cli ma-job get-job command to view training jobs or details about a
specific job.

$ ma-cli ma-job get-job -h
Usage: ma-cli ma-job get-job [OPTIONS]

 Get job details.

 Example:

 # Get train job details by job name
 ma-cli ma-job get-job -n ${job_name}

 # Get train job details by job id
 ma-cli ma-job get-job -i ${job_id}

 # Get train job list
 ma-cli ma-job get-job --page-size 5 --page-num 1

Options:

Modelarts
Usermanual 6 Devenviron

2024-04-30 363

 -i, --job-id TEXT Get training job details by job id.
 -n, --job-name TEXT Get training job details by job name.
 -pn, --page-num INTEGER Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [1<=x<=50]
 -v, --verbose Show detailed information about training job details.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-23 Description

Parameter Type Mandato
ry

Description

-i / --job-id String No Obtain details about a training job with
a specified job ID.

-n / --job-
name

String No Obtain a training job with a specified
job name or filter training jobs by job
name.

-pn / --page-
num

Int No Page number. The default value is page
1.

-ps / --page-
size

Int No Number of training jobs displayed on
each page. The default value is 10.

-v / --
verbose

Bool No Whether to display detailed
information. This function is disabled
by default.

Examples
● Obtain a training task job a specified job ID.

ma-cli ma-job get-job -i b63e90xxx

● Filter training jobs by job name auto.
ma-cli ma-job get-job -n auto

Modelarts
Usermanual 6 Devenviron

2024-04-30 364

6.7.6.3 Submitting a ModelArts Training Job
Run the ma-cli ma-job submit command to submit a ModelArts training job.

Before running this command, configure YAML_FILE to specify the path to the
configuration file of the target job. If this parameter is not specified, the
configuration file is empty. The configuration file is in YAML format, and its
parameters are the option parameter of the command. If you specify both the
YAML_FILE configuration file and the option parameter in the CLI, the value of
the option parameter will overwrite that in the configuration file.

$ma-cli ma-job submit -h
Usage: ma-cli ma-job submit [OPTIONS] [YAML_FILE]...

 Submit training job.

 Example:

 ma-cli ma-job submit --code-dir obs://your_bucket/code/
 --boot-file main.py
 --framework-type PyTorch
 --working-dir /home/ma-user/modelarts/user-job-dir/code
 --framework-version pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
 --data-url obs://your_bucket/dataset/
 --log-url obs://your_bucket/logs/
 --train-instance-type modelarts.vm.cpu.8u
 --train-instance-count 1

Options:
 --name TEXT Job name.
 --description TEXT Job description.
 --image-url TEXT Full swr custom image path.
 --uid TEXT Uid for custom image (default: 1000).
 --working-dir TEXT ModelArts training job working directory.
 --local-code-dir TEXT ModelArts training job local code directory.
 --user-command TEXT Execution command for custom image.
 --pool-id TEXT Dedicated pool id.
 --train-instance-type TEXT Train worker specification.
 --train-instance-count INTEGER Number of workers.
 --data-url TEXT OBS path for training data.
 --log-url TEXT OBS path for training log.
 --code-dir TEXT OBS path for source code.
 --output TEXT Training output parameter with OBS path.
 --input TEXT Training input parameter with OBS path.

Modelarts
Usermanual 6 Devenviron

2024-04-30 365

 --env-variables TEXT Env variables for training job.
 --parameters TEXT Training job parameters (only keyword parameters are supported).
 --boot-file TEXT Training job boot file path behinds `code_dir`.
 --framework-type TEXT Training job framework type.
 --framework-version TEXT Training job framework version.
 --workspace-id TEXT The workspace where you submit training job(default "0")
 --policy [regular|economic|turbo|auto]
 Training job policy, default is regular.
 --volumes TEXT Information about the volumes attached to the training job.
 -q, --quiet Exit without waiting after submit successfully.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-24 Parameters

Parameter Type Ma
nd
ato
ry

Description

YAML_FILE Strin
g

No Configuration file of a training job. If this
parameter is not specified, the configuration file is
empty.

--code-dir Strin
g

Yes OBS path to the training source code

--data-url Strin
g

Yes OBS path to the training data

--log-url Strin
g

Yes OBS path to training logs

--train-
instance-
count

Strin
g

Yes Number of compute nodes in a training job. The
default value is 1, indicating a standalone node.

--boot-file Strin
g

No Boot file specified when you use a preset command
is used to submit a training job. This parameter can
be omitted when you use a custom image or
command to submit a training job.

--name Strin
g

No Name of a training job

--description Strin
g

No Description of a training job

--image-url Strin
g

No SWR URL of a custom image, which is in the
format of "organization/image_name:tag".

--uid Strin
g

No Runtime UID of a custom image. The default value
is 1000.

--working-
dir

Strin
g

No Work directory where an algorithm is executed

Modelarts
Usermanual 6 Devenviron

2024-04-30 366

Parameter Type Ma
nd
ato
ry

Description

--local-code-
dir

Strin
g

No Local directory to the training container to which
the algorithm code directory is downloaded

--user-
command

Strin
g

No Command for executing a custom image. The
directory must be under /home. When code-dir is
prefixed with file://, this parameter does not take
effect.

--pool-id Strin
g

No Resource pool ID selected for a training job. To
obtain the ID, do as follows: Log in to the
ModelArts management console, choose
Dedicated Resource Pools in the navigation pane
on the left, and view the resource pool ID in the
dedicated resource pool list.

--train-
instance-
type

Strin
g

No Resource flavor selected for a training job

--output Strin
g

No Training output. After this parameter is specified,
the training job will upload the output directory of
the training container corresponding to the
specified output parameter in the training script to
a specified OBS path. To specify multiple
parameters, use --output output1=obs://bucket/
output1 --output output2=obs://bucket/output2.

--input Strin
g

No Training input. After this parameter is specified, the
training job will download the data from OBS to
the training container and transfer the data
storage path to the training script through the
specified parameter. To specify multiple
parameters, use --input data_path1=obs://
bucket/data1 --input data_path2=obs://bucket/
data2.

--env-
variables

Strin
g

No Environment variables input during training. To
specify multiple parameters, use --env-variables
ENV1=env1 --env-variables ENV2=env2.

--
parameters

Strin
g

No Training input parameters. To specify multiple
parameters, use --parameters "--epoch 0 --
pretrained".

--
framework-
type

Strin
g

No Engine selected for a training job

Modelarts
Usermanual 6 Devenviron

2024-04-30 367

Parameter Type Ma
nd
ato
ry

Description

--
framework-
version

Strin
g

No Engine version selected for a training job

-q / --quiet Bool No After a training job is submitted, the system exits
directly and does not print the job status
synchronously.

--
workspace-
id

Strin
g

No Workspace where a training job is deployed. The
default value is 0.

--policy Strin
g

No Training resource specification mode. The options
are regular, economic, turbo, and auto.

--volumes Strin
g

No Mount EFS disks. To specify multiple parameters,
use --volumes.
"local_path=/xx/yy/
zz;read_only=false;nfs_server_path=xxx.xxx.xxx.xxx:/
" -volumes "local_path=/xxx/yyy/
zzz;read_only=false;nfs_server_path=xxx.xxx.xxx.xxx:
/"

Submitting a Training Job Based on a Preset ModelArts Image
Submit a training job by specifying the options parameter in the CLI.

ma-cli ma-job submit --code-dir obs://your-bucket/mnist/code/ \
 --boot-file main.py \
 --framework-type PyTorch \
 --working-dir /home/ma-user/modelarts/user-job-dir/code \
 --framework-version pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 \
 --data-url obs://your-bucket/mnist/dataset/MNIST/ \
 --log-url obs://your-bucket/mnist/logs/ \
 --train-instance-type modelarts.vm.cpu.8u \
 --train-instance-count 1 \
 -q

The following is an example of train.yaml using a preset image:

Example .ma/train.yaml (preset image)
pool_id: pool_xxxx
train-instance-type: modelarts.vm.cpu.8u
train-instance-count: 1
data-url: obs://your-bucket/mnist/dataset/MNIST/
code-dir: obs://your-bucket/mnist/code/
working-dir: /home/ma-user/modelarts/user-job-dir/code
framework-type: PyTorch
framework-version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
boot-file: main.py
log-url: obs://your-bucket/mnist/logs/

##[Optional] Uncomment to set uid when use custom image mode

Modelarts
Usermanual 6 Devenviron

2024-04-30 368

uid: 1000

##[Optional] Uncomment to upload output file/dir to OBS from training platform
output:
 - name: output_dir
 obs_path: obs://your-bucket/mnist/output1/

##[Optional] Uncomment to download input file/dir from OBS to training platform
input:
 - name: data_url
 obs_path: obs://your-bucket/mnist/dataset/MNIST/

##[Optional] Uncomment pass hyperparameters
parameters:
 - epoch: 10
 - learning_rate: 0.01
 - pretrained:

##[Optional] Uncomment to use dedicated pool
pool_id: pool_xxxx

##[Optional] Uncomment to use volumes attached to the training job
volumes:
 - efs:
 local_path: /xx/yy/zz
 read_only: false
 nfs_server_path: xxx.xxx.xxx.xxx:/

Using a Custom Image to Create a Training Job
Submit a training job by specifying the options parameter in the CLI.

ma-cli ma-job submit --image-url atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e \
 --code-dir obs://your-bucket/mnist/code/ \
 --user-command "export LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH &&
cd /home/ma-user/modelarts/user-job-dir/code && /home/ma-user/anaconda3/envs/PyTorch-1.8/bin/
python main.py" \
 --data-url obs://your-bucket/mnist/dataset/MNIST/ \
 --log-url obs://your-bucket/mnist/logs/ \
 --train-instance-type modelarts.vm.cpu.8u \
 --train-instance-count 1 \
 -q

The following is an example of train.yaml using a custom image:

Example .ma/train.yaml (custom image)
image-url: atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e
user-command: export LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH && cd /home/ma-
user/modelarts/user-job-dir/code && /home/ma-user/anaconda3/envs/PyTorch-1.8/bin/python main.py
train-instance-type: modelarts.vm.cpu.8u
train-instance-count: 1
data-url: obs://your-bucket/mnist/dataset/MNIST/
code-dir: obs://your-bucket/mnist/code/
log-url: obs://your-bucket/mnist/logs/

##[Optional] Uncomment to set uid when use custom image mode
uid: 1000

##[Optional] Uncomment to upload output file/dir to OBS from training platform
output:
 - name: output_dir
 obs_path: obs://your-bucket/mnist/output1/

##[Optional] Uncomment to download input file/dir from OBS to training platform
input:
 - name: data_url

Modelarts
Usermanual 6 Devenviron

2024-04-30 369

 obs_path: obs://your-bucket/mnist/dataset/MNIST/

##[Optional] Uncomment pass hyperparameters
parameters:
 - epoch: 10
 - learning_rate: 0.01
 - pretrained:

##[Optional] Uncomment to use dedicated pool
pool_id: pool_xxxx

##[Optional] Uncomment to use volumes attached to the training job
volumes:
 - efs:
 local_path: /xx/yy/zz
 read_only: false
 nfs_server_path: xxx.xxx.xxx.xxx:/

Examples
● Submit a training job based on a YAML file.

ma-cli ma-job submit ./train-job.yaml

● Submit a training job using preset image pytorch1.8-cuda10.2-cudnn7-
ubuntu18.04 through the CLI.
ma-cli ma-job submit --code-dir obs://automation-use-only/Original/TrainJob/TrainJob-v2/
pytorch1.8.0_cuda10.2/code/ \
 --boot-file test-pytorch.py \
 --framework-type PyTorch \
 --working-dir /home/ma-user/modelarts/user-job-dir/code \
 --framework-version pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 \
 --data-url obs://automation-use-only/Original/TrainJob/TrainJob-v2/
pytorch1.8.0_cuda10.2/data/ \
 --log-url obs://automation-use-only/Original/TrainJob/TrainJob-v2/
pytorch1.8.0_cuda10.2/data/logs/ \
 --train-instance-type modelarts.vm.cpu.8u \
 --train-instance-count 1 \

6.7.6.4 Obtaining ModelArts Training Job Logs
Run the ma-cli ma-job get-log command to obtain ModelArts training job logs.

$ ma-cli ma-job get-log -h
Usage: ma-cli ma-job get-log [OPTIONS]

 Get job log details.

 Example:

 # Get job log by job id
 ma-cli ma-job get-log --job-id ${job_id}

Modelarts
Usermanual 6 Devenviron

2024-04-30 370

Options:
 -i, --job-id TEXT Get training job details by job id. [required]
 -t, --task-id TEXT Get training job details by task id (default "worker-0").
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Parameter Type Mandatory Description

-i / --job-id String Yes Obtain logs of a training job with a
specified job ID.

-t / --task-
id

String No Obtain logs of a specified task, which
defaults to work-0.

Examples

Obtain logs of a training job with a specified job ID.

ma-cli ma-job get-log --job-id b63e90baxxx

6.7.6.5 Obtaining ModelArts Training Job Events

Run the ma-cli ma-job get-event command to view ModelArts training job
events.

$ ma-cli ma-job get-event -h
Usage: ma-cli ma-job get-event [OPTIONS]

 Get job running event.

 Example:

 # Get training job running event
 ma-cli ma-job get-event --job-id ${job_id}

Options:
 -i, --job-id TEXT Get training job event by job id. [required]
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Parameter Type Mandatory Description

-i / --job-id String Yes Obtain events of a training
job with a specified job ID.

Modelarts
Usermanual 6 Devenviron

2024-04-30 371

Examples

Obtain events of a training job with a specified job ID.

ma-cli ma-job get-event --job-id b63e90baxxx

6.7.6.6 Obtaining ModelArts AI Engines for Training

Run the ma-cli ma-job get-engine command to obtain ModelArts AI engines for
training.

$ ma-cli ma-job get-engine -h
Usage: ma-cli ma-job get-engine [OPTIONS]

 Get job engine info.

 Example:

 # Get training job engines
 ma-cli ma-job get-engine

Options:
 -v, --verbose Show detailed information about training engines.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-25 Parameters

Parameter Type Mandatory Description

-v / --verbose Bool No Whether to
display detailed
information. This
function is
disabled by
default.

Examples

View the AI engine of a training job.

ma-cli ma-job get-engine

Modelarts
Usermanual 6 Devenviron

2024-04-30 372

6.7.6.7 Obtaining ModelArts Resource Specifications for Training
Run the ma-cli ma-job get-flavor command to obtain ModelArts resource
specifications for training.

$ ma-cli ma-job get-flavor -h
Usage: ma-cli ma-job get-flavor [OPTIONS]

 Get job flavor info.

 Example:

 # Get training job flavors
 ma-cli ma-job get-flavor

Options:
 -t, --flavor-type [CPU|GPU|Ascend]
 Type of training job flavor.
 -v, --verbose Show detailed information about training flavors.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Modelarts
Usermanual 6 Devenviron

2024-04-30 373

Table 6-26 Parameters

Parameter Type Mandatory Description

-t / --flavor-
type

String No Resource flavor. If this
parameter is not specified,
all resource flavors are
returned by default.

-v / --verbose Bool No Whether to display
detailed information. This
function is disabled by
default.

Examples
View the resource flavor and type of a training job.

ma-cli ma-job get-flavor

6.7.6.8 Stopping a ModelArts Training Job
Run the ma-cli ma-job stop command to stop a training job with a specified job
ID.

$ ma-cli ma-job stop -h
Usage: ma-cli ma-job stop [OPTIONS]

 Stop training job by job id.

 Example:

 Stop training job by job id
 ma-cli ma-job stop --job-id ${job_id}

Modelarts
Usermanual 6 Devenviron

2024-04-30 374

Options:
 -i, --job-id TEXT Get training job event by job id. [required]
 -y, --yes Confirm stop operation.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-27 Parameters

Parameter Type Mandatory Description

-i / --job-id String Yes Training job ID

-y / --yes Bool No Whether to
forcibly stop a
specified training
job

Examples
Stop a running training job.

ma-cli ma-job stop --job-id efd3e2f8xxx

6.7.7 Using ma-cli to Copy OBS Data
Run the ma-cli obs-copy [SRC] [DST] command to copy a local file to an OBS
folder or an OBS file or folder to a local path.

$ma-cli obs-copy -h
Usage: ma-cli obs-copy [OPTIONS] SRC DST

 Copy file or directory between OBS and local path. Example:

 # Upload local file to OBS path
 ma-cli obs-copy ./test.zip obs://your-bucket/copy-data/

 # Upload local directory to OBS path
 ma-cli obs-copy ./test/ obs://your-bucket/copy-data/

 # Download OBS file to local path
 ma-cli obs-copy obs://your-bucket/copy-data/test.zip ./test.zip

 # Download OBS directory to local path
 ma-cli obs-copy obs://your-bucket/copy-data/ ./test/

Options:
 -d, --drop-last-dir Whether to drop last directory when copy folder. if True, the last directory of the
source folder will not copy to the destination folder. [default: False]
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Modelarts
Usermanual 6 Devenviron

2024-04-30 375

Table 6-28 Parameters

Parameter Type Mandat
ory

Description

-d / --drop-last-
dir

Bool No If you specify this parameter, the last-
level directory of the source folder will
not be copied to the destination folder.
This parameter is valid only for copying
folders.

Examples
Upload a file to OBS.

$ ma-cli obs-copy ./test.csv obs://${your_bucket}/test-copy/
[OK] local src path: [/home/ma-user/work/test.csv]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Upload a folder to obs://${your_bucket}/test-copy/data/.

$ ma-cli obs-copy /home/ma-user/work/data/ obs://${your_bucket}/test-copy/
[OK] local src path: [/home/ma-user/work/data/]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Upload a folder to obs://${your_bucket}/test-copy/ with --drop-last-dir
specified.

$ ma-cli obs-copy /home/ma-user/work/data/ obs://${your_bucket}/test-copy/ --drop-last-dir
[OK] local src path: [/home/ma-user/work/data]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Download a folder from OBS to a local disk.

$ ma-cli obs-copy obs://${your_bucket}/test-copy/ ~/work/test-data/
[OK] obs src path: [obs://${your_bucket}/test-copy/]
[OK] local dst path: [/home/ma-user/work/test-data/]

Modelarts
Usermanual 6 Devenviron

2024-04-30 376

7 Training Management

7.1 Introduction to Model Development
AI modeling involves two stages:

● Development: Prepare and configure the environment, and debug code for
training based on deep learning. ModelArts DevEnviron is recommended for
code debugging.

● Experiment: Optimize the datasets and hyperparameters, and obtain an ideal
model through multiple rounds of experiments. The ModelArts training
platform is recommended for training.

In the two stages, code is designed, developed and tested in repeated cycles. In
the development stage, when the code becomes stable, the modeling process
enters the experiment stage, during which hyperparameters are continuously
optimized to iterate the model. In the experiment stage, when the training
performance can be optimized, the modeling process returns to the development
stage for optimizing code.

Figure 7-1 Model development process

ModelArts provides model training, which allows you to view training results and
tune model parameters based on the training results. You can select resource
pools with different instance flavors for model training.

Modelarts
Usermanual 7 Training Management

2024-04-30 377

The following guides you to train models on ModelArts:

● Upload the labeled data to OBS. For details, see Preparing Data.
● Follow the instructions provided in Preparing Algorithms to use an algorithm

for model training.
● Create a training job. You can perform this operation on the ModelArts

console. For details, see Creating a Training Job.
● Follow the instructions provided in Training Job Logs to view training job logs

and training resource usage.
● Follow the instructions provided in Stopping, Rebuilding, or Searching for a

Training Job to stop or delete a training job.
● Troubleshoot if you encounter any problem during training. For details, see

Troubleshooting.

7.2 Preparing Data
ModelArts uses OBS to store data, and backs up and takes snapshots for models,
achieving secure, reliable storage at low costs.

● OBS
● Obtaining Training Data

OBS
OBS provides stable, secure, and efficient cloud storage service that lets you store
virtually any volume of unstructured data in any format. Bucket and objects are
basic concepts in OBS. A bucket is a container for storing objects in OBS. Each
bucket is specific to a region and has specific storage class and access permissions.
A bucket is accessible through its domain name over the Internet. An object is the
basic unit of data storage in OBS.

OBS is a data storage center for ModelArts. All the input data, output data, and
cache data during AI development can be stored in OBS buckets for reading.

Before using ModelArts, create an OBS bucket and folders for storing data.

Modelarts
Usermanual 7 Training Management

2024-04-30 378

Figure 7-2 OBS

Obtaining Training Data
Use either of the following methods to obtain ModelArts training data:

● Datasets stored in OBS buckets
After labeling and preprocessing your dataset, upload it to an OBS bucket.
When you create a training job, set Input to the path of the OBS bucket
where the training data is stored.

● Datasets in data management
If your dataset has not labeled or requires preprocessing, import it to
ModelArts data management for data preprocessing.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

Modelarts
Usermanual 7 Training Management

2024-04-30 379

Figure 7-3 Preparing data

7.3 Preparing Algorithms

7.3.1 Introduction to Algorithm Preparation
Machine learning explores general rules from limited volume of data and uses
these rules to predict unknown data. To obtain more accurate prediction results,
select a proper algorithm to train your model. ModelArts provides a large number
of algorithm samples for different scenarios. This section describes algorithm
sources and learning modes.

Algorithm Sources
You can use one of the following methods to build a ModelArts model:

● Using a preset image
To use a custom algorithm, use a framework built in ModelArts. ModelArts
supports most mainstream AI engines. For details, see Built-in Training
Engines. These built-in engines pre-load some extra Python packages, such as
NumPy. You can also use the requirements.txt file in the code directory to
install dependency packages. For details about how to create a training job
using a preset image, see Using a Preset Image (Custom Script).

● Using a custom image (For details about the new version of training, see
Using a Custom Image to Train a Model.)
The subscribed algorithms and built-in frameworks can be used in most
training scenarios. In certain scenarios, ModelArts allows you to create custom
images to train models. Custom images can be used to train models in
ModelArts only after they are uploaded to the Software Repository for
Container (SWR). Customizing an image requires a deep understanding of
containers. Use this method only if the subscribed algorithms and custom
scripts cannot meet your requirements.

Algorithm Learning Modes
ModelArts allows you to train models in different modes as required.

Modelarts
Usermanual 7 Training Management

2024-04-30 380

● Offline learning
Offline learning is the most fundamental mode for model training. In this
mode, all data required for training must be provided at a time, and
optimizing the objective function stops when the training is complete. The
advantage of this mode is that the trained models are stable, facilitating
model verification and evaluation.

● Incremental learning
Incremental learning is a continuous learning process. Compared with offline
learning, it does not need to store all training data at a time, which alleviates
the problem of limited storage resources. In addition, it saves a large amount
of compute power and time, and reduces economic costs in retraining.

7.3.2 Using a Preset Image (Custom Script)

7.3.2.1 Overview
If the subscribed algorithms cannot meet your requirements or you want to
migrate local algorithms to ModelArts for training, use the ModelArts preset
images to create algorithms. This method is also called using a preset image.

This section describes how to use a preset image to create an algorithm.

● For details about ModelArts built-in engines and models, see Built-in
Training Engines.

● To migrate local algorithms to ModelArts, perform code adaptation. For
details, see Developing a Custom Script.

● For details about how to use a preset image to create an algorithm on the
ModelArts console, see Creating an Algorithm.

Built-in Training Engines
The following table lists the training engines and their versions supported by
ModelArts.

NO TE

Supported AI engines vary depending on regions.

Table 7-1 AI engines supported by training jobs

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

Ascend-
Powered-
Engine

aarch6
4

Euler2.8 mindspore_2.0.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

PyTorch aarch6
4

Euler2.8 pytorch_1.11.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

Modelarts
Usermanual 7 Training Management

2024-04-30 381

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

TensorFlow aarch6
4

Euler2.8 tensorflow_1.15.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

7.3.2.2 Developing a Custom Script
Before you use a preset image to create an algorithm, develop the algorithm code.
This section describes how to modify local code for model training on ModelArts.

When creating an algorithm, set the code directory, boot file, input path, and
output path. These settings enable the interaction between your codes and
ModelArts.

● Code directory
Specify the code directory in the OBS bucket and upload training data such as
training code, dependency installation packages, or pre-generated model to
the directory. After you create the training job, ModelArts downloads the code
directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as an example.
The content in the OBS path will be automatically downloaded to $
{MA_JOB_DIR}/demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS path.
Do not store training data in the code directory. When the training job starts,
the data stored in the code directory will be downloaded to the backend. A
large amount of training data may lead to a download failure. It is
recommended that the size of the code directory does not exceed 50 MB.

● Boot file
The boot file in the code directory is used to start the training. Only Python
boot files are supported.

● Input path
The training data must be uploaded to an OBS bucket or stored in the
dataset. In the training code, the input path must be parsed. ModelArts
automatically downloads the data in the input path to the local container
directory for training. Ensure that you have the read permission to the OBS
bucket. After the training job is started, ModelArts mounts a disk to the /
cache directory. You can use this directory to store temporary files. For details
about the size of the /cache directory, see What Are Sizes of the /cache
Directories for Different Resource Specifications in the Training
Environment?

● Output path
You are advised to set an empty directory as the training output path. In the
training code, the output path must be parsed. ModelArts automatically
uploads the training output to the output path. Ensure that you have the
write and read permissions to the OBS bucket.

Modelarts
Usermanual 7 Training Management

2024-04-30 382

The following section describes how to develop training code in ModelArts.

(Optional) Introducing Dependencies
1. If your model references other dependencies, place the required file or

installation package in Code Directory you set during algorithm creation.
– For details about how to install the Python dependency package, see

How Do I Create a Training Job When a Dependency Package Is
Referenced by the Model to Be Trained?

– For details about how to install a C++ dependency library, see How Do I
Install a Library That C++ Depends on?

– For details about how to load parameters to a pre-trained model, see
"How Do I Load Some Well Trained Parameters During Job Training?"
in FAQs.

Parsing Input and Output Paths
When a ModelArts model reads data stored in OBS or outputs data to a specified
OBS path, perform the following operations to configure the input and output
data:

1. Parse the input and output paths in the training code. The following method
is recommended:
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description='train mnist')

Add parameters.
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset
is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')

Parse the parameters.
args = parser.parse_args()

After the parameters are parsed, use data_url and train_url to replace the
paths to the data source and the data output, respectively.

2. When creating a training job, set the input and output paths.
Select the OBS path or dataset path as the training input, and the OBS path
as the output.

Editing Training Code and Saving the Model
Training code and the code for saving the model are closely related to the AI
engine you use. The following uses the TensorFlow framework as an example.
Before using this case, you need to download the mnist.npz file and upload it to
the OBS bucket. The training input is the OBS path where the mnist.npz file is
stored.

import os
import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='train mnist')
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset is
saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')
args = parser.parse_args()

Modelarts
Usermanual 7 Training Management

2024-04-30 383

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

model.save(os.path.join(args.train_url, 'model'))

7.3.2.3 Creating an Algorithm

Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management. Note the following when
creating a custom algorithm:

1. Prerequisites

2. Accessing the Algorithm Creation Page

3. Setting Basic Parameters

4. Setting the Boot Mode

5. Configuring Pipelines

6. Defining Hyperparameters

7. Supported Policies

8. Adding Training Constraints

9. Runtime Environment Preview

10. Follow-up Operations

Prerequisites
● Data is available either by creating a dataset in ModelArts or by uploading

the dataset used for training to the OBS directory.

● Your training script has been uploaded to the OBS directory. For details about
how to develop a training script, see Developing a Custom Script.

● At least one empty folder has been created in OBS for storing the training
output.

Accessing the Algorithm Creation Page
1. Log in to the ModelArts management console and click Algorithm

Management in the left navigation pane.

2. On the My Algorithms page, click Create. The Create Algorithm page is
displayed.

Modelarts
Usermanual 7 Training Management

2024-04-30 384

Setting Basic Parameters
Enter the basic algorithm information, including Name and Description.

Setting the Boot Mode
Select a preset image to create an algorithm.

Set Image, Code Directory, and Boot File based on the algorithm code. Ensure
that the framework of the AI image you select is the same as the one you use for
editing algorithm code. For example, if TensorFlow is used for editing algorithm
code, select a TensorFlow image when you create an algorithm.

Table 7-2 Parameters

Parameter Description

Boot Mode >
Preset image

Select a preset image and its version used by the algorithm.

Code Directory OBS path for storing the algorithm code. The files required for
training, such as the training code, dependency installation
packages, and pre-generated models, are uploaded to the
code directory.
Do not store training data in the code directory. When the
training job starts, the data stored in the code directory will be
downloaded to the backend. A large amount of training data
may lead to a download failure.
After you create the training job, ModelArts downloads the
code directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.
NOTE

● Any programming language is supported.
● The number of files (including files and folders) cannot exceed

1,000.
● The total size of files cannot exceed 5 GB.

Boot File The file must be stored in the code directory and end with .py.
ModelArts supports boot files edited only in Python.
The boot file in the code directory is used to start a training
job.

Configuring Pipelines
A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and
output parameters in your algorithm code must be parsed to enable data

Modelarts
Usermanual 7 Training Management

2024-04-30 385

exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output pipelines.

● Input configurations

Table 7-3 Input configurations

Paramete
r

Description

Parameter
Name

Set the name based on the data input parameter in your
algorithm code. The code path parameter must be the same as
the training input parameter parsed in your algorithm code.
Otherwise, the algorithm code cannot obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descriptio
n

Customizable description of the input parameter,

Obtained
from

Source of the input parameter. You can select
Hyperparameters (default) or Environment variables.

Constraint
s

Whether data is obtained from a storage path or ModelArts
dataset.
If you select the ModelArts dataset as the data source, the
following constraints are added:
● Labeling Type: For details, see Creating a Labeling Job.
● Data Format, which can be Default, CarbonData, or both.

Default indicates the manifest format.
● Data Segmentation: available only for image classification,

object detection, text classification, and sound classification
datasets.
Possible values are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing a
Data Version.

Add Multiple data input sources are allowed.

● Output configurations

Modelarts
Usermanual 7 Training Management

2024-04-30 386

Table 7-4 Output configurations

Parameter Description

Parameter
Name

Set the name based on the data output parameter in your
algorithm code. The code path parameter must be the same
as the training output parameter parsed in your algorithm
code. Otherwise, the algorithm code cannot obtain the output
path.
For example, If you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customizable description of the output parameter,

Obtained
from

Source of the output parameter. You can select
Hyperparameters (default) or Environment variables.

Add Multiple data output paths are allowed.

Defining Hyperparameters
When you use a preset image to create an algorithm, ModelArts allows you to
customize hyperparameters so you can view or modify them anytime. After the
hyperparameters are defined, they are displayed in the startup command and
transferred to your boot file as CLI parameters.

1. Import hyperparameters.
You can click Add hyperparameter to manually add hyperparameters.

2. Edit hyperparameters.
For details, see Table 7-5.

Table 7-5 Hyperparameters

Parame
ter

Description

Name Hyperparameter name
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Type of the hyperparameter, which can be String, Integer, Float,
or Boolean

Default Default value of the hyperparameter, which is used for training
jobs by default

Constrai
nts

Click Restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

Modelarts
Usermanual 7 Training Management

2024-04-30 387

Parame
ter

Description

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on the

training job creation page when using this algorithm to create
a training job.

● If you select Yes, you cannot delete the hyperparameter on
the training job creation page when using this algorithm to
create a training job.

Descript
ion

Description of the hyperparameter
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Supported Policies
Only the pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 and
tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 images are available for
auto search.

Adding Training Constraints
You can add training constraints of the algorithm based on your needs.

● Resource Type: Select the required resource types.
● Multicard Training: Choose whether to support multi-card training.
● Distributed Training: Choose whether to support distributed training.

Runtime Environment Preview

When creating an algorithm, click the arrow on in the lower
right corner of the page to know the path of the code directory, boot file, and
input and output data in the training container.

Follow-up Operations
After an algorithm is created, use it to create a training job. For details, see
Creating a Training Job.

7.3.3 Using Custom Images
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

Modelarts
Usermanual 7 Training Management

2024-04-30 388

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you use a preset image to create a training job and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run
abnormally.

Using a Preset Image with Customization
The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You can create a custom
image based on a preset image. For details about how to create a custom image
based on a preset framework, see Using a Base Image to Create a Training
Image.

Figure 7-4 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:

Modelarts
Usermanual 7 Training Management

2024-04-30 389

– export MA_HOME=/home/ma-user; docker run --rm {image} $
{MA_HOME}/anaconda/bin/python -V

– docker run --rm {image} $(which python) -V
● The system automatically adds hyperparameters associated with the preset

image.

Using a Custom Image

Figure 7-5 Creating an algorithm using a custom image

For details about how to use custom images supported by the new-version
training, see Using a Custom Image to Create a CPU- or GPU-based Training
Job.

If all used images are customized, do as follows to use a specified Conda
environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the
conda activate command to activate a specified Conda environment. In this case,
use other methods to start training.

For example, Conda in your custom image is installed in the /home/ma-user/
anaconda3 directory, the Conda environment is python-3.7.10, and the training
script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a
specified Conda environment to start training in one of the following ways:

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the path environment variable.

Modelarts
Usermanual 7 Training Management

2024-04-30 390

Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.
Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

7.3.4 Viewing Algorithm Details
1. Log in to the ModelArts console.
2. In the navigation pane, choose Algorithm Management. The My algorithm

page is displayed.
3. In the algorithm list, click the target algorithm name to go to the algorithm

details page.
– On the Basic Information tab, you can view the algorithm information.

Table 7-6 Basic algorithm information

Parameter Description

Name Algorithm name.

ID Unique ID of an algorithm.

Description Algorithm description.
You can click the edit icon to update the description.

Preset image Preset image and its version used by an algorithm.
This parameter is available only for algorithms
created using a preset image.

Custom image Container image used by an algorithm. This
parameter is available only for algorithms created
using a custom engine version or custom image.

Code Directory OBS directory for storing the algorithm code.

Boot File OBS directory for storing the boot file.

Input Input parameters of an algorithm.

Modelarts
Usermanual 7 Training Management

2024-04-30 391

Parameter Description

Output Output parameters of an algorithm.

Hyperparamete
r

Hyperparameter information of an algorithm.

Supported
Policies

Auto search policy of an algorithm. If this parameter
is left blank, auto search is not supported.
Otherwise, auto search parameters are displayed.

Training
Constraint

Training constraints of an algorithm. If No is
displayed, there is no constraint. Otherwise, the
supported resource types and training scenarios are
displayed.

– On the Training tab, you can view the information about the training

jobs that use the algorithm, such as the training job name and status.
4. On the Basic Information tab, click Edit to modify algorithm information

except the name and ID. After the modification, click Save.

7.3.5 Searching for an Algorithm
ModelArts allows you to quickly search for algorithms by performing the following
operations.

Operation 1: Search for jobs by name, image, code directory, description, and
creation time.

Operation 2: Click the refresh button in the upper right corner to refresh the
algorithm list.

Operation 3: Configure the custom columns and other basic settings.

Figure 7-6 Searching for an algorithm

To sort algorithms in a column, click in the table header of the algorithm list.

7.3.6 Deleting an Algorithm

Deleting Your Algorithm

Choose Algorithm Management > My algorithm and click Delete in the
Operation column of the target algorithm. In the displayed dialog box, confirm
the deletion.

7.4 Performing a Training

Modelarts
Usermanual 7 Training Management

2024-04-30 392

7.4.1 Creating a Training Job
Model training continuously iterates and optimizes model weights. ModelArts
training management allows you to create training jobs, view training status, and
manage training versions. Through model training, you can test various
combinations of model structures, data, and hyperparameters to obtain the
optimal model structure and weight.

Prerequisites
● The data used for training has been uploaded to an OBS directory.

● At least one empty folder has been created in OBS for storing the training
output.

NO TE

OBS buckets are not encrypted. ModelArts does not support encrypted OBS buckets.
When creating an OBS bucket, do not enable bucket encryption.

● Access authorization has been configured. For details, see Configuring Access
Authorization (Global Configuration).

● (Optional) An algorithm is available in Algorithm Management if you want
to use it to create a training job. For details, see Introduction to Algorithm
Preparation.

● (Optional) A custom image has been uploaded to SWR if you want to use it
to create a training job. For details, see How Can I Log In to SWR and
Upload Images to It?

Operation Procedure

To create a training job, follow these steps:

Step 1 Access the page for creating a training job. For details, see Accessing the Page for
Creating a Training Job .

Step 2 Configure basic information about the training job. For details, see Configuring
Basic Information About a Training Job.

Step 3 Select an algorithm type for creating the training job.

● Use a preset image to create a training job by referring to Choosing a Boot
Mode (Preset Image).

● Use a custom image to create a training job by referring to Choosing a Boot
Mode (Custom Image).

● Use an existing algorithm to create a training job by referring to Choosing an
Algorithm Type (My Algorithm).

Step 4 Configure training parameters, including the input, output, hyperparameters, and
environment variables. For details, see Configuring Training Parameters.

Step 5 Select a resource pool as required. A dedicated resource pool is recommended.

● Configuring a Resource Pool (Public Resource Pool)

● Configuring a Resource Pool (Dedicated Resource Pool)

Modelarts
Usermanual 7 Training Management

2024-04-30 393

Step 6 Select a training mode. For details, see (Optional) Selecting a Training Mode.
When a MindSpore engine and Ascend resources are used for a training job, you
can select the training mode.

Step 7 Perform follow-up procedure. For details, see Follow-Up Procedure.

----End

Accessing the Page for Creating a Training Job
1. Log in to the ModelArts console.
2. In the navigation pane, choose Training Management > Training Jobs. The

training job list is displayed.
3. Click Create Training Job. The Create Training Job page is displayed.

Configuring Basic Information About a Training Job
On the Create Training Job page, set parameters.

Table 7-7 Basic information for creating a training job

Parameter Description

Name Name of a training job, which is mandatory.
The system automatically generates a name. You can
rename it based on the following naming rules:
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_) are

allowed.

Description Job description, which helps you learn about the job
information in the training job list.

Experiment Experiment for classifying and managing the job.
● If you select Create new, enter the experiment

name and description.
● If you select Use existing, select an experiment

name.
● If you select Not required, this job will not be

managed in any experiment.

Choosing a Boot Mode (Preset Image)
If you use a preset image to create a training job, select a boot mode by referring
to Table 7-8.

Modelarts
Usermanual 7 Training Management

2024-04-30 394

Table 7-8 Creating a training job using a preset image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Preset image and select the preset image
engine and engine version to be used by the training
job.
If you select Customize for the engine version, select a
custom image from Image.

Image This parameter is displayed and mandatory only when
the preset image version is set to Customize.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name
(swr.<region>.xxx.com) in the path because the
system will automatically add the domain name to
the path. For example, if the SWR address of a
public image is swr.<region>.xxx.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

Code Directory Select the OBS directory where the training code file is
stored. This parameter is mandatory.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

Boot File Select the Python boot script of the training job in the
code directory. This parameter is mandatory.
ModelArts supports only the boot file written in
Python. Therefore, the boot file must end with .py.

Modelarts
Usermanual 7 Training Management

2024-04-30 395

Parameter Description

Local Code Directory Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

Choosing a Boot Mode (Custom Image)
If you use a custom image to create a training job, select a boot mode by referring
to Table 7-9.

Table 7-9 Creating a training job using a custom image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Custom image. This parameter is mandatory.

Image Container image path. This parameter is mandatory.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name
(swr.<region>.xxx.com) in the path because the
system will automatically add the domain name to
the path. For example, if the SWR address of a
public image is swr.<region>.xxx.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

Modelarts
Usermanual 7 Training Management

2024-04-30 396

Parameter Description

Code Directory Select the OBS directory where the training code file is
stored. If the custom image does not contain training
code, you need to set this parameter. If the custom
image contains training code, you do not need to set
this parameter.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

User ID User ID for running the container. The default value
1000 is recommended.
If the UID needs to be specified, its value must be
within the specified range. The UID ranges of different
resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

Boot Command Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command is
automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows.
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the
code is stored. Replace it with the actual one.

Local Code Directory Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Modelarts
Usermanual 7 Training Management

2024-04-30 397

Parameter Description

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

Choosing an Algorithm Type (My Algorithm)
Set Algorithm Type to My algorithm and select an algorithm from the algorithm
list. If no algorithm meets the requirements, you can create an algorithm. For
details, see Creating an Algorithm.

Configuring Training Parameters
Data is obtained from an OBS bucket or dataset for model training. The training
output is also stored in an OBS bucket. When creating a training job, you can
configure parameters such as input, output, hyperparameters, and environment
variables by referring to Table 7-10.

NO TE

The input, output, and hyperparameter parameters of a training job vary depending on the
algorithm type selected during training job creation. If a parameter value is dimmed, the
parameter has been configured in the algorithm code and cannot be modified.

Table 7-10 Parameters for creating a training job

Paramete
r

Sub-
Paramete
r

Description

Input Paramete
r name

The algorithm code reads the training input data based
on the input parameter name.
The recommended value is data_url. The training input
parameters must match the input parameters of the
selected algorithm. For details, see Table 7-3.

Dataset Click Dataset and select the target dataset and its
version in the ModelArts dataset list.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.
NOTE

ModelArts data management is being upgraded and is
invisible to users who have not used data management. It is
recommended that new users store their training data in OBS
buckets.

Modelarts
Usermanual 7 Training Management

2024-04-30 398

Paramete
r

Sub-
Paramete
r

Description

Data path Click Data path and select the storage path to the
training input data from an OBS bucket.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.

Obtained
from

The following uses training input data_path as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

● If you select Environment variables, use this code
to obtain the data:
import os
data_path = os.getenv("data_path", "")

Output Paramete
r name

The algorithm code reads the training output data
based on the output parameter name.
The recommended value is train_url. The training
output parameters must match the output parameters
of the selected algorithm. For details, see Table 7-4.

Data path Click Data path and select the storage path to the
training output data from an OBS bucket. During
training, the system automatically synchronizes files
from the local code directory of the training container
to the data path.
NOTE

The data path can only be an OBS path. To prevent any issues
with data storage, choose an empty directory as the data
path.

Obtained
from

The following uses the training output train_url as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

● If you select Environment variables, use this code
to obtain the data:
import os
train_url = os.getenv("train_url", "")

Modelarts
Usermanual 7 Training Management

2024-04-30 399

Paramete
r

Sub-
Paramete
r

Description

Predownl
oad

Indicates whether to pre-download the files in the
output directory to a local directory.
● If you set Predownload to No, the system does not

download the files in the training output data path
to a local directory of the training container when
the training job is started.

● If you set Predownload to Yes, the system
automatically downloads the files in the training
output data path to a local directory of the training
container when the training job is started. The larger
the file size, the longer the download time. To avoid
excessive training time, remove any unneeded files
from the local code directory of the training
container as soon as possible. If you want to use
resumable training and incremental training, you
must select Yes.

Hyperpar
ameter

N/A Used for training tuning. This parameter is determined
by the selected algorithm. If hyperparameters have
been defined in the algorithm, all hyperparameters in
the algorithm are displayed.
Hyperparameters can be modified and deleted. The
status depends on the hyperparameter constraint
settings in the algorithm. For details, see Defining
Hyperparameters.

Environm
ent
Variable

N/A Add environment variables based on service
requirements. For details about the environment
variables preset in the training container, see Viewing
Environment Variables of a Training Container.

Auto
Restart

N/A Number of retries for a failed training job. If this
parameter is enabled, a failed training job will be
automatically re-delivered and run. On the training job
details page, you can view the number of retries for a
failed training job.
● This function is disabled by default.
● If you enable this function, set the number of retries.

The value ranges from 1 to 3 and cannot be
changed.

Configuring a Resource Pool (Public Resource Pool)
If you use a public resource pool to create a training job, configure the public
resource pool by referring to Table 7-11.

Modelarts
Usermanual 7 Training Management

2024-04-30 400

Table 7-11 Creating a public resource pool for training jobs

Parameter Description

Resource Pool Select Public resource pool.

Resource Type Select the resource type required for training. This
parameter is mandatory. If a resource type has been
defined in the training code, select a proper resource
type based on algorithm constraints. For example, if
the resource type defined in the training code is CPU
and you select other types, the training fails. If some
resource types are invisible or unavailable for selection,
they are not supported.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*nvidia-t4 (n indicates a specific
number) does not support multi-process training.

Compute Nodes Select the number of compute nodes as required. The
default value is 1.
● If only one compute node is used, a single-node

training job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one compute nodes are used, a
distributed training job is created. For more
information about distributed training
configurations, see Distributed Training.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to set.
● This function is disabled by default. ModelArts

automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

● After this function is enabled, set Job Log Path. The
system permanently stores training logs to the
specified OBS path.

Modelarts
Usermanual 7 Training Management

2024-04-30 401

Parameter Description

Job Log Path When enabling Persistent Log Saving or selecting
Ascend resources, select an empty OBS directory for
Job Log Path to store log files generated by the
training job.
Ensure that you have read and write permissions to the
selected OBS directory.

Event Notification Indicates whether to enable event notification.
● This function is disabled by default, which means

SMN is disabled.
● After this function is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events.

● Only training jobs using GPUs support JobHanged events.

Auto Stop ● This function is disabled by default, the training job
keeps running until the training is completed.

● If this function is enabled, configure the auto stop
time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this function, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

Configuring a Resource Pool (Dedicated Resource Pool)
If you use a dedicated resource pool to create a training job, configure the
dedicated resource pool by referring to Table 7-12.

Modelarts
Usermanual 7 Training Management

2024-04-30 402

Table 7-12 Creating a dedicated resource pool for training jobs

Parameter Description

Resource Pool Select a dedicated resource pool.
If you select a dedicated resource pool, you can view
the status, node specifications, number of idle/
fragmented nodes, number of available/total nodes,
and number of cards of the resource pool. If the
resource pool has available cards, hover over View in
the Idle/Fragmented Nodes column to view fragment
details and check whether the resource pool meets the
training requirements.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*nvidia-t4 (n indicates a specific
number) does not support multi-process training.

Customized
Specifications

Indicates whether to enable customized specifications.
You can customize resource specifications for training
jobs based on dedicated resource pool specifications to
improve resource pool utilization.
● This function is disabled by default, which means

the dedicated resource pool specifications are used.
● When you enable this function, jobs run with

custom specifications. The custom specifications
should not exceed the node specifications of the
dedicated resource pool that you set. For CPU
specifications, you can only customize the number
of vCPUs and memory. For GPU and Ascend
specifications, you can customize the number of
vCPUs, memory, and cards.

NOTE
If customized specifications are enabled, the Specifications
parameter is invalid.

Modelarts
Usermanual 7 Training Management

2024-04-30 403

Parameter Description

Compute Nodes Select the number of compute nodes as required. The
default value is 1.
● If only one compute node is used, a single-node

training job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one compute nodes are used, a
distributed training job is created. For more
information about distributed training
configurations, see Distributed Training.

Job Priority When using a dedicated resource pool, you can set the
priority of the training job. The value ranges from 1 to
3. The default priority is 1, and the highest priority is 3.
● By default, the job priority can be set to 1 or 2. After

the permission to set the highest job priority is
configured, the priority can be set to 1 to 3.

● If a training job is in the Pending state for a long
time, you can change the job priority to reduce the
queuing duration. For details, see Priority of a
Training Job.

Modelarts
Usermanual 7 Training Management

2024-04-30 404

Parameter Description

SFS Turbo When ModelArts and SFS Turbo are directly connected,
multiple SFS Turbo file systems can be mounted to a
training job to store training data. Click Add Mount
Configuration and set the following parameters:
● File System: Select an SFS Turbo file system.
● Mount Path: Enter the SFS Turbo mounting path in

the training container.
● Storage Location: Specify the SFS Turbo storage

location. If you have configured the folder control
permission, select a storage location. If you have not
configured the folder control permission, retain the
default value / or customize a location.

● Mounting Mode: Permission on the mounted SFS
Turbo file system. This parameter is displayed as
Read/Write or Read-only based on the permission
of the SFS Turbo storage location. If you have not
configured the folder control permission, this
parameter is unavailable.

NOTE
● A file system can be mounted only once and to only one

path. Each mount path must be unique. A maximum of 8
disks can be mounted to a training job.

● To mount an SFS Turbo file system to a training job, you
need to configure network passthrough between
ModelArts and the SFS Turbo file system. For details, see .

● The mounting path cannot be a / directory or a default
mounting path, such as /cache and /home/ma-user/
modelarts.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to set.
● This function is disabled by default. ModelArts

automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

● After this function is enabled, set Job Log Path. The
system permanently stores training logs to the
specified OBS path.

Job Log Path When enabling Persistent Log Saving or selecting
Ascend resources, select an empty OBS directory for
Job Log Path to store log files generated by the
training job.
Ensure that you have read and write permissions to the
selected OBS directory.

Modelarts
Usermanual 7 Training Management

2024-04-30 405

Parameter Description

Event Notification Indicates whether to enable event notification.
● This function is disabled by default, which means

SMN is disabled.
● After this function is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events.

● Only training jobs using GPUs support JobHanged events.

Auto Stop ● This function is disabled by default, the training job
keeps running until the training is completed.

● If this function is enabled, configure the auto stop
time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this function, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

(Optional) Selecting a Training Mode
When a MindSpore engine and Ascend resources are used for a training job, you
can select the training mode. ModelArts provides three training modes for you to
select. You can obtain different diagnosis information based on the actual
scenario. For details, see Selecting a Training Mode.

● Common mode: It is the default training scenario.
● High performance mode: In this mode, certain O&M functions will be

adjusted or even disabled to accelerate the running speed, but this will
deteriorate fault locating. This mode is suitable for stable networks requiring
high performance.

● Fault diagnosis mode: In this mode, certain O&M functions will be enabled or
adjusted to collect more information for locating faults. This mode provides
fault diagnosis. You can select a diagnosis type as required.

Modelarts
Usermanual 7 Training Management

2024-04-30 406

Follow-Up Procedure
After parameter setting for creating a training job, click Submit. On the Confirm
dialog box, click OK.

A training job runs for a period of time. You can go to the training job list to view
the basic information about the training job.

● In the training job list, Status of a newly created training job is Pending.
● When the status of a training job changes to Completed, the training job is

finished, and the generated model is stored in the corresponding output path.
● If the status is Failed or Abnormal, click the job name to go to the job details

page and view logs for troubleshooting.

7.4.2 Viewing Training Job Details
1. Log in to the ModelArts management console.
2. In the navigation pane on the left, choose Training Management > Training

Jobs.
3. In the training job list, click a job name to switch to the training job details

page.
4. On the left of the training job details page, view basic job settings and

algorithm parameters.
– Basic job settings

Table 7-13 Basic job settings

Parameter Description

Job ID Unique ID of a training job

Status Training job status

Created Time when the training job is created

Duration Running duration of a training job

Retries Number of times that a training job automatically
restarts upon a fault. This parameter is available only
when Auto Restart is enabled during training job
creation.

Description Description of a training job.
You can click the edit icon to update the description of a
training job.

– Algorithm parameters

Modelarts
Usermanual 7 Training Management

2024-04-30 407

Table 7-14 Algorithm parameters

Parameter Description

Algorithm
Name

Algorithm used in a training job You can click the
algorithm name to go to the algorithm details page.

Preset images Preset image used by a training job

Code
Directory

OBS path to the code directory of a training job
You can click Edit Code on the right to edit the
training script code in OBS Online Editor. OBS Online
Editor is not available for a training job in the
Pending, Creating, or Running status.

NOTE
If you use the algorithm subscribed in AI Hub to create a
training job, then this parameter is not supported.

Boot File Location where a boot file is stored.
NOTE

If you use the algorithm subscribed in AI Hub to create a
training job, then this parameter is not supported.

User ID ID of the user who runs the container.

Local Code
Directory

Path to the training code in the training container

Work
Directory

Path to the training startup file in the training
container

Compute
Nodes

Number of compute nodes

Dedicated
resource pool

Dedicated resource pool information. This parameter is
available only when a training job uses a dedicated
resource pool.

Specifications Training specifications used in a training job

Input - Input
Path

OBS path where the input data is stored

Modelarts
Usermanual 7 Training Management

2024-04-30 408

Parameter Description

Input -
Parameter
Name

Algorithm code parameter specified by the input path

Input -
Obtained
from

Method of obtaining the training job input.

Input - Local
Path (Training
Parameter
Value)

Path for storing the input data in the ModelArts
backend container. After the training is started,
ModelArts downloads the data stored in OBS to the
backend container.

Output -
Output Path

OBS path where the output data is stored

Output -
Parameter
Name

Algorithm code parameter specified by the output
path

Output -
Obtained
from

Method of obtaining the training job output.

Output -
Local Path
(Training
Parameter
Value)

Path for storing the output data in the ModelArts
backend container

Hyperparamet
er

Hyperparameters used in a training job

Environment
Variable

Environment variables for a training job

7.4.3 Viewing Training Job Events
Any key event of a training job will be recorded at the backend after the training
job is displayed for you. You can check events on the training job details page.

This helps you better understand the running process of a training job and locate
faults more accurately when a task exception occurs. The following job events are
supported:

● Training job created.
● Training job failures:
● Preparations timed out. The possible cause is that the cross-region algorithm

synchronization or creating shared storage timed out.
● The training job is queuing and awaiting resource allocation.
● Failed to be queued.

Modelarts
Usermanual 7 Training Management

2024-04-30 409

● The training job starts to run.
● Training job executed.
● Failed to run the training job.
● The training job is preempted.
● The system detects that your training job may be suspended. Go to the job

details page to view the cause and handle the issue.
● The training job has been restarted.
● The training job has been manually stopped.
● The training job has been stopped. (Maximum running duration: 1 hour)
● The training job has been stopped. (Maximum running duration: 3 hours)
● The training job has been manually deleted.
● Billing information synchronized.
● [worker-0] The training environment is being pre-checked.
● [worker-0] [Duration: second] Pre-check completed.
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] The training code is being downloaded.
● [worker-0] [Duration: second] Training code downloaded.
● [worker-0] [Duration: second] Failed to download the training code. Failure

cause:
● [worker-0] The training input is being downloaded.
● [worker-0] [Duration: second] Training input (parameter: xxx) downloaded.
● [worker-0] [Duration: second] Failed to download the training input

(parameter: xxx). Failure cause:
● [worker-0] Python dependency packages are being installed. Import the

following files:
● [worker-0] [Duration: second] Python dependency packages installed. Import

the following files:
● [worker-0] The training job starts to run.
● [worker-0] Training job executed.
● [worker-0] The training input is being uploaded.
● [worker-0] [Duration: second] Training output (parameter: xxx) uploaded.

During the training process, key events can be manually or automatically
refreshed.

Procedure
1. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.
2. In the training job list, click the name of the target job to go to the training

job details page.
3. Click Events to view events.

Modelarts
Usermanual 7 Training Management

2024-04-30 410

7.4.4 Training Job Logs

7.4.4.1 Introduction to Training Job Logs

Overview

Training logs record the runtime process and exception information of training
jobs and provide useful details for fault location. The standard output and
standard error information in your code are displayed in training logs. If you
encounter an issue during the execution of a ModelArts training job, view logs
first. In most scenarios, you can locate the issue based on the error information
reported in logs.

Training logs include common training logs and Ascend logs.

● Common Logs: When resources other than Ascend are used for training, only
common training logs are generated. Common logs include the logs for pip-
requirement.txt, training process, and ModelArts.

● Ascend Logs: When Ascend resources are used for training, device logs, plog
logs, proc log for single-card training logs, MindSpore logs, and common logs
are generated.

Figure 7-7 ModelArts training logs

NO TE

Separate MindSpore logs are generated only in the MindSpore+Ascend training scenario.
Logs of other AI engines are contained in common logs.

Retention Period

Logs are classified into the following types based on the retention period:

● Real-time logs: generated during training job running and can be viewed on
the ModelArts training job details page.

● Historical logs: After a training job is completed, you can view its historical
logs on the ModelArts training job details page. ModelArts automatically
stores the logs for 30 days.

Modelarts
Usermanual 7 Training Management

2024-04-30 411

● Permanent logs: These logs are dumped to your OBS bucket. When creating a
training job, you can enable persistent log saving and set a job log path for
dumping. For Ascend training, you need to configure the OBS path for storing
training logs by default. You need to manually enable Persistent Log Saving
for training jobs using other resources.

Figure 7-8 Enabling Persistent Log Saving

Real-time logs and historical logs have no difference in content. In the Ascend
training scenario, permanent logs contain Ascend logs, which are not displayed on
ModelArts.

Related Chapters
● On the ModelArts training job details page, you can preview logs, download

logs, and search for logs by keyword in the log pane. For details, see Viewing
Training Job Logs.

● ModelArts also enables you to quickly locate and rectify training faults. For
details, see Locating Faults by Analyzing Training Logs.

7.4.4.2 Common Logs

Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

Log Type

Table 7-15 Log type

Type Description

Training process log Standard output of your training code

Installation logs for
pip-requirement.txt

If pip-requirement.txt is defined in training code, PIP
package installation logs are generated.

ModelArts logs ModelArts logs are used by O&M personnel to locate
service faults.

File Format

The format of a common log file is as follows. task id is the node ID of a training
job.

Modelarts
Usermanual 7 Training Management

2024-04-30 412

Unified log format: modelarts-job-[job id]-[task id].log
Example: log/modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log

● Single-node training jobs generate a log file, and task id defaults to
worker-0.

● Distributed training generates multiple node log files, which are distinguished
by task id, such as worker-0 and worker-1.

Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

ModelArts Logs
ModelArts logs can be filtered in the common log file modelarts-job-[job id]-
[task id].log using the following keywords: [ModelArts Service Log] or
Platform=ModelArts-Service.

● Type 1: [ModelArts Service Log] xxx
[ModelArts Service Log][init] download code_url: s3://dgg-test-user/snt9-test-cases/mindspore/lenet/

● Type 2: time="xxx" level="xxx" msg="xxx" file="xxx" Command=xxx
Component=xxx Platform=xxx
time="2021-07-26T19:24:11+08:00" level=info msg="start the periodic upload task, upload period = 5
seconds " file="upload.go:46" Command=obs/upload Component=ma-training-toolkit
Platform=ModelArts-Service

7.4.4.3 Ascend Logs

Description
Ascend logs are generated when Ascend resources are used to for training. When
Ascend resources are used for training, device logs, plog logs, proc logs for single-
card training logs, MindSpore logs, and common logs are generated.

Common logs in the Ascend training scenario include the logs for pip-
requirement.txt, ma-pre-start, davincirun, training process, and ModelArts.

The following is an example of the Ascend log structure:
obs://dgg-test-user/snt9-test-cases/log-out/ # Job log path
├──modelarts-job-9ccf15f2-6610-42f9-ab99-059ba049a41e
 ├── ascend
 ├── process_log
 ├── rank_0
 ├── plog # Plog logs
 ...
 ├── device-0 # device logs
 ...
 ├── mindspore # MindSpore logs
├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log # Common logs
├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-proc-rank-0-device-0.txt # proc log for
single-card training logs

Modelarts
Usermanual 7 Training Management

2024-04-30 413

Table 7-16 Ascend log description

Type Description Name

device
logs

User process AICPU and HCCP
logs generated on the device
and sent back to the host
(training container)
After the training process
ends, the logs are uploaded to
the ~/ascend/log/ directory
of the ModelArts training
container.
If any of the following
situations occur, device logs
cannot be obtained:
● The compute node restarts

unexpectedly.
● The compute node actively

stops.

~/ascend/log/device-{device-id}/
device-{pid}_{timestamp}.log
In the preceding command, pid
indicates the user process ID on
the host.
Example log:
device-166_20220718191853764.l
og

plog logs User process logs, for
example, ACL/GE
Plog logs are printed by
default, and no log file is
generated for ascend/log or
related files.

~/ascend/log/plog/plog-
{pid}_{timestamp}.log
In the preceding command, pid
indicates the user process ID on
the host.
Example log:
plog-166_20220718191843620.log

Modelarts
Usermanual 7 Training Management

2024-04-30 414

Type Description Name

proc log proc log is a redirection file of
single-node training logs,
helping you quickly obtain
logs of a compute node.

[modelarts-job-uuid]-proc-rank-
[rank id]-device-[device logic
id].txt
● device id indicates the ID of

the NPU used in the training
job. The value is 0 for a single
NPU and 0 to 7 for eight NPUs.
For example, if the Ascend
specification is 8*Snt9, the
value of device id ranges from
0 to 7. If the Ascend
specification is 1*Snt9, the
value of device id is 0.

● rank id indicates the global
NPU ID of the training job. The
value ranges from 0 to the
number of compute nodes
multiplied by the number of
NPUs minus 1. If a single
compute node is used, the
value of rank id is the same as
that of device id.

Example log:
modelarts-
job-95f661bd-1527-41b8-971c-
eca55e513254-proc-rank-0-
device-0.txt

MindSpore
logs

Separate MindSpore logs are
generated in the MindSpore
+Ascend training scenario.

For details about MindSpore logs,
visit the MindSpore official
website.

Modelarts
Usermanual 7 Training Management

2024-04-30 415

https://www.mindspore.cn/docs/en/r2.0/index.html
https://www.mindspore.cn/docs/en/r2.0/index.html

Type Description Name

Common
training
logs

● Logs for ma-pre-start
(specific to Ascend
training): If the ma-pre-
start script is defined, the
script execution log is
generated.

● Logs for davincirun
(specific to Ascend
training): log generated
when the Ascend training
process is started using the
davincirun.py file

● Training process logs:
standard output of user
training code

● Logs for pip-
requirement.txt: If pip-
requirement.txt is defined
in training code, pip
package installation logs
are generated.

● ModelArts logs: used by
O&M personnel to locate
service faults.

Contained in the modelarts-job-
[job id]-[task id].log file.
task id indicates the compute
node ID. If a single node is used,
the value is worker-0. If multiple
nodes are used, the value is
worker-0, worker-1, ..., or
worker-{n-1}. n indicates the
number of compute nodes.
Example log:
modelarts-
job-95f661bd-1527-41b8-971c-
eca55e513254-worker-0.log

Log Path

In the Ascend training scenario, after the training process exits, ModelArts uploads
the log files in the training container to the OBS directory specified by Job Log
Path.

Environment Variables Settings

You can run the ma-pre-start script to modify the default environment variable
configurations.

ASCEND_GLOBAL_LOG_LEVEL=3 # Log level, 0 for debug, 1 for info, 2 for warning, and 3 for error
ASCEND_SLOG_PRINT_TO_STDOUT=1 # Whether to display plog logs. The value 1 indicates that plog logs
are displayed by default.
ASCEND_GLOBAL_EVENT_ENABLE=1 # Event log level, 0 for disabling event logging and 1 for enabling
event logging

Place the ma-pre-start.sh or ma-pre-start.py script in the directory at the same
level as the training boot file.

Before the training boot file is executed, the system executes the ma-pre-start
script in /home/work/user-job-dir/. This method can be used to update the
Ascend RUN package installed in the container image or set some additional
global environment variables required for training.

Modelarts
Usermanual 7 Training Management

2024-04-30 416

7.4.4.4 Viewing Training Job Logs
On the training job details page, you can preview logs, download logs, search for
logs by keyword, and filter system logs in the log pane.

● Previewing logs
You can preview training logs on the system log pane. If multiple compute
nodes are used, you can choose the target node from the drop-down list on
the right.

Figure 7-9 Viewing logs of different compute nodes

If a log file is oversized, the system displays only the latest logs in the log
pane. To view all logs, click the link in the upper part of the log pane, which
will direct you to a new page. Then you will be redirected to a new page.

Figure 7-10 Viewing all logs

NO TE

● If the total size of all logs exceeds 500 MB, the log page may be frozen. In this
case, download the logs to view them locally.

● A log preview link can be accessed by anyone within one hour after it is generated.
You can share the link with others.

● Ensure that no privacy information is contained in the logs. Otherwise,
information leakage may occur.

● Downloading logs
Training logs are retained for only 30 days. To permanently store logs, click
the download icon in the upper right corner of the log pane. You can
download the logs of multiple compute nodes in a batch. You can also enable
Persistent Log Saving and set a log path when you create a training job. In
this way, the logs will be automatically stored in the specified OBS path.
If a training job is created on Ascend compute nodes, certain system logs
cannot be downloaded in the training log pane. To obtain these logs, go to
the Job Log Path you set when you created the training job.

Figure 7-11 Downloading logs

Modelarts
Usermanual 7 Training Management

2024-04-30 417

● Searching for logs by keyword
In the upper right corner of the log pane, enter a keyword in the search box
to search for logs.
The system will highlight the keyword and redirect you between search
results. Only the logs loaded in the log pane can be searched for. If the logs
are not fully displayed (see the message displayed on the page), obtain all
the logs by downloading them or clicking the full log link and then search for
the logs. On the page redirected by the full log link, press Ctrl+F to search for
logs.

● Filtering system logs

Figure 7-12 System logs

If System logs is selected, system logs and user logs are displayed. If System
logs is deselected, only user logs are displayed.

7.4.4.5 Locating Faults by Analyzing Training Logs
If you encounter an issue during the execution of a ModelArts training job, view
logs first. In most scenarios, you can locate the issue based on the error
information reported in logs.

If a training job fails, ModelArts automatically identifies the failure cause and
displays a message on the log page. The message consists of possible causes,
recommended solutions, and error logs (marked in red).

Modelarts
Usermanual 7 Training Management

2024-04-30 418

Figure 7-13 Identifying training faults

ModelArts provides possible causes (for reference only) and solutions for some
common training faults. Not all faults can be identified. For a distributed job, only
the analysis result of the current node is displayed. To obtain the failure cause of a
training job, check the analysis results of all nodes used by the training job.

To rectify common training faults, perform the following steps:

1. Rectify the fault based on the analysis and suggestions provided on the log
page.
– Solution 1: A troubleshooting document is provided for you to follow.
– Solution 2: Rebuild the training job and run it again.

2. If the fault persists, analyze the error information in the logs to locate and
rectify the fault.

3. If the provided solutions cannot rectify your fault, you can submit a service
ticket for technical support.

7.4.5 Cloud Shell

7.4.5.1 Logging In to a Training Container Using Cloud Shell

Application Scenario

You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

Constraints

Only dedicated resource pools support Cloud Shell. The training job must be in the
Running state.

Modelarts
Usermanual 7 Training Management

2024-04-30 419

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Using Cloud

Shell to access a running job.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.

Figure 7-14 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.
3. In the training job list, click the name of the target job to go to the training

job details page.
4. On the training job details page, click the Cloud Shell tab and log in to the

training container.

Modelarts
Usermanual 7 Training Management

2024-04-30 420

Verify that the login is successful, as shown in the following figure.

Figure 7-15 Cloud Shell page

If the job is not running or the permission is insufficient, Cloud Shell cannot
be used. In this case, locate the fault as prompted.

NO TE

An exception may occur when some users log in to the Cloud Shell page. Click Enter
to rectify the fault.

Figure 7-16 Abnormal path

7.4.5.2 Keeping a Training Job Running
You can only log in to Cloud Shell when the training job is in Running state. This
section describes how to log in to a running training container through Cloud
Shell.

Using the sleep Command
● For training jobs using a preset image

When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Preset image, add sleep.py to the code directory, and use the
script as the boot file. The training job keeps running for 60 minutes. You can
access the container through Cloud Shell for debugging.
Example of sleep.py
import os
os.system('sleep 60m')

● For training jobs using a custom image
When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Custom image, and enter sleep 60m in Boot Command. The
training job keeps running for 60 minutes. You can access the container
through Cloud Shell for debugging.

Keeping a Failed Job Running
When creating a training job, add || sleep 5h at the end of the boot command
and start the training job. Run the following command:
cmd || sleep 5h

If the training fails, the sleep command is executed. In this case, you can log in to
the container image through Cloud Shell for debugging.

Modelarts
Usermanual 7 Training Management

2024-04-30 421

NO TE

To debug a multi-node training job in Cloud Shell, you need to switch between worker-0
and worker-1 in Cloud Shell and run the boot command on each node. Otherwise, the task
will wait for other nodes to join.

7.4.5.3 Preventing Cloud Shell Session from Disconnection
To run a job for a long time, you can use the screen command to prevent the job
from failing due to disconnection.

1. If screen is not installed in the image, run apt-get install screen to install it.
2. Create a screen terminal.

Use -S to create a screen terminal named name.
screen -S name

3. View the created screen terminals.
screen -ls
There are screens on:
2433.pts-3.linux (2013-10-20 16:48:59) (Detached)
2428.pts-3.linux (2013-10-20 16:48:05) (Detached)
2284.pts-3.linux (2013-10-20 16:14:55) (Detached)
2276.pts-3.linux (2013-10-20 16:13:18) (Detached)
4 Sockets in /var/run/screen/S-root.

4. Connect to the screen terminal whose screen_id is 2276.
screen -r 2276

5. Press Ctrl+A+D to exit the screen terminal. After the exit, the screen session is
still active and can be reconnected at any time.

For details about how to use screens, see Screen User's Manual.

7.4.5.4 Analyzing the Call Stack of the Suspended Process Using the py-spy
Tool and Locating the Suspended Problem By Analyzing Code

Scenarios
If a process is suspended, you can analyze the call stack of the process with the
py-spy tool and locate the suspended problem by analyzing code.

Procedure

Step 1 On the ModelArts console, choose Training Management > Training Jobs.

Step 2 Click the target training job to go to its details page. On the page that appears,
click the Cloud Shell tab and log in to the training container (the training job
must be in the Running state).

Step 3 Install the py-spy tool.
Use the utils.sh script to automatically configure the Python environment.
source /home/ma-user/modelarts/run/utils.sh

Install py-spy.
pip install py-spy

If the message "connection broken by 'ProxyError('Cannot connect to proxy.')" is displayed, disable the
proxy.
export no_proxy=$no_proxy,repo.myhuaweicloud.com (Replace it with the pip source address of the
corresponding site.)'
pip install py-spy

Modelarts
Usermanual 7 Training Management

2024-04-30 422

https://www.gnu.org/software/screen/manual/screen.html#Getting-Started

Step 4 Check the stacks. For details about how to use the py-spy tool, see the py-spy
official document.
Find the PID of the training process.
ps -ef

Check the process stack of process 12345.
For a training job using eight cards, run the following command to check the stacks of the eight
processes started by the main process in sequence.
py-spy dump --pid 12345

----End

7.4.6 Viewing the Resource Usage of a Training Job

Operations
1. On the ModelArts console, choose Training Management > Training Jobs

from the navigation pane.
2. In the training job list, click the name of the target job to go to the training

job details page.
3. On the training job details page, click the Resource Usages tab to view the

resource usage of the compute nodes. The data of at most the last three days
can be displayed. When the resource usage window is opened, the data is
loading and refreshed periodically.
Operation 1: If a training job uses multiple compute nodes, choose a node
from the drop-down list box to view its metrics.
Operation 2: Click cpuUsage, gpuMemUsage, gpuUtil, memUsage,
npuMemUsage, or npuUtil to show or hide the usage chart of the parameter.
Operation 3: Hover the cursor on the graph to view the usage at the specific
time.

Table 7-17 Parameters

Parameter Description

cpuUsage CPU usage

gpuMemUs
age

GPU memory usage

gpuUtil GPU usage

memUsage Memory usage

npuMemUs
age

NPU memory usage

npuUtil NPU usage

Alarms of Job Resource Usage
You can view the job resource usage on the training job list page. If the average
GPU/NPU usage of the job's worker-0 instance is lower than 50%, an alarm is
displayed in the training job list.

Modelarts
Usermanual 7 Training Management

2024-04-30 423

https://github.com/benfred/py-spy
https://github.com/benfred/py-spy

Figure 7-17 Job resource usage in the job list

The job resource usage here involves only GPU and NPU resources. The method of
calculating the average GPU/NPU usage of a job's worker-0 instance is:
Summarize the usage of each GPU/NPU accelerator card at each time point of the
job's worker-0 instance and calculate the average value.

Improving Job Resource Utilization
● Increasing the value of batch_size increases GPU and NPU usage. You must

decide the batch size that will not cause a memory overflow.

● If the time for reading data in a batch is longer than the time for GPUs or
NPUs to calculate data in a batch, GPU or NPU usage may fluctuate. In this
case, optimize the performance of data reading and data augmentation. For
example, read data in parallel or use tools such as NVIDIA Data Loading
Library (DALI) to improve the data augmentation speed.

● If a model is large and frequently saved, GPU or NPU usage is affected. In this
case, do not save models frequently. Similarly, make sure that other non-
GPU/NPU operations, such as log printing and training metric saving, do not
affect the training process for too much time.

7.4.7 Evaluation Results
After a training job has been executed, ModelArts evaluates your model and
provides optimization diagnosis and suggestions.

● When you use a built-in algorithm to create a training job, you can view the
evaluation result without any configurations. The system automatically
provides optimization suggestions based on your model metrics. Read the
suggestions and guidance on the page carefully to further optimize your
model.

● For a training job created by writing a training script or using a custom image,
you need to add the evaluation code to the training code so that you can
view the evaluation result and diagnosis suggestions after the training job is
complete.

NO TE

● Only validation sets of the image type are supported.

● You can add the evaluation code only when the training scripts of the following
frequently-used frameworks are used:

● TF-1.13.1-python3.6

● TF-2.1.0-python3.6

● PyTorch-1.4.0-python3.6

Modelarts
Usermanual 7 Training Management

2024-04-30 424

This section describes how to use the evaluation code in a training job. To adapt
and modify the training code, three steps are involved, Adding the Output Path,
Copying the Dataset to the Local Host, and Mapping the Dataset Path to OBS.

Adding the Output Path
The code for adding the output path is simple. That is, add a path for storing the
evaluation result file to the code, which is called train_url, that is, the training
output path on the console. Add train_url to the analysis function and use
save_path to obtain train_url. The sample code is as follows:

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

...

analyse
res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

Copying the Dataset to the Local Host
Copying a dataset to the local host is to prevent the OBS connection from being
interrupted due to long-time access. Therefore, copy the dataset to the local host
before performing operations.

There are two methods for copying datasets. The recommended method is to use
the OBS path.

● OBS path (recommended)
Call the copy_parallel API of MoXing to copy the corresponding OBS path.

● Dataset in ModelArts data management (manifest file format)
Call the copy_manifest API of MoXing to copy the file to the local host and
obtain the path of the new manifest file. Then, use SDK to parse the new
manifest file.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')

Modelarts
Usermanual 7 Training Management

2024-04-30 425

Mapping the Dataset Path to OBS

The actual path of the image file, that is, the OBS path, needs to be entered in the
JSON body. Therefore, after analysis and evaluation are performed on the local
host, the original local dataset path needs to be mapped to the OBS path, and the
new list needs to be sent to the analysis API.

If the OBS path is used as the input of data_url, you only need to replace the
string of the local path.

if FLAGS.data_url.startswith('obs://'):
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)

If the manifest file is used, the original manifest file needs to be parsed again to
obtain the list and then the list is sent to the analysis API.

if or FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])

An example code for image classification that can be used to create training jobs
is as follows:

import json
import logging
import os
import sys
import tempfile

import h5py
import numpy as np
from PIL import Image

import moxing as mox
import tensorflow as tf
from deep_moxing.framework.manifest_api.manifest_api import get_sample_list
from deep_moxing.model_analysis.api import analyse, tmp_save
from deep_moxing.model_analysis.common.constant import TMP_FILE_NAME

logging.basicConfig(level=logging.DEBUG)

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

def _preprocess(data_path):
 img = Image.open(data_path)
 img = img.convert('RGB')
 img = np.asarray(img, dtype=np.float32)
 img = img[np.newaxis, :, :, :]
 return img

def softmax(x):
 x = np.array(x)

Modelarts
Usermanual 7 Training Management

2024-04-30 426

 orig_shape = x.shape
 if len(x.shape) > 1:
 # Matrix
 x = np.apply_along_axis(lambda x: np.exp(x - np.max(x)), 1, x)
 denominator = np.apply_along_axis(lambda x: 1.0 / np.sum(x), 1, x)
 if len(denominator.shape) == 1:
 denominator = denominator.reshape((denominator.shape[0], 1))
 x = x * denominator
 else:
 # Vector
 x_max = np.max(x)
 x = x - x_max
 numerator = np.exp(x)
 denominator = 1.0 / np.sum(numerator)
 x = numerator.dot(denominator)
 assert x.shape == orig_shape
 return x

def get_dataset(data_path, label_map_dict):
 label_list = []
 img_name_list = []
 if 'manifest' in data_path:
 manifest, _ = get_sample_list(
 manifest_path=data_path, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 label_list.append(label_map_dict.get(item[1][0]))
 img_name_list.append(item[0])
 else:
 continue
 else:
 label_name_list = os.listdir(data_path)
 label_dict = {}
 for idx, item in enumerate(label_name_list):
 label_dict[str(idx)] = item
 sub_img_list = os.listdir(os.path.join(data_path, item))
 img_name_list += [
 os.path.join(data_path, item, img_name) for img_name in sub_img_list
]
 label_list += [label_map_dict.get(item)] * len(sub_img_list)
 return img_name_list, label_list

def deal_ckpt_and_data_with_obs():
 pb_dir = FLAGS.model_url
 data_path = FLAGS.data_url

 if pb_dir.startswith('obs://'):
 mox.file.copy_parallel(pb_dir, '/cache/ckpt/')
 pb_dir = '/cache/ckpt'
 print('------------- download success ------------')
 if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')
 assert os.path.isdir(pb_dir), 'Error, pb_dir must be a directory'
 return pb_dir, data_path

def evalution():
 pb_dir, data_path = deal_ckpt_and_data_with_obs()
 index_file = os.path.join(pb_dir, 'index')
 try:
 label_file = h5py.File(index_file, 'r')

Modelarts
Usermanual 7 Training Management

2024-04-30 427

 label_array = label_file['labels_list'][:].tolist()
 label_array = [item.decode('utf-8') for item in label_array]
 except Exception as e:
 logging.warning(e)
 logging.warning('index file is not a h5 file, try json.')
 with open(index_file, 'r') as load_f:
 label_file = json.load(load_f)
 label_array = label_file['labels_list'][:]
 label_map_dict = {}
 label_dict = {}
 for idx, item in enumerate(label_array):
 label_map_dict[item] = idx
 label_dict[idx] = item
 print(label_map_dict)
 print(label_dict)

 data_file_list, label_list = get_dataset(data_path, label_map_dict)

 assert len(label_list) > 0, 'missing valid data'
 assert None not in label_list, 'dataset and model not match'

 pred_list = []
 file_name_list = []
 img_list = []

 for img_path in data_file_list:
 img = _preprocess(img_path)
 img_list.append(img)
 file_name_list.append(img_path)

 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 config.gpu_options.visible_device_list = '0'
 with tf.Session(graph=tf.Graph(), config=config) as sess:
 meta_graph_def = tf.saved_model.loader.load(
 sess, [tf.saved_model.tag_constants.SERVING], pb_dir)
 signature = meta_graph_def.signature_def
 signature_key = 'predict_object'
 input_key = 'images'
 output_key = 'logits'
 x_tensor_name = signature[signature_key].inputs[input_key].name
 y_tensor_name = signature[signature_key].outputs[output_key].name
 x = sess.graph.get_tensor_by_name(x_tensor_name)
 y = sess.graph.get_tensor_by_name(y_tensor_name)
 for img in img_list:
 pred_output = sess.run([y], {x: img})
 pred_output = softmax(pred_output[0])
 pred_list.append(pred_output[0].tolist())

 label_dict = json.dumps(label_dict)
 task_type = 'image_classification'

 if FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)
 # analyse
 res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,

Modelarts
Usermanual 7 Training Management

2024-04-30 428

 save_path=FLAGS.train_url)

if __name__ == "__main__":
 evalution()

7.4.8 Viewing Fault Recovery Details
When a training job fault occurs (such as process-level recovery, POD-level
rescheduling, and job-level rescheduling), the Fault Recovery Details tab appears
on the job details page, recording the start and stop details of the training job.

1. On the ModelArts console, choose Training Management > Training Jobs
from the navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. On the training job details page, click the Fault Recovery Details tab to view
the fault recovery information.

7.4.9 Viewing Environment Variables of a Training Container

What Is an Environment Variable

This section describes environment variables preset in a training container. The
environment variables include:

● Path environment variables

● Environment variables of a distributed training job

● Nvidia Collective multi-GPU Communication Library (NCCL) environment
variables

● OBS environment variables

● Environment variables of the PIP source

● Environment variables of the API Gateway address

● Environment variables of job metadata

Configuring Environment Variables

When you create a training job, you can add environment variables or modify
environment variables preset in the training container.

Environment Variables Preset in a Training Container

The following tables list environment variables preset in a training container,
including Table 7-18, Table 7-19, Table 7-20, Table 7-21, Table 7-22, Table 7-23,
and Table 7-24.

The environment variable values are examples.

Modelarts
Usermanual 7 Training Management

2024-04-30 429

Table 7-18 Path environment variables

Variable Description Example

PATH Executable file paths PATH=/usr/local/nvidia/bin:/usr/
local/cuda/bin:/usr/local/
sbin:/usr/local/bin:/usr/
sbin:/usr/bin:/sbin:/bin

LD_LIBRARY_P
ATH

Dynamic load library
paths

LD_LIBRARY_PATH=/usr/local/
seccomponent/lib:/usr/local/
cuda/lib64:/usr/local/cuda/
compat:/root/miniconda3/
lib:/usr/local/nvidia/lib:/usr/
local/nvidia/lib64

LIBRARY_PATH Static library paths LIBRARY_PATH=/usr/local/cuda/
lib64/stubs

MA_HOME Main directory of a
training job

MA_HOME=/home/ma-user

MA_JOB_DIR Parent directory of the
training algorithm folder

MA_JOB_DIR=/home/ma-user/
modelarts/user-job-dir

MA_MOUNT_P
ATH

Path mounted to a
ModelArts training
container, which is used
to temporarily store
training algorithms,
algorithm input,
algorithm output, and
logs

MA_MOUNT_PATH=/home/ma-
user/modelarts

MA_LOG_DIR Training log directory MA_LOG_DIR=/home/ma-user/
modelarts/log

MA_SCRIPT_IN
TERPRETER

Training script interpreter MA_SCRIPT_INTERPRETER=

WORKSPACE Training algorithm
directory

WORKSPACE=/home/ma-user/
modelarts/user-job-dir/code

Table 7-19 Environment variables of a distributed training job

Variable Description Example

MA_CURRENT_
IP

IP address of a job
container.

MA_CURRENT_IP=192.168.23.38

MA_NUM_GPU
S

Number of accelerator
cards in a job container.

MA_NUM_GPUS=8

Modelarts
Usermanual 7 Training Management

2024-04-30 430

Variable Description Example

MA_TASK_NAM
E

Name of a job container,
for example:
● worker in MindSpore

and PyTorch.
● learner or worker in

reinforcement learning
engines.

● ps or worker in
TensorFlow.

MA_TASK_NAME=worker

MA_NUM_HOS
TS

Compute nodes required
for a training job.

MA_NUM_HOSTS=4

VC_TASK_INDE
X

Sequence number of a
job container for multi-
node training. The value
of the first container is 0.

VC_TASK_INDEX=0

VC_WORKER_N
UM

Compute nodes required
for a training job.

VC_WORKER_NUM=4

VC_WORKER_H
OSTS

Domain name of each
node for multi-node
training. Use commas (,)
to separate the domain
names in sequence. You
can obtain the IP address
through domain name
resolution.

VC_WORKER_HOSTS=modelarts
-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-0.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-1.ob-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-2.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,ob-
a0978141-1712-4f9b-8a83-0000
00000000-worker-3.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000

Table 7-20 NCCL environment variables

Variable Description Example

NCCL_VERSION NCCL version NCCL_VERSION=2.7.8

Modelarts
Usermanual 7 Training Management

2024-04-30 431

Variable Description Example

NCCL_DEBUG NCCL log level NCCL_DEBUG=INFO

NCCL_IB_HCA InfiniBand NIC to use for
communication

NCCL_IB_HCA=^mlx5_bond_0

NCCL_SOCKET_
IFNAME

IP interface to use for
communication

NCCL_SOCKET_IFNAME=bond0,
eth0

Table 7-21 OBS environment variables

Variable Description Example

S3_ENDPOINT OBS endpoint S3_ENDPOINT=https://
obs.region.xxx.com

S3_VERIFY_SSL Whether to use SSL to
access OBS

S3_VERIFY_SSL=0

S3_USE_HTTPS Whether to use HTTPS to
access OBS

S3_USE_HTTPS=1

Table 7-22 Environment variables of the PIP source and API Gateway address

Variable Description Example

MA_PIP_HOST Domain name of the PIP
source

MA_PIP_HOST=repo.xxx.com

MA_PIP_URL Address of the PIP source MA_PIP_URL=http://
repo.xxx.com/repository/pypi/
simple/

MA_APIGW_EN
DPOINT

ModelArts API Gateway
address

MA_APIGW_ENDPOINT=https:/
/modelarts.region.xxx.xxx.com

Table 7-23 Environment variables of job metadata

Variable Description Example

MA_CURRENT_I
NSTANCE_NAM
E

Name of the current node
for multi-node training

MA_CURRENT_INSTANCE_NAM
E=modelarts-job-
a0978141-1712-4f9b-8a83-000
000000000-worker-1

Modelarts
Usermanual 7 Training Management

2024-04-30 432

Table 7-24 Precheck environment variables

Variable Description Example

MA_SKIP_IMAGE
_DETECT

Whether to enable
ModelArts precheck. The
default value is 1, which
indicates that the pre-
check is enabled; the
value 0 indicates that the
pre-check is disabled.
It is a good practice to
enable precheck to detect
node and driver faults
before they affect
services.

1

7.4.10 Stopping, Rebuilding, or Searching for a Training Job

Saving As an Algorithm
To modify the algorithm of a training job, click Save As Algorithm in the upper
right corner of the training job details page.

On the Algorithms page, the algorithm parameters for the last training job are
automatically set. You can modify the settings.

NO TE

This function is not supported for algorithms subscribed in AI Hub.

Stopping a Training Job
In the training job list, click Stop in the Operation column of a training job that is
in creating, pending, or running state to stop the job.

A training job in completed, failed, terminated, or abnormal state cannot be
stopped.

Rebuilding a Training Job
If you are not satisfied with a created training job, click Rebuild in the Operation
column to rebuild it. The page for creating a training job is displayed. On this
page, the parameter settings for the previous training job are automatically
retained. You only need to modify certain parameter settings.

Searching for a Training Job
If you log in to ModelArts using an IAM account, all training jobs under this
account are displayed in the training job list. To quickly search for a training job,
use the following methods:

Modelarts
Usermanual 7 Training Management

2024-04-30 433

Method 1: Click Only my jobs. Then, only jobs created under the current IAM user
account are displayed in the training job list.

Method 2: Search for jobs by name, ID, job type, status, creation time, algorithm,
and resource pool.

Method 3: Click the refresh button in the upper right corner of the job list to
refresh it.

Method 4: Configure the custom columns and other basic settings.

Figure 7-18 Searching for a training job

7.4.11 Releasing Training Job Resources
Release resources of a training job when not in use.
● On the Training Jobs page, click Delete in the Operation column. In the

displayed dialog box, click OK to delete the training job.
● Go to OBS and delete the OBS bucket and files used by the training job.

After the resources are released, check the resource usage on the Dashboard
page.

Figure 7-19 Checking the resource usage

7.5 Training Experiment

7.5.1 Introduction to Experiment
An experiment is a job management capability provided by ModelArts. You can
add training jobs to experiments for management.

Manage training jobs in an experiment by referring to the following instructions:

● For details about how to add a training job to an experiment, see Adding a
Training Job to an Experiment.

● For details about how to view experiment information, see Viewing an
Experiment.

● For details about how to delete an experiment, see Deleting an Experiment.

7.5.2 Adding a Training Job to an Experiment
To add a training job to an experiment, configure Experiment when creating a
training job. The options are as follows:

Modelarts
Usermanual 7 Training Management

2024-04-30 434

● Create new: An experiment can only be created when you create a training
job. If you select this option, enter a new experiment name. After the job is
submitted, the experiment is created and the job is added to the new
experiment. The experiment name will be checked. If the name is already in
use, the job cannot be submitted.

● Use existing: Select an existing experiment from the drop-down list box to
add the job to the existing experiment.

● Not required: Select this option if you do not want to manage your job
through an experiment. The experiment tab page of Training Management
does not display a job that has not been added to an experiment.

Creating a Job to Be Added to an Experiment

Log in to the ModelArts console, choose Training Management > Training Jobs,
and click Create Training Job in the upper right corner.

On this page, configure Experiment. If you keep the default setting Create new,
enter a name for the new experiment. Then, an experiment is created after you
create the training job.

Figure 7-20 Creating a training job

Adding a Created Job to an Experiment

Log in to the ModelArts console, choose Training Management > Training Jobs,
and click Rebuild in the Operation column of the target job. Alternatively, click
the job name or ID in the job list. On the job details page, click Rebuild in the
upper right corner.

● For a job that has not been added to an experiment, select Create new by
default and enter a name for the new experiment. Then, an experiment is
created after you create the training job.

● For a job that has been added to an experiment, select Use existing by
default and select the experiment where the source job is.

Figure 7-21 Rebuilding a training job

Modelarts
Usermanual 7 Training Management

2024-04-30 435

7.5.3 Viewing an Experiment

Viewing the Experiment List
1. Log in to the ModelArts console. In the left navigation pane, choose Training

Management > Training Jobs. The Training Jobs page is displayed.
2. Click Experiments to go to the Experiments tab page. The experiment list

displays some basic experiment information.

Table 7-25 Basic experiment information

Parameter Description

Experiment Name Experiment name, which can be
changed on the experiment details
page

Training Jobs Number of training jobs in an
experiment

Created Time when an experiment is created

Modified At Time when any of the following
occurs:
● Changing the experiment name
● Modifying the description of the

experiment
● Adding a training job to or

deleting a training job from the
experiment

Description Experiment description, which can
be modified

Operation You can delete the experiment.

– You can search for experiments by experiment name, number of training
jobs, creation time, modification time, and description.

– You can click the refresh button in the upper right corner of the job list to
refresh the job list.

– You can click the setting button in the upper right corner of the
experiment list to select items you want to display in the experiment list.

– You can click the arrow in the table header to sort experiments.

Viewing Experiment Details
In the experiment list, click an experiment name to go to the experiment details
page. Basic experiment information is displayed in the upper part of the
experiment details page, and the job list of the experiment is displayed in the
lower part of the experiment details page.

Modelarts
Usermanual 7 Training Management

2024-04-30 436

Figure 7-22 Viewing experiment details

● You can click to edit the name and description of an experiment.
● You can click Only my jobs to view the jobs that you have created and

included in the experiment.

NO TE

By default, if an account has multiple IAM users, only the jobs of the current IAM user
is displayed.

● You can search for jobs by name, ID, algorithm, status, creation time, job type,
or resource pool.

● You can click the refresh button in the upper right corner of the job list to
refresh the job list.

● You can click the setting button in the upper right corner of the job list to
select items you want to display in the job list.

7.5.4 Deleting an Experiment
You can click Delete on the experiment list page or click Delete Experiment in
the upper right corner of the experiment details page to delete an experiment. All
jobs of the experiment are displayed on the Delete Experiment page. Enter
DELETE and click OK to confirm the deletion.

CA UTION

After an experiment is deleted, all jobs in the experiment will be deleted
accordingly and cannot be restored. Therefore, exercise cautions when performing
this operation.

7.6 Advanced Training Operations

7.6.1 Selecting a Training Mode
If a MindSpore engine and Ascend resources are used for a training job, ModelArts
provides three training modes: common mode, high-performance mode, and fault
diagnosis mode. You can obtain different diagnosis information based on
application scenarios.

Training Modes
By default, a training job is in general mode. For details about debugging
information in general mode, see Training Job Logs.

Modelarts
Usermanual 7 Training Management

2024-04-30 437

● High performance mode: In this mode, certain O&M functions will be
adjusted or even disabled to accelerate the running speed, but this will
deteriorate fault locating. This mode is suitable for stable networks requiring
high performance.

● Fault diagnosis mode: In this mode, certain O&M functions will be enabled or
adjusted to collect more information for locating faults. This mode provides
fault diagnosis. You can select a diagnosis type as required.

Table 7-26 details debugging information obtained in each mode.

Table 7-26 Debugging information obtained in each mode

Debugging
Information

Gener
al

High
perfor
manc
e

Fault
diagn
osis

Description

MindSpore log
levels

Info
level

Error
level

Info
level

MindSpore framework runtime
log

Running Data
Recorder (RDR)

Disabl
ed

Disabl
ed

Enabl
ed

If a running exception occurs, the
recorded MindSpore data is
automatically exported to help
locate the exception cause.
Different data is exported for
different exceptions.
For details about RDR, see
MindSpore Documentation.

analyze_fail.dat Enabled by default and
uploaded to the
training job log path

Graph build failure information is
automatically exported for
inference process analysis.

Dump data Enabled by default and
uploaded to the
training job log path

Dump data is exported when an
exception occurs during backend
running.

In the fault diagnosis mode, after the fault diagnosis function is enabled, you can
view the following fault diagnosis data: The following data is stored in the OBS
directory in the training log path.

Description of the training output log file in the fault diagnosis mode:

{obs-log-path}/
 modelarts-job-{job-id}-worker-{index}.log # Displayed log summary
 modelarts-job-{job-id}-proc-rank-{rank-id}-device-{device-id}.txt # Logs of each device are displayed.
 modelarts-job-{job-id}/
 ascend/
 npu_collect/rank_{id}/ # Output path for TFAdapter DUMP GRAPH and GE DUMP GRAPH,
generated only for the TensorFlow framework
 process_log/rank_{id}/ # Plog log path
 msnpureport/{task-index}/ # msnpureport tool execution logs, which you do not need to pay
attention to
 mindspore/
 log/ # MindSpore framework logs and MindSpore fault diagnosis data

Modelarts
Usermanual 7 Training Management

2024-04-30 438

https://www.mindspore.cn/docs/programming_guide/zh-CN/r1.5/custom_debugging_info.html#running-data-recorder

Table 7-27 Fault diagnosis data of MindSpore

Category Description

CANN framework
logs and fault
diagnosis data

Host logs of the INFO or higher levels, including CANN
software stack logs and driver logs.

MindSpore
framework logs
and fault
diagnosis data

MindSpore framework logs of the INFO or higher levels.

RDR file.
If a running exception occurs, the recorded MindSpore data
is automatically exported to help locate the exception
cause. Different data is exported for different exceptions.

analyze_fail.dat. Graph build failure information is
automatically exported for inference process analysis.

Dump data, which is generated when an exception arises
during backend operations.

Procedure

On the training job creation page, select a MindSpore engine and Ascend
resources, and then choose a training mode.

Figure 7-23 Selecting an algorithm

Figure 7-24 Selecting a resource type

Figure 7-25 Enabling fault diagnosis

Modelarts
Usermanual 7 Training Management

2024-04-30 439

7.6.2 Automatic Recovery from a Training Fault

7.6.2.1 Training Fault Tolerance Check
During model training, a training failure may occur due to a hardware fault. For
hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes
to improve user experience in training.

The fault tolerance check involves environment pre-check and periodic hardware
check. If any fault is detected during either of the checks, ModelArts automatically
isolates the faulty hardware and issues the training job again. In distributed
training, the fault tolerance check will be performed on all compute nodes used by
the training job.

The following shows four failure scenarios, among which the failure in scenario 4
is not caused by a hardware fault. You can enable fault tolerance in the other
three scenarios to automatically resume the training job.

● Scenario 1: The environment pre-check fails, and the hardware is faulty. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

Figure 7-26 Pre-check failure and hardware fault

● Scenario 2: The environment pre-check fails but the hardware is functional.
Then, ModelArts automatically isolates all faulty nodes and issues the training
job again.

Modelarts
Usermanual 7 Training Management

2024-04-30 440

Figure 7-27 Pre-check failure but functional hardware

● Scenario 3: The environment pre-check is successful and the user service
starts. A hardware fault occurs and the user service exits unexpectedly. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

Figure 7-28 Service failure and hardware fault

● Scenario 4: The environment pre-check is successful and the user service
starts. The hardware is functional. A fault occurs in the user service, the
training job ends in the failure state.

Modelarts
Usermanual 7 Training Management

2024-04-30 441

Figure 7-29 Service failure and functional hardware

After the faulty node is isolated, ModelArts creates a training job on new compute
nodes. If the resources provided by the resource pool are limited, the re-issued
training job will be queued with the highest priority. If the waiting time exceeds 30
minutes, the training job will automatically exit. This indicates that the resources
are so limited that the training job cannot start. In this case, buy a dedicated
resource pool to obtain dedicated resources.

If you use a dedicated resource pool to create a training job, the faulty nodes
identified during the fault tolerance check will be removed. The system
automatically adds healthy compute nodes to the dedicated resource pool. (This
function is coming soon.)

More details of a fault tolerance check:

1. Enabling Fault Tolerance Check
2. Check Items and Conditions
3. Effect of a Fault Tolerance Check
4. After the environment pre-check is successful, any hardware fault will

interrupt the user service. Add the reload ckpt code logic to the training so
that the pre-trained model saved before the training is interrupted can be
obtained. For details, see Resumable Training and Incremental Training.

Enabling Fault Tolerance Check
To enable fault tolerance check, enable auto restart when creating a training job.

● Configure fault tolerance check on the ModelArts management console:
Enable Auto Restart on the ModelArts management console. Auto Restart is
disabled by default, indicating that the job will not be re-issued and the
environment pre-check will not be enabled. After Auto Restart is enabled, the
number of restart retries ranges from 1 to 3.

● Configure fault tolerance check using an API:
Enable auto restart upon a fault using an API. When creating a training job,
configure the fault-tolerance/job-retry-num field in annotations of the
metadata field.

Modelarts
Usermanual 7 Training Management

2024-04-30 442

If the fault-tolerance/job-retry-num field is added, auto restart is enabled.
The value can be an integer ranging from 1 to 3. specifying the maximum
number of times that a job can be re-issued. If this hyperparameter is not
specified, the default value 0 is used, indicating that the job will not be re-
issued and the environment pre-check will not be enabled.

Figure 7-30 Setting the API

Check Items and Conditions

Check Item Item
(Log
Keywor
d)

Execution
Condition

Requirements for a Check

Domain
name
detection

dns None The domain names of the
volcano containers in the .host
file in /etc/volcano are
successfully resolved.

Disk size -
Container
root directory

disk-size
root

None The directory is greater than 32
GB.

Disk size
- /dev/shm

disk-size
shm

None The directory is greater than 1
GB.

Disk size - /
cache

disk-size
cache

None The directory is greater than 32
GB.

ulimit check ulimit An IB network is
used.

● Maximum locked memory >
16000

● Open files > 1000000
● Stack size > 8000
● Maximum user processes >

1000000

GPU check gpu-
check

GPU and the v2
training engine are
used.

GPUs are detected.

Effect of a Fault Tolerance Check
● If the fault tolerance check is passed, the logs of the check items will be

recorded, indicating that the check items are successful. You can search for

Modelarts
Usermanual 7 Training Management

2024-04-30 443

the keyword item in the log file. A fault tolerance check minimizes reported
runtime faults.

● If a fault tolerance check fails, check failure logs will be recorded. You can
search for the keyword item in the log file to view the failure information.

If the number of job restarts does not reach the specified time, the job will be
automatically issued again. You can search for keywords error,exiting to
obtain the logs recording a restarted job that ends with a failure.

Using reload ckpt to Resume an Interrupted Training

With fault tolerance enabled, if a training job is restarted due to a hardware fault,
you can obtain the pre-trained model in the code to restore the training to the
state before the restart. To do so, add reload ckpt to the code. For details, see
Resumable Training and Incremental Training.

7.6.2.2 Fault Dying Gasp

Application Scenarios

The sharp increase of model volumes and datasets requires a large-scale training
set for training a large-scale neural network. During distributed training in a large-
scale cluster, a chip or server in the cluster may be faulty. As a result, the
distributed training job fails. A dying gasp indicates that an interrupted training
job can be automatically resumed from the breakpoint where the previous training
was interrupted.

Constraints

Table 7-28 Constraints

Resource
Flavor

Ascend

Training
Framewo
rk

MindSpore

Modelarts
Usermanual 7 Training Management

2024-04-30 444

Working Principles

The process of a dying gasp is as follows:

1. Create a training job on the ModelArts console.
2. ModelArts creates a training container and starts the training script.
3. After the training script is started, MindSpore is called to generate the hybrid

parallel policy file strategy.proto. This file records the distribution of
operators on NPUs in the hybrid parallel scenario.

4. After a training fault occurs, the ModelArts training component sends the
SIGTERM signal to the affected service process.

5. The training script receives the SIGTERM signal and calls the elastic-agent
module. This module then calls MindSpore to generate the dying gasp CKPT.

6. ModelArts restarts the training container and starts the training script.
7. The training script calls the elastic-agent module. This module generates a

restoration policy file based on the NPU failure information in configmap and
the strategy.proto file.

8. The training script loads the dying gasp CKPT to resume the training based on
the restoration policy file.

In data parallel scenarios, the process is similar. The only difference is that the
parallel policy file and restoration policy file are not required. You only need to
save and load the dying gasp CKPT file.

Procedure
1. Install the binary dying gasp package.

Use ma_pre_start.sh to install the .whl package.
echo "[ma-pre-start] Enter the input directory"
cd /home/ma-user/modelarts/inputs/data_url_0/
echo "[ma-pre-start] Start to install mindx-elastic 0.0.1"
export PATH=/home/ma-user/anaconda/bin:$PATH
pip install ./mindx_elastic-0.0.1-py3-none-any.whl
echo "[ma-pre-start] Clean run package"
sudo rm -rf ./script ./*.run ./run_package *.whl
echo "[ma-pre-start] Set ENV"
export GLOG_v=2 # If the diagnosis mode is used, set the log level to INFO. echo "[ma-pre-start]
End"

Modelarts
Usermanual 7 Training Management

2024-04-30 445

2. Create a training job.
– Ensure that MindSpore is 1.6.0 or later.
– Add the following content to the sample code:

Load the dependency API.
from mindx_elastic.terminating_message import ExceptionCheckpoint
...

if args_opt.do_train:
dataset = create_dataset()
loss_cb = LossMonitor()
cb = [loss_cb]
if int(os.getenv('RANK_ID')) == 0:
batch_num = dataset.get_dataset_size()
Enable dying gasp saving.
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num,
keep_checkpoint_max=35,
async_save=True,
append_info=[{"epoch_num": cur_epoch_num}],
exception_save=True)

ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
directory=args_opt.train_url,
config=config_ck)
Define callback for dying gasp CKPT saving.
ckpoint_exp = ExceptionCheckpoint(
prefix="train_resnet_cifar10",
directory=args_opt.train_url,
config=config_ck)
Add callback for dying gasp CKPT saving.
cb += [ckpoint_cb, ckpoint_exp]

7.6.3 Resumable Training and Incremental Training

Overview

Resumable training indicates that an interrupted training job can be automatically
resumed from the checkpoint where the previous training was interrupted. This
method is applicable to model training that takes a long time.

Incremental training is a method in which input data is continuously used to
extend the existing model's knowledge to further train the model.

Checkpoints are used to resume model training or incrementally train a model.

During model training, training results (including but not limited to epochs, model
weights, optimizer status, and scheduler status) are continuously saved. In this
way, an interrupted training job can be automatically resumed from the
checkpoint where the previous training was interrupted.

To resume a training job, load a checkpoint and use the checkpoint information to
initialize the training status. To do so, add reload ckpt to the code.

Resumable Training and Incremental Training in ModelArts

To resume model training or incrementally train a model in ModelArts, configure
Training Output.

When creating a training job, set the data path to the training output, save
checkpoints in this data path, and set Predownload to Yes. If you set
Predownload to Yes, the system automatically downloads the checkpoint file in

Modelarts
Usermanual 7 Training Management

2024-04-30 446

the training output data path to a local directory of the training container before
the training job is started.

Enable fault tolerance check (auto restart) for resumable training. On the training
job creation page, enable Auto Restart. If the environment pre-check fails, the
hardware is not functional, or the training job fails, ModelArts will automatically
issue the training job again.

reload ckpt for MindSpore
import os
import argparse
parser.add_argument("--train_url", type=str)
args = parser.parse_known_args()
train_url is set to /home/ma-user/modelarts/outputs/train_url_0.
train_url = args.train_url

Initially defined network, loss function, and optimizer
net = resnet50(args_opt.batch_size, args_opt.num_classes)
ls = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
Initial epoch value for the first training. The initial value of epoch_size will be customized in MindSpore
1.3 and later versions.
cur_epoch_num = 0
Check whether there is a model file in the OBS output path. If there is no file, the model will be trained
from the beginning by default. If there is a model file, the CKPT file with the maximum epoch value will be
loaded as the pre-trained model.
if os.listdir(train_url):
 last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".ckpt")])[-1]
 print('last_ckpt:', last_ckpt)
 last_ckpt_file = os.path.join(train_url, last_ckpt)
 # Load the checkpoint.
 param_dict = load_checkpoint(last_ckpt_file)
 print('> load last ckpt and continue training!!')
 # Load model parameters to the network.
 load_param_into_net(net, param_dict)
 # Load model parameters to the optimizer.
 load_param_into_net(opt, param_dict)

 # Obtain the saved epoch value. The model will continue to be trained based on the epoch value. This
function will be supported in MindSpore 1.3 and later versions.
 # if param_dict.get("epoch_num"):
 # cur_epoch_num = int(param_dict["epoch_num"].data.asnumpy())
model = Model(net, loss_fn=ls, optimizer=opt, metrics={'acc'})
as for train, users could use model.train
if args_opt.do_train:
 dataset = create_dataset()
 batch_num = dataset.get_dataset_size()
 config_ck = CheckpointConfig(save_checkpoint_steps=batch_num,
 keep_checkpoint_max=35)
 # For append_info=[{"epoch_num": cur_epoch_num}], append_info will be supported in MindSpore
1.3 and later versions to save the epoch value at the current time.
 ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
 directory=args_opt.train_url,
 config=config_ck)
 loss_cb = LossMonitor()
 model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
 # For model.train(epoch_size-cur_epoch_num, dataset, callbacks=[ckpoint_cb, loss_cb]), the training
resumed from the breakpoint will be supported in MindSpore 1.3 and later versions.

7.6.4 Detecting Training Job Suspension

Overview
A training job may be suspended due to unknown reasons. If the suspension
cannot be detected promptly, resources cannot be released, leading to a waste. To

Modelarts
Usermanual 7 Training Management

2024-04-30 447

minimize resource cost and improve user experience, ModelArts provides
suspension detection for training jobs. With this function, suspension can be
automatically detected and displayed on the log details page. You can also enable
notification so that you can be promptly notified of job suspension.

Detection Rules
Determine whether a job is suspended based on the monitored job process status
and resource usage. A process is started to periodically monitor the changes of the
two metrics.

● Job process status: If the process I/O of a training job changes, the next
detection period starts. If the process I/O of the job remains unchanged in
multiple detection periods, the resource usage detection starts.

● Resource usage: If the process I/O remains unchanged, the system collects the
GPU usage within a certain period of time and determines whether the
resource usage changes based on the variance and median of the GPU usage
within the period. If the GPU usage is not changed, the job is suspended.

Constraints
Suspension can be detected only for training jobs that run on GPUs.

Procedure
Suspension detection is automatically performed during job running. No additional
configuration is required. After detecting that a job is suspended, the system
displays a message on the training job details page, indicating that the job may be
suspended. If you want to be notified of suspension (by SMS or email), enable
event notification on the job creation page.

Cases
Common cases and solutions to training job suspension are as follows:

Data Replication Suspension

Suspension Before Training

Suspension During Training

Suspension in the Last Training Epoch

7.6.5 Priority of a Training Job
When using a new-version dedicated resource pool for training jobs, you can set
the job priority when creating a training job or adjust the priority when a job is in
the Pending state for a long time. By adjusting the job priority, you can reduce the
job queuing duration.

Overview
Some training tasks, such as unimportant tests or experiments, are of low priority.
In this case, you need to prioritize training tasks (jobs). A task with a higher
priority is queued earlier than a task with a lower priority.

Modelarts
Usermanual 7 Training Management

2024-04-30 448

You can adjust the job execution sequence by configuring the priority of training
jobs to ensure normal running of important services at peak hours.

Constraints
● You can set the priority of a training job only if it is created using a new-

version dedicated resource pool.
● The value ranges from 1 to 3. The default priority is 1, and the highest priority

is 3. By default, the job priority can be set to 1 or 2. After the permission to
set the highest job priority is configured, the priority can be set to 1 to 3.

Configuring the Priority
Set the priority when you create a training job. The value ranges from 1 to 3. The
default priority is 1, and the highest priority is 3.

Changing the Priority
On the Training Jobs page, locate a training job in the Pending state and click

 in the Job Priority column. In the dialog box that appears, change the priority
and click OK.

7.6.6 Permission to Set the Highest Job Priority
You can configure the priority when you create a training job using a new-version
dedicated resource pool. You can change the priority of a pending job. The value
ranges from 1 to 3. The default priority is 1, and the highest priority is 3. By
default, the job priority can be set to 1 or 2. After the permission to set the
highest job priority is configured, the priority can be set to 1 to 3.

Assigning the Permission to Set the Highest Job Priority to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Allowing Users

to Set the Highest Job Priority.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:setHighPriority, and default resources.

Modelarts
Usermanual 7 Training Management

2024-04-30 449

Figure 7-31 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

7.7 Distributed Training

7.7.1 Distributed Training
ModelArts provides the following capabilities:

● Extensive built-in images, meeting your requirements
● Custom development environments set up using built-in images
● Extensive tutorials, helping you quickly understand distributed training
● Distributed training debugging in development tools such as PyCharm, VS

Code, and JupyterLab

Constraints
● The development environment refers to the new-version Notebook provided

by ModelArts, excluding the old-version Notebook.
● If the notebook instance flavors are changed, you can only perform single-

node debugging. You cannot perform distributed debugging or submit remote
training jobs.

Modelarts
Usermanual 7 Training Management

2024-04-30 450

● Only the PyTorch and MindSpore AI frameworks can be used for multi-node
distributed debugging. If you want to use MindSpore, each node must be
equipped with eight cards.

● The OBS paths in the debugging code should be replaced with your OBS
paths.

● PyTorch is used to write debugging code in this document. The process is the
same for different AI frameworks. You only need to modify some parameters.

Related Chapters
● Single-Node Multi-Card Training Using DataParallel: describes single-node

multi-card training using DataParallel, and corresponding code modifications.
● Multi-Node Multi-Card Training Using DistributedDataParallel : describes

multi-node multi-card training using DistributedDataParallel, and
corresponding code modifications.

● Distributed Debugging Adaptation and Code Example: describes the
procedure and code example of distributed debugging adaptation.

● Sample Code of Distributed Training: provides a complete code sample of
distributed parallel training for the classification task of ResNet18 on the
CIFAR-10 dataset.

7.7.2 Single-Node Multi-Card Training Using DataParallel
This section describes how to perform single-node multi-card parallel training
based on the PyTorch engine.

For details about the distributed training using the MindSpore engine, see the
MindSpore official website.

Training Process
The process of single-node multi-card parallel training is as follows:

1. A model is copied to multiple GPUs.
2. Data of each batch is distributed evenly to each worker GPU.
3. Each GPU does its own forward propagation and an output is obtained.
4. The master GPU with device ID 0 collects the output of each GPU and

calculates the loss.
5. The master GPU distributes the loss to each worker GPU. Each GPU does its

own backward propagation and calculates the gradient.
6. The master GPU collects gradients, updates parameter settings, and

distributes the settings to each worker GPU.

The detailed flowchart is as follows.

Modelarts
Usermanual 7 Training Management

2024-04-30 451

https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html

Figure 7-32 Single-node multi-card parallel training

Advantages and Disadvantages
● Straightforward coding: Only one line of code needs to be modified.

● Bottlenecks in communication: The master GPU is used to update and
distribute parameter settings, which causes high communication costs.

● Unbalanced GPU loading: The master GPU is used to summarize outputs,
calculate loss, and update weights. Therefore, the GPU memory and usage are
higher than those of other GPUs.

Code Modifications

Model distribution: DataParallel(model)

The code is slightly changed and the following is a simple example:

import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

Modelarts
Usermanual 7 Training Management

2024-04-30 452

7.7.3 Multi-Node Multi-Card Training Using
DistributedDataParallel

This section describes how to perform multi-node multi-card parallel training
based on the PyTorch engine.

Training Process

Compared with DataParallel, DistributedDataParallel can start multiple processes
for computing, greatly improving compute resource usage. Based on
torch.distributed, DistributedDataParallel has obvious advantages over
DataParallel in the distributed computing case. The process is as follows:

1. Initializes the process group.
2. Creates a distributed parallel model. Each process has the same model and

parameters.
3. Creates a distributed sampler for data distribution to enable each process to

load a unique subset of the original dataset in a mini batch.
4. Parameters are organized into buckets based on their shapes or sizes, which

are generally determined by each layer of the network that requires
parameter update in a neural network model.

5. Each process does its own forward propagation and computes its gradient.
6. After all parameter gradients at a bucket are obtained, communication is

performed for gradient averaging.
7. Each GPU updates model parameters.

The detailed flowchart is as follows.

Figure 7-33 Multi-node multi-card parallel training

Advantages
● Fast communication
● Balanced load

Modelarts
Usermanual 7 Training Management

2024-04-30 453

● Fast running speed

Code Modifications
● Multi-process startup
● New variables such as rank ID and world_size are used along with the TCP

protocol.
● Sampler for data distribution to avoid duplicate data between different

processes
● Model distribution: DistributedDataParallel(model)
● Model saved in GPU 0
import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

Related Operations
● For details about distributed debugging adaptation and code example, see

Distributed Debugging Adaptation and Code Example.
● This document also provides a complete code sample of distributed parallel

training for the classification task of ResNet18 on the cifar10 dataset. For
details, see Sample Code of Distributed Training.

7.7.4 Distributed Debugging Adaptation and Code Example
In DistributedDataParallel, each process loads a subset of the original dataset in a
batch, and finally the gradients of all processes are averaged as the final gradient.
Due to a large number of samples, a calculated gradient is more reliable, and a
learning rate can be increased.

This section describes the code of single-node training and distributed parallel
training for the classification job of ResNet18 on the CIFAR-10 dataset. Directly
execute the code to perform multi-node distributed training with CPUs or GPUs;
comment out the distributed training settings in the code to perform single-node
single-card training.

The training code contains three input parameters: basic training parameters,
distributed parameters, and data parameters. The distributed parameters are
automatically input by the platform. custom_data indicates whether to use
custom data for training. If this parameter is set to true, torch-based random data
is used for training and validation.

Dataset
CIFAR-10 dataset

In notebook instances, torchvision of the default version cannot be used to obtain
datasets. Therefore, the sample code provides three training data loading
methods.

Modelarts
Usermanual 7 Training Management

2024-04-30 454

Click CIFAR-10 python version on the download page to download the CIFAR-10
dataset.

● Download the CIFAR-10 dataset using torchvision.
● Download the CIFAR-10 dataset based on the URL and decompress the

dataset in a specified directory. The sizes of the training set and test set are
(50000, 3, 32, 32) and (10000, 3, 32, 32), respectively.

● Use Torch to obtain a random dataset similar to CIFAR-10. The sizes of the
training set and test set are (5000, 3, 32, 32) and (1000, 3, 32, 32),
respectively. The labels are still of 10 types. Set custom_data to true, and the
training task can be directly executed without loading data.

Training Code

In the following code, those commented with ### Settings for distributed training
and ... ### are code modifications for multi-node distributed training.

Do not modify the sample code. After the data path is changed to your path,
multi-node distributed training can be executed on ModelArts.

After the distributed code modifications are commented out, the single-node
single-card training can be executed. For details about the complete code, see
Sample Code of Distributed Training.

● Importing dependency packages
import datetime
import inspect
import os
import pickle
import random

import argparse
import numpy as np
import torch
import torch.distributed as dist
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from sklearn.metrics import accuracy_score

● Defining the method and random number for loading data (The code for
loading data is not described here due to its large amount.)
def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def get_data(path):
 pass

● Defining a network structure
class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)

Modelarts
Usermanual 7 Training Management

2024-04-30 455

http://www.cs.toronto.edu/~kriz/cifar.html

)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

● Training and validation
def main():
 file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

Modelarts
Usermanual 7 Training Management

2024-04-30 456

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 print('[warning] you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size,
rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False, drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate
data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

Modelarts
Usermanual 7 Training Management

2024-04-30 457

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader), val_accu),
'\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

● Result comparison
100-epoch cifar-10 dataset training is completed using two resource types
respectively: single-node single-card and two-node 16-card. The training
duration and test set accuracy are as follows.

Table 7-29 Training result comparison

Resource Type Single-Node Single-
Card

Two-Node 16-Card

Duration 60 minutes 20 minutes

Accuracy 80+ 80+

7.7.5 Sample Code of Distributed Training
The following provides a complete code sample of distributed parallel training for
the classification task of ResNet18 on the CIFAR-10 dataset.

The content of the training boot file main.py is as follows (if you need to execute
a single-node and single-card training job, delete the code for distributed
reconstruction):

import datetime
import inspect
import os
import pickle
import random
import logging

import argparse
import numpy as np
from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.distributed as dist
from torch.utils.data import TensorDataset, DataLoader

Modelarts
Usermanual 7 Training Management

2024-04-30 458

from torch.utils.data.distributed import DistributedSampler

file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

def load_pickle_data(path):
 with open(path, 'rb') as file:
 data = pickle.load(file, encoding='bytes')
 return data

def _load_data(file_path):
 raw_data = load_pickle_data(file_path)
 labels = raw_data[b'labels']
 data = raw_data[b'data']
 filenames = raw_data[b'filenames']

 data = data.reshape(10000, 3, 32, 32) / 255
 return data, labels, filenames

def load_cifar_data(root_path):
 train_root_path = os.path.join(root_path, 'cifar-10-batches-py/data_batch_')
 train_data_record = []
 train_labels = []
 train_filenames = []
 for i in range(1, 6):
 train_file_path = train_root_path + str(i)
 data, labels, filenames = _load_data(train_file_path)
 train_data_record.append(data)
 train_labels += labels
 train_filenames += filenames
 train_data = np.concatenate(train_data_record, axis=0)
 train_labels = np.array(train_labels)

 val_file_path = os.path.join(root_path, 'cifar-10-batches-py/test_batch')
 val_data, val_labels, val_filenames = _load_data(val_file_path)
 val_labels = np.array(val_labels)

 tr_data = torch.from_numpy(train_data).float()
 tr_labels = torch.from_numpy(train_labels).long()
 val_data = torch.from_numpy(val_data).float()
 val_labels = torch.from_numpy(val_labels).long()
 return tr_data, tr_labels, val_data, val_labels

def get_data(root_path, custom_data=False):
 if custom_data:
 train_samples, test_samples, img_size = 5000, 1000, 32
 tr_label = [1] * int(train_samples / 2) + [0] * int(train_samples / 2)
 val_label = [1] * int(test_samples / 2) + [0] * int(test_samples / 2)
 random.seed(2021)
 random.shuffle(tr_label)
 random.shuffle(val_label)
 tr_data, tr_labels = torch.randn((train_samples, 3, img_size, img_size)).float(),
torch.tensor(tr_label).long()
 val_data, val_labels = torch.randn((test_samples, 3, img_size, img_size)).float(),
torch.tensor(
 val_label).long()
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set

Modelarts
Usermanual 7 Training Management

2024-04-30 459

 elif os.path.exists(os.path.join(root_path, 'cifar-10-batches-py')):
 tr_data, tr_labels, val_data, val_labels = load_cifar_data(root_path)
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 else:
 try:
 import torchvision
 from torchvision import transforms
 tr_set = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transforms)
 val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transforms)
 return tr_set, val_set
 except Exception as e:
 raise Exception(
 f"{e}, you can download and unzip cifar-10 dataset manually, "
 "the data url is http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")

class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1,
bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)

Modelarts
Usermanual 7 Training Management

2024-04-30 460

 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def obs_transfer(src_path, dst_path):
 import moxing as mox
 mox.file.copy_parallel(src_path, dst_path)
 logging.info(f"end copy data from {src_path} to {dst_path}")

def main():
 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 logging.warning('you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###

Modelarts
Usermanual 7 Training Management

2024-04-30 461

 dist.init_process_group(init_method=args.init_method, backend="nccl",
world_size=args.world_size, rank=args.rank)
Settings for distributed training. Initialize DistributedDataParallel process. The
init_method, rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False,
drop_last=True)
Settings for distributed training. Create a sampler for data distribution to ensure that
different processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node * args.world_size
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

Settings for distributed training. Build a DistributedDataParallel model.
 model = nn.parallel.DistributedDataParallel(model)
Settings for distributed training. Build a DistributedDataParallel model.

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###
 tr_sampler.set_epoch(epoch)
Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []

Modelarts
Usermanual 7 Training Management

2024-04-30 462

 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader),
val_accu), '\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

FAQs

1. How Do I Use Different Datasets in the Sample Code?

● To use the CIFAR-10 dataset in the preceding code, download and
decompress the dataset and upload it to the OBS bucket. The file directory
structure is as follows:
DDP
|--- main.py
|--- input_dir
|------ cifar-10-batches-py
|-------- data_batch_1
|-------- data_batch_2
|-------- ...

DDP is the code directory specified during training job creation, main.py is
the preceding code example (the boot file specified during training job
creation), and cifar-10-batches-py is the decompressed dataset folder (stored
in the input_dir folder).

Figure 7-34 Creating a training job

Modelarts
Usermanual 7 Training Management

2024-04-30 463

● To use user-defined random data, change the value of custom_data in the
code example to true.
parser.add_argument('--custom_data', default='true')

Then, run main.py. The parameters for creating a training job are the same as
those shown in the preceding figure.

2. Why Can I Leave the IP Address of the Master Node Blank for DDP?

The init method parameter in parser.add_argument('--init_method',
default=None, help='tcp_port') contains the IP address and port number of the
master node, which are automatically input by the platform.

Modelarts
Usermanual 7 Training Management

2024-04-30 464

8 Inference Deployment

8.1 Introduction to Inference
After an AI model is developed, you can use it to create an AI application and
quickly deploy the application as an inference service. The AI inference capabilities
can be integrated into your IT platform by calling APIs.

Figure 8-1 Inference

● Develop a model: Models can be developed in ModelArts or your local
development environment. A locally developed model must be uploaded to
OBS.

● Create an AI application: Import the model file and inference file to the
ModelArts model repository and manage them by version. Use these files to
build an executable AI application.

● Deploy as a service: Deploy the AI application as a container instance in the
resource pool and register inference APIs that can be accessed externally.

● Perform inference: Add the function of calling the inference APIs to your
application to integrate AI inference into the service process.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 465

Deploying an AI Application as a Service
After an AI application is created, you can deploy it as a service on the Deploy
page. ModelArts supports the following deployment types:
● Real-time service

Deploy an AI application as a web service with real-time test UI and
monitoring supported.

● Batch service
Deploy an AI application as a batch service that performs inference on batch
data and automatically stops after data processing is complete.

8.2 Managing AI Applications

8.2.1 Introduction to AI Application Management
AI development and optimization require frequent iterations and debugging.
Modifications in datasets, training code, or parameters affect the quality of
models. If the metadata of the development process cannot be centrally managed,
the optimal model may fail to be reproduced.

ModelArts AI application management allows you to import all meta models
obtained through training, meta models uploaded to OBS, and meta models in
container images. In this way, you can centrally manage all iterated and debugged
AI applications.

Constraints
● In an ExeML project, after a model is deployed, the model is automatically

uploaded to the AI application management list. However, AI applications
generated by ExeML cannot be downloaded and can be used only for
deployment and rollout.

Scenarios for Creating AI Applications
● Imported from a training job: Create a training job in ModelArts and train a

model. After obtaining a satisfactory model, use it to create an AI application
and deploy the application as services.

● Imported from OBS: If you use a mainstream framework to develop and train
a model locally, you can upload the model to an OBS bucket based on the
model package specifications, import the model from OBS to ModelArts, and
use the model to create an AI application for service deployment.

● Imported from a container image: If an AI engine is not supported by
ModelArts, you can use it to build a model, import the model to ModelArts as
a custom image, use the image to create an AI application, and deploy the AI
application as services.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 466

Functions of AI Application Management

Table 8-1 Functions of AI application management

Supported
Function

Description

Creating an AI
Application

Import the trained models to ModelArts and create AI
applications for centralized management. The following
provides the operation guide for each method of importing
models.
● Importing a Meta Model from a Training Job
● Importing a Meta Model from a Container Image

Viewing Details
About an AI
Application

After an AI application is created, you can view its
information on the details page.

Managing AI
Application
Versions

To facilitate traceback and model tuning, ModelArts
provides the AI application version management function.
You can manage AI applications by version.

Supported AI Engines for ModelArts Inference

If you import a model from a template or OBS to create an AI application, the
following AI engines and versions are supported.

NO TE

● Runtime environments marked with recommended are unified runtime images, which
will be used as mainstream base inference images.

● Images of the old version will be discontinued. Use unified images.

● The base images to be removed are no longer maintained.

● Naming a unified runtime image: <AI engine name and version> - <Hardware and
version: CPU, CUDA, or CANN> - <Python version> - <OS version> - <CPU architecture>

Table 8-2 Supported AI engines and their runtime

Engine Runtime

TensorFlow tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

MindSpore mindspore_2.0.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

PyTorch pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

8.2.2 Creating an AI Application

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 467

8.2.2.1 Importing a Meta Model from a Training Job

You can create a training job in ModelArts to obtain a satisfactory model. Then,
you can import the model to AI Application Management for centralized
management. In addition, you can quickly deploy the model as a service.

Constraints
● A model generated from a training job that uses subscribed algorithms can be

directly imported to ModelArts without the need to use the inference code or
configuration file.

● ModelArts of the Arm architecture does not support model import from
training.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The training job has been successfully executed, and the model has been

stored in the OBS directory where the training output is stored (the input
parameter is train_url).

● If a model is generated from a training job that uses a frequently-used
framework or custom image, upload the inference code and configuration file
to the storage directory of the model by referring to Introduction to Model
Package Specifications.

● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 8-3.

Table 8-3 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 468

Parameter Description

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Training job. For details about the parameters, see
Table 8-4.

Table 8-4 Parameters of the meta model source

Parameter Description

Meta
Model
Source

Choose Training Job > Training Jobs or Training Job >
Training Jobs (New).
● Choose a training job that has executed under the

current account and a training version.

AI Engine Inference engine used by the meta model. The engine is
automatically matched based on the training job you
select.

Inference
Code

Set inference code for an AI application. The code is used
to customize the inference processing logic. Display the
inference code URL. You can copy this URL directly.

Runtime
Dependenc
y

List the dependencies of the selected model in the
environment.

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. A maximum of three
AI application descriptions are supported.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

c. Confirm the configurations and click Create now. The AI application is

created.
In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure
Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 469

Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

8.2.2.2 Importing a Meta Model from OBS
In scenarios where frequently-used frameworks are used for model development
and training, you can import the model to ModelArts and use it to create an AI
application for unified management.

Constraints
● The imported model for creating an AI application, inference code, and

configuration file must comply with the requirements of ModelArts. For
details, see Introduction to Model Package Specifications, Specifications
for Editing a Model Configuration File , and Specifications for Writing
Model Inference Code .

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The model has been developed and trained, and the type and version of the

AI engine used by the model are supported by ModelArts. For details, see
Supported AI Engines for ModelArts Inference.

● The trained model package, inference code, and configuration file have been
uploaded to OBS.

● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 8-5.

Table 8-5 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 470

Parameter Description

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to OBS. For details about the parameters, see Table 8-6.
For the meta model imported from OBS, edit the inference code and
configuration files by following model package specifications and place
the inference code and configuration files in the model folder storing the
meta model. If the selected directory does not comply with the model
package specifications, the AI application cannot be created.

Table 8-6 Parameters of the meta model source

Parameter Description

Meta
Model

OBS path for storing the meta model.
The OBS path cannot contain spaces. Otherwise, the AI
application fails to be created.

AI Engine The AI engine automatically associates with the meta
model storage path you select.
If AI Engine is set to Custom, you must specify the
protocol and port number in Container API for starting
the model. The request protocol is HTTPS, and the port
number is 8080.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 471

Parameter Description

Health
Check

Health check on a model. After you select an AI engine
that supports health check and runtime environment, this
parameter is displayed. When AI Engine is set to Custom,
you must configure health check in the image. Otherwise,
the service deployment will fail.
● Check Mode: Select HTTP request or Command.

When a custom engine is used, you can select HTTP
request or Command.
When a non-custom engine is used, you can select
only HTTP request.

● Health Check URL: This parameter is displayed when
Check Mode is set to HTTP request. Enter the health
check URL. The default value is /health.

● Health Check Command: This parameter is displayed
when Check Mode is set to Command. Enter the
health check command.

● Health Check Period: Enter an integer ranging from 1
to 2147483647. The unit is second.

● Delay(seconds): specifies the delay for performing
the health check after the instance is started. Enter an
integer ranging from 0 to 2147483647.

● Maximum Failures: Enter an integer ranging from 1
to 2147483647. During service startup, if the number
of consecutive health check failures reaches the
specified value, the service will be abnormal. During
service running, if the number of consecutive health
check failures reaches the specified value, the service
will enter the alarm status.

NOTE
To use a custom engine to create an AI application, ensure that
the custom engine complies with the specifications for custom
engines. For details, see Creating an AI Application Using a
Custom Engine.
If health check is configured for an AI application, the deployed
services using this AI application will stop 3 minutes after
receiving the stop instruction.

Runtime
Dependenc
y

List the dependencies of the selected model in the
environment.

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. You can add up to
three AI application descriptions.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 472

Parameter Description

Configurati
on File

By default, the system associates the configuration file
stored in OBS. After enabling this function, you can view
and edit the model configuration file.
NOTE

This function is to be taken offline. After that, you can modify
the model configuration by setting AI Engine, Runtime
Dependency, and Apis.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

API
Configurati
on

After enabling this function, you can edit RESTful APIs to
define the input and output formats of an AI application.
The model APIs must comply with ModelArts
specifications. For details, see Specifications for Editing
a Model Configuration File. For details about the code
example, see Code Example of apis Parameters.

c. Check the information and click Create now. The AI application is
created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure

Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

8.2.2.3 Importing a Meta Model from a Container Image

For AI engines that are not supported by ModelArts, you can import the models
you compile to ModelArts from custom images.

Constraints
● For details about the specifications and description of custom images, see

Custom Image Specifications for Creating AI Applications.

● The configuration file must be provided for a model that you have developed
and trained. The file must comply with ModelArts specifications. For details,
see Specifications for Editing a Model Configuration File . After the writing
is completed, upload the file to the specified OBS directory.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 473

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 8-7.

Table 8-7 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Container image. For details about the parameters, see
Table 8-8.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 474

Table 8-8 Parameters of the meta model source

Parameter Description

Container Image
Path Click to import the model image from the

container image. The model is of the Image type,
and you do not need to use swr_location in the
configuration file to specify the image location.
For details about operation guidance and
requirements for creating a custom image, see
Custom Image Specifications for Creating AI
Applications.
NOTE

The model image you select will be shared with the
system administrator, so ensure you have the permission
to share the image (images shared with other accounts
are not supported). When you deploy a service, ModelArts
deploys the image as an inference service. Ensure that
your image can be properly started and provide an
inference API.

Container API Protocol and port number for starting an AI
application
NOTE

The default request protocol and port number provided by
ModelArts are HTTP and 8080, respectively. Set them
based on the actual custom image.

Image
Replication

Indicates whether to copy the model image in the
container image to ModelArts.
● When this function is disabled, the model image

is not copied, AI applications can be created
quickly, but modifying or deleting images in the
source directory of SWR may affect service
deployment.

● When this function is enabled, the model image
is copied, AI applications cannot be created
quickly, but you can modify or delete images in
the source directory of SWR as that would not
affect service deployment.

NOTE
You must enable this function if you want to use images
shared by others. Otherwise, AI applications will fail to be
created.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 475

Parameter Description

Health Check Health check on an AI application. This parameter is
configurable only when the health check API is
configured in the custom image. Otherwise, the AI
application deployment will fail.
● Check Mode: Select HTTP request or

Command.
● Health Check URL: This parameter is displayed

when Check Mode is set to HTTP request. Enter
the health check URL. The default value is /
health.

● Health Check Command: This parameter is
displayed when Check Mode is set to
Command. Enter the health check command.

● Health Check Period: Enter an integer ranging
from 1 to 2147483647. The unit is second.

● Delay(seconds): specifies the delay for
performing the health check after the instance is
started. Enter an integer ranging from 0 to
2147483647.

● Maximum Failures: Enter an integer ranging
from 1 to 2147483647. During service startup, if
the number of consecutive health check failures
reaches the specified value, the service will be
abnormal. During service running, if the number
of consecutive health check failures reaches the
specified value, the service will enter the alarm
status.

NOTE
If health check is configured for an AI application, the
deployed services using this AI application will stop 3
minutes after receiving the stop instruction.

AI Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use
your applications. Click Add AI Application
Description and set the Document name and URL.
You can add up to three AI application descriptions.

Deployment
Type

Select the service types that the application can be
deployed. When deploying a service, only the
service types selected here are available. For
example, if you only select Real-time services here,
you can only deploy the AI application as a real-
time service after it is created.

Start command Customizable start command of a model

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 476

Parameter Description

Apis When you enable this function, you can edit
RESTful APIs to define the AI application input and
output formats. The model APIs must comply with
ModelArts specifications. For details, see
Specifications for Editing a Model Configuration
File. For details about the code example, see Code
Example of apis Parameters.

c. Check the information and click Next. The AI application is created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure

Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a service type
selected during AI application creation.

8.2.3 Viewing the AI Application List
You can view all created AI applications on the AI application list page. The AI
application list page displays the following information.

Table 8-9 AI application list

Parameter Description

AI Application
Name

Name of an AI application.

Latest Version Latest version of an AI application.

Status Status of an AI application.

Deployment Type Types of the services that an AI application can be
deployed as.

Versions Number of AI application versions.

Request Mode Request mode of real-time services.
● Synchronization Request: one-off inference with

results returned synchronously (shorter than 60s). This
mode is suitable for images and small videos.

● Asynchronous Request: one-off inference with results
returned asynchronously (over 60s). This mode is
suitable for real-time video inference and large videos.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 477

Parameter Description

Created Time when an AI application is created.

Description Description of an AI application.

Operation ● Create Version: Create an AI application version. The
settings of the last version are used by default, except
for the version. You can change the parameter settings.

● Delete: Delete the AI application.
NOTE

If an AI application version has been deployed as a service, you
must delete the associated service before deleting the AI
application version. A deleted AI application cannot be
recovered.

Click the check box next to the AI application name to display the hidden view at
the bottom of the list, where you can see the version list. (If the view is not

displayed, click in the bottom right corner.)

Figure 8-2 Version list

The version list displays the following information.

Table 8-10 Version list

Parameter Description

Version Current version of an AI application.

Status Status of an AI application.

Deployment Type Types of the services that an AI application can be
deployed as.

Model Size Size of an AI application.

Model Source Model source of an AI application.

Created Time when an AI application is created.

Description Description of an AI application.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 478

Parameter Description

Operation ● Deploy: Deploy an AI application as real-time services,
batch services, or edge services.

● Publish: Publish an AI application to AI Gallery.
● Delete: Delete a version of an AI application.

8.2.4 Viewing Details About an AI Application
After an AI application is created, you can view its information on the details page.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Application Management > AI Applications. The AI
Applications page is displayed.

2. Click the name of the target AI application. The application details page is
displayed.
On the application details page, you can view the basic information and
model precision of the AI application, and switch tab pages to view more
information.

Table 8-11 Basic information about an AI application

Parameter Description

Name Name of an AI application

Status Status of an AI application

Version Current version of an AI application

ID ID of an AI application

Description Click the edit button to add the description of an AI
application.

Deployment Type Types of the services that an AI application can be
deployed

Meta Model
Source

Source of the meta model, which can be training jobs,
OBS, or container images.

Training Name Associated training job if the meta model comes from a
training job. Click the training job name to go to its
details page.

Training Version Training job version if the meta model comes from an
old-version training job.

Storage path of
the meta model

Path to the meta model if the meta model comes from
OBS.

Container Image
Storage Path

Path to the container image if the meta model comes
from a container image.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 479

Parameter Description

AI Engine AI engine if the meta model comes from a training job
or OBS.

Engine Package
Address

Engine package address if the meta model comes from
OBS and AI Engine is Custom.

Runtime
Environment

Runtime environment on which the meta model
depends if the meta model comes from a training job
or OBS and a preset AI engine is used.

Container API Protocol and port number for starting the AI
application if the meta model comes from OBS (AI
Engine is Custom) or a container image.

Inference Code Path to the inference code if the meta model comes
from an olde-version training job.

Image
Replication

Image replication status if the meta model comes from
OBS or a container image.

Size Size of an AI application

Health Check Health check status if the meta model comes from OBS
or a container image. If health check is enabled, the
following parameters are displayed: Check Mode,
Health Check URL, Health Check Period, Delay, and
Maximum Failures.

AI Application
Description

Description document added during the creation of an
AI application.

Instruction Set
Architecture

System architecture.

Inference
Accelerator

Type of inference accelerator cards.

Table 8-12 Details page of an AI application

Parameter Description

Model Precision Model recall, precision, accuracy, and F1 score of an AI
application

Parameter
Configuration

API configuration, input parameters, and output
parameters of an AI application

Runtime
Dependency

Model dependency on the environment. If creating a
job failed, edit the runtime dependency. After the
modification is saved, the system will automatically use
the original image to create the job again.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 480

Parameter Description

Events The progress of key operations during AI application
creation
Events are stored for three months and will be
automatically cleared then.
For details about how to view events of an AI
application, see Viewing Events of an AI Application.

Constraint Displays the constraints of service deployment, such as
the request mode, boot command, and model
encryption, based on the settings during AI application
creation. For AI applications in asynchronous request
mode, parameters including the input mode, output
mode, service startup parameters, and job configuration
parameters can be displayed.

Associated
Services

The list of services that an AI application was deployed.
Click a service name to go to the service details page.

8.2.5 Managing AI Application Versions
To facilitate source tracing and repeated AI application tuning, ModelArts provides
the AI application version management function. You can manage models based
on versions.

Prerequisites

An AI application has been created in ModelArts.

Creating a New Version

On the AI Application Management > AI Applications page, click Create
Version in the Operation column of the target AI application. On the Create
Version page, set the parameters. For details, see Creating an AI Application.
Click Create now.

Deleting a Version

On the AI Application Management > AI Applications page, click the option
button on the left of the AI application name to display the application version
list. In the application version list, click Delete in the Operation column to delete
the corresponding version.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted version cannot be
recovered. Exercise caution when performing this operation.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 481

Deleting an AI Application

In the navigation pane, choose AI Application Management > AI Applications.
On the AI Applications page, click Delete in the Operation column to delete the
target AI application.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted AI application
cannot be recovered. Exercise caution when performing this operation.

8.2.6 Viewing Events of an AI Application
During the creation of an AI application, every key event is automatically recorded.
You can view the events on the details page of the AI application at any time.

This helps you better understand the process of creating an AI application and
locate faults more accurately when a task exception occurs. The following table
lists the available events.

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The model starts to import.
Start model import.

-

Abnormal Failed to create the image.
Failed to build the image.

Locate and rectify
the fault based on
the error
information. FAQ

Abnormal The custom image does not support
specified dependencies.
Customize model does not support
dependencies.

The runtime
dependencies cannot
be configured when
a custom image is
imported. Install the
pip dependency
package in the
Dockerfile that is
used to create the
image. FAQ

Abnormal Only custom images support
swr_location.
Non-custom type models should not
contain swr_location.

Delete the
swr_location field
from the model
configuration file
config.json and try
again.

Abnormal The health check API of a custom
image must be xxx.
The health check url of custom image
model must be %s.

Modify the health
check API of the
custom image and
try again.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 482

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The image creation task is in the xxx
state.
The status of the image building task
is %s.

-

Abnormal Label xxx does not exist in image xxx.
Image %s does not have the %s tag.

Contact technical
support.

Abnormal Invalid parameter value xxx exists in
the model configuration file.
Invalid %s in config.json.

Delete invalid
parameters from the
model configuration
file and try again.

Abnormal Failed to obtain the labels of image
xxx.
Failed to obtain the tag list of image
%s.

Contact technical
support.

Abnormal Failed to import data because xxx is
larger than xxx GB.
%s [%s] is larger than %dG and
cannot be imported.

The size of the
model or image
exceeds the upper
limit. Downsize the
model or image and
import it again. FAQ

Abnormal User xxx does not have OBS
permission obs:object:PutObjectAcl.
User %s does not have
obs:object:PutObjectAcl permission

The IAM user does
not have the
obs:object:PutObject
Acl permission on
OBS. Add the agency
permission for the
IAM user. FAQ

Abnormal Creating the image timed out. The
timeout duration is xxx minutes.
Image building task timeout. The %s-
minute limit is over.

There is a timeout
limit for image
building using
ImagePacker.
Simplify the code to
improve efficiency.
FAQ

Normal Model description updated.
Model description updated.

-

Normal Model runtime dependencies not
updated.
Model running dependencies not
updated.

-

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 483

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal Model runtime dependencies
updated. Recreating the image.
Model running dependencies
updated. Rebuild the image.

-

Abnormal SWR traffic control triggered. Try
again later.
The throttling threshold of swr has
been reached.

SWR traffic control
triggered. Try again
later.

Normal The system is being upgraded. Try
again later.
System is upgrading, please try again
later.

-

Abnormal Failed to obtain the source image. An
error occurred in authentication. The
token has expired.
Failed to access source image.
Authenticate Error, token expired.

Contact technical
support.

Abnormal Failed to obtain the source image.
Check whether the image exists.
Failed to access source image. Check
whether the image exists.

Contact technical
support.

Normal Source image size calculated.
Source image size calculated
successfully.

-

Normal Source image shared.
Source image shared successfully.

-

Abnormal Failed to create the image due to
traffic control. Try again later.
Failed to build the image due to the
threshold has been reached. Please
try again later.

Traffic control
triggered. Try again
later.

Abnormal Failed to send the image creation
request.
Failed to send image building
request.

Contact technical
support.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 484

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to share the source image.
Check whether the image exists or
whether you have the permission to
share the image.
Failed to share source image. Check
whether the image exists or whether
you have the share permission on the
image.

Check whether the
image exists or
whether you have
the permission to
share the image.

Normal The model imported.
Model imported successfully.

-

Normal Model file imported.
Model file imported successfully.

-

Normal Model size calculated.
Model size calculated successfully.

-

Abnormal Failed to import the model.
Failed to import the model.

For details about
how to locate and
rectify the fault, see
FAQ.

Abnormal Failed to copy the model file. Check
whether you have the OBS
permission.
Failed to copy model file due to obs
exception. Please Check your obs
access right.

Check whether you
have the OBS
permission. FAQ

Abnormal Failed to schedule the image creation
task.
Image building task scheduling failed.

Contact technical
support.

Abnormal Failed to start the image creation
task.
Failed to start the image building
task.

Contact technical
support.

Abnormal The Roman image has been created
but cannot be shared with resource
tenants.
The ROMA image is successfully built
but cannot be shared to resource
tenants.

Contact technical
support.

Normal Image created.
Image built successfully.

-

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 485

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The image creation task started.
Start the image building task.

-

Normal The environment image creation task
started.
Start the env image building task.

-

Normal The request for creating an
environment image received.
Received another env image building
request of the model.

-

Normal The request for creating an image
received.
Received another image building
request of the model.

-

Normal An existing environment image is
used.
Use cached env image.

-

Abnormal Failed to create the image. For
details, see image creation logs.
Failed to build the image. For details,
view the building log.

View the build logs
to locate and rectify
the fault. FAQ

Abnormal Failed to create the image due to an
internal system error. Contact
technical support.
Failed to build the image due to
system errors. Contact the
administrator.

Contact technical
support.

Abnormal Failed to import model file xxx
because it is larger than 5 GB.
Model file %s is larger than 5G and
cannot be imported.

The size of the
model file xxx is
greater than 5 GB.
Downsize the model
file and try again, or
use dynamic loading
to import the model
file. FAQ

Abnormal Failed to create the OBS bucket due
to an internal system error. Contact
technical support.
Failed to create bucket due to system
errors. Contact the administrator.

Contact technical
support.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 486

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to calculate the model size.
Subpath xxx does not exist in path
xxx.
Model size calculated failed.Can not
find %s child directory in current
model directory %s.

Correct the subpath
and try again, or
contact technical
support.

Abnormal Failed to calculate the model size.
The model of the xxx type does not
exist in path xxx.
Model size calculated failed.Can not
find %s file in current model
directory %s.

Check the storage
location of the
model of the xxx
type, correct the
path, and try again,
or contact technical
support.

Warning Failed to calculate the model size.
More than one xxx model file is
stored in path xxx.
Model size calculated failed.Find
more than one %s file in current
model directory %s.

-

During AI application creation, key events can both be manually and automatically
refreshed.

Viewing Events
1. In the navigation pane of the ModelArts management console, choose AI

Application Management > AI Applications. In the AI application list, click
the name of the target AI application to go to its details page.

2. View the events on the Events tab page.

8.3 Deploying an AI Application as a Service

8.3.1 Deploying AI Applications as Real-Time Services

8.3.1.1 Deploying as a Real-Time Service

After an AI application is prepared, you can deploy it as a real-time service and
call the service for prediction.

Constraints

A maximum of 20 real-time services can be deployed by a user.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 487

Prerequisites
● Data has been prepared. Specifically, you have created an AI application in the

Normal state in ModelArts.

Note
Real-time services deployed using the public resource pool also occupy quota
resources when the services are Abnormal or Stopped. If the quota is insufficient
and no more services can be deployed, delete some abnormal services to release
resources.

Quota calculation:

● If a dedicated resource pool is used to deploy real-time services, the quota is
not decreased. The quota is increased or decreased only when the dedicated
pool is created, modified, or deleted.

● When a shared resource pool is used to deploy a real-time service, the quota
will be increased or decreased when you create, change the number of, or
delete instances.

Metering calculation:

● If a real-time service is deployed using a dedicated pool, only the data of the
dedicated pool to which the service belongs is metered.

● When a shared pool is used to deploy a real-time service, the specifications
used by the service will be metered.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Real-Time Services. The real-time service list
is displayed by default.

2. In the real-time service list, click Deploy in the upper left corner. The Deploy
page is displayed.

3. Set parameters for a real-time service.

a. Set basic information about model deployment. For details about the
parameters, see Table 8-13.

Table 8-13 Basic parameters

Parameter Description

Name Name of the real-time service. Set this parameter as
prompted.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 488

Parameter Description

Auto Stop After this parameter is enabled and the auto stop time
is set, a service automatically stops at the specified
time. The auto stop function is enabled by default, and
the default value is 1 hour later.
The options are 1 hour later, 2 hours later, 4 hours
later, 6 hours later, and Custom. If you select Custom,
you can enter any integer from 1 to 24 hours in the
text box on the right.

Description Brief description of the real-time service.

b. Enter key information including the resource pool and AI application
configurations. For details, see Table 8-14.

Table 8-14 Parameters

Param
eter

Sub-
Parame
ter

Description

Resour
ce Pool

Public
Resourc
e Pool

CPU/GPU computing resources are available for
you to select.

Dedicat
ed
Resourc
e Pool

Select a specification from the dedicated resource
pool specifications. The physical pools with logical
subpools created are not supported temporarily.
NOTE

● The data of old-version dedicated resource pools will
be gradually migrated to the new-version dedicated
resource pools.

● For new users and the existing users who have
migrated data from old-version dedicated resource
pools to new ones, there is only one entry to new-
version dedicated resource pools on the ModelArts
management console.

● For the existing users who have not migrated data
from old-version dedicated resource pools to new
ones, there are two entries to dedicated resource
pools on the ModelArts management console, where
the entry marked with New is to the new version.

For details about the new version of dedicated resource
pools, see Comprehensive Upgrades to ModelArts
Resource Pool Management Functions.

AI
Applic
ation
and
Config
uration

AI
Applicat
ion
Source

Select My AI Applications based on your
requirements.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 489

Param
eter

Sub-
Parame
ter

Description

AI
Applicat
ion and
Version

Select the AI application and version that are in the
Normal state.

Traffic
Ratio
(%)

Set the traffic proportion of the current instance
node. Service calling requests are allocated to the
current version based on this proportion.
If you deploy only one version of an AI application,
set this parameter to 100%. If you select multiple
versions for gray release, ensure that the sum of
the traffic ratios of these versions is 100%.

Specific
ations

Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used in the current environment.
If specifications in the public resource pools are
unavailable, no public resource pool is available in
the current environment. In this case, use a
dedicated resource pool or contact the
administrator to create a public resource pool.
NOTE

When the selected flavor is used to deploy the service,
necessary system consumption is generated. Therefore,
the resources actually occupied by the service are slightly
greater than the selected flavor.

Comput
e Nodes

Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If
you set the number of nodes to a value greater
than 1, the distributed computing mode is used.
Select a computing mode based on the actual
requirements.

Environ
ment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information in environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Add AI
Applicat
ion
Version
and
Configu
ration

If the selected AI application has multiple versions,
you can add multiple versions and configure a
traffic ratio. You can use gray launch to smoothly
upgrade the AI application version.
NOTE

Free compute specifications do not support the gray
launch of multiple versions.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 490

Param
eter

Sub-
Parame
ter

Description

Mount
Storage

This parameter is displayed when the resource pool
is a dedicated resource pool. This function will
mount a storage volume to compute nodes
(compute instances) as a local directory when the
service is running. It is recommended when the
model or input data is large. Only OBS parallel file
systems are supported.
● Source Path: Select the storage path of the

parallel file. A cross-region OBS parallel file
system cannot be selected.

● Mount Path: Enter the mount path of the
container, for example, /obs-mount/.
– Select a new directory. If you select an

existing directory, existing files will be
overwritten. OBS mounting allows you to
add, view, and modify files in the mount
directory but does not allow you to delete
files in the mount directory. To delete files,
manually delete them in the OBS parallel file
system.

– It is a good practice to mount the container
to an empty directory. If the directory is not
empty, ensure that there are no files
affecting container startup in the directory.
Otherwise, such files will be replaced,
resulting in failures to start the container and
create the workload.

– The mount path must start with a slash (/)
and can contain a maximum of 1,024
characters, including letters, digits, and the
following special characters: \ _ -.

NOTE
Storage mounting can be used only by services deployed
in a dedicated resource pool.

Traffic
Limit

N/A Maximum number of times a service can be
accessed within a second. You can set this
parameter as needed.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 491

Param
eter

Sub-
Parame
ter

Description

WebSo
cket

N/A Whether to deploy a real-time service as a
WebSocket service. For details about WebSocket
real-time services, see Full-Process Development
of WebSocket Real-Time Services.
NOTE

● This function is supported only if the AI application is
WebSocket-compliant and comes from a container
image.

● After this function is enabled, Traffic Limit and Data
Collection cannot be set.

● This parameter cannot be changed after the service is
deployed.

4. After confirming the entered information, complete service deployment as

prompted. Generally, service deployment jobs run for a period of time, which
may be several minutes or tens of minutes depending on the amount of your
selected data and resources.

NO TE

After a real-time service is deployed, it is started immediately.

You can go to the real-time service list to check whether the deployment of
the real-time service is complete. In the real-time service list, after the status
of the newly deployed service changes from Deploying to Running, the
service is deployed successfully.

8.3.1.2 Viewing Service Details
After an AI application is deployed as a real-time service, you can access the
service page to view its details.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

2. On the Real-Time Services page, click the name of the target service. The
service details page is displayed.
You can view the service name, status, and other information. For details, see
Table 8-15.

Table 8-15 real-time service parameters

Parameter Description

Name Name of the real-time service.

Status Status of the real-time service.

Source AI application source of the real-time service.

Service ID Real-time service ID

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 492

Parameter Description

Description Service description, which can be edited after you click the
edit button on the right side.

Resource
Pool

Resource pool specifications used by the service. If the
public resource pool is used for deployment, this parameter
is not displayed.

Custom
Settings

Customized configurations based on real-time service
versions. This allows version-based traffic distribution
policies and configurations. Enable this option and click
View Settings to customize the settings. For details, see
Modifying Customized Settings.

Traffic Limit Maximum number of times a service can be accessed within
a second.

WebSocket Whether to upgrade to the WebSocket service.

3. Switch between tabs on the details page of a real-time service to view more

details. For details, see Table 8-16.

Table 8-16 Details of a real-time service

Parameter Description

Usage Guides This page displays the API URL, AI application
information, input parameters, and output parameters.
You can click to copy the API URL to call the service.

Prediction You can perform real-time prediction on this page. For
details, see Testing the Deployed Service.

Configuration
Updates

This page displays Current Configurations and Update
History.
● Current Configurations: AI application name,

version, status, compute node specifications, traffic
ratio, number of compute nodes, deployment
timeout interval, environment variables, storage
mounting, and resource pool information (for
services deployed in a dedicated resource pool)

● Update History: historical AI application
information.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 493

Parameter Description

Monitoring This page displays resource usage and AI application
calls.
● Resource Usage: includes the used and available

CPU, memory, GPU, and NPU resources.
● AI Application Calls: indicates the number of AI

application calls. The statistics collection starts after
the AI application status changes to Ready. (This
parameter is not displayed for WebSocket services.)

Event This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Service Events.

Logs This page displays the log information about each AI
application in the service. You can view logs generated
in the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining the time segment.
Meet the following rules to search logs:
● Do not enter strings that contain any following

delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● Enter keywords for exact search. A keyword is a word

between two adjacent delimiters.
● Enter keywords for fuzzy search. For example, you

can enter error, er?or, rro*, or er*r.
● Enter phrases for exact search. For example, Start to

refresh.
● Before enabling this function, you can combine

keywords with AND (&&) or OR (||). For example,
query logs&&erro* or query logs||erro*. After
enabling this function, you can combine keywords
with AND or OR. For example, query logs AND
erro* or query logs OR erro*.

Modifying Customized Settings
A customized configuration rule consists of the configuration condition (Setting),
access version (Version), and customized running parameters (including Setting
Name and Setting Value).

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 494

You can configure different settings with customized running parameters for
different versions of a real-time service.

The priorities of customized configuration rules are in descending order. You can
change the priorities by dragging the sequence of customized configuration rules.

After a rule is matched, the system will no longer match subsequent rules. A
maximum of 10 configuration rules can be configured.

Table 8-17 Parameters for Custom Settings

Parameter Man
dator
y

Description

Setting Yes Expression of the Spring Expression Language (SPEL) rule.
Only the equal, matches, and hashCode expressions of
the character type are supported.

Version Yes Access version for a customized service configuration rule.
When a rule is matched, the real-time service of the
version is requested.

Setting
Name

No Key of a customized running parameter, consisting of a
maximum of 128 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Setting
Value

No Value of a customized running parameter, consisting of a
maximum of 256 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Customized settings can be used in the following scenarios:

● If multiple versions of a real-time service are deployed for gray release,
customized settings can be used to distribute traffic by user.

Table 8-18 Built-in variables

Built-in Variable Description

DOMAIN_NAME Account name that is used to invoke the inference
request

DOMAIN_ID Account ID that is used to invoke the inference request

PROJECT_NAME Project name that is used to call an inference request

PROJECT_ID Project ID that invokes the inference request

USER_NAME Username that is used to call an inference request

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 495

Built-in Variable Description

USER_ID User ID that is used to call an inference request

Pound key (#) indicates that a variable is referenced. The matched character
string must be enclosed in single quotation marks.
#{Built-in variable} == 'Character string'
#{Built-in variable} matches 'Regular expression'

– Example 1:
If the account name in the inference request is User A, the specified
version is matched.
#DOMAIN_NAME == 'User A'

– Example 2:
If the account name in the inference request starts with op, the specified
version is matched.
#DOMAIN_NAME matches 'op.*'

Table 8-19 Common regular expressions

Characte
r

Description

. Match any single character except \n. To match any
character including \n, use (.|\n).

* Match the subexpression that it follows for zero or multiple
times. For example, zo* can match z and zoo.

+ Match the subexpression that it follows for once or multiple
times. For example, zo+ can match zo and zoo, but cannot
match z.

? Match the subexpression that it follows for zero or one
time. For example, do(es)? can match does or do in does.

^ Match the start of the input string.

$ Match the end of the input string.

{n} n is a non-negative integer, which matches exactly n
number of occurrences of an expression. For example, o{2}
cannot match o in Bob, but can match two os in food.

x|y Match x or y. For example, z|food can match z or food, and
(z|f)ood can match zood or food.

[xyz] Character set, where any single character in it can be
matched. For example, [abc] can match a in plain.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 496

Figure 8-3 Traffic distribution by user

● If multiple versions of a real-time service are deployed for gated launch,
customized settings can be used to access different versions through the
header.
Start with #HEADER_ to indicate that the header is referenced as a condition.
#HEADER_{key} == '{value}'
#HEADER_{key} matches '{value}'

– Example 1:
If the header of an inference HTTP request contains a version and the
value is 0.0.1, the condition is met. Otherwise, the condition is not met.
#HEADER_version == '0.0.1'

– Example 2:
If the header of an inference HTTP request contains testheader and the
value starts with mock, the rule is matched.
#HEADER_testheader matches 'mock.*'

– Example 3:
If the header of an inference HTTP request contains uid and the hash
code value meets the conditions described in the following algorithm, the
rule is matched.
#HEADER_uid.hashCode() % 100 < 10

Figure 8-4 Using header to access different versions

● If a real-time service version supports different runtime configurations, you
can use Setting Name and Setting Value to specify customized runtime
parameters so that different users can use different running configurations.
Example:
When user A accesses the AI application, the user uses configuration A. When
user B accesses the AI application, the user uses configuration B. When
matching a running configuration, ModelArts adds a header to the request
and also the customized running parameters specified by Setting Name and
Setting Value.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 497

Figure 8-5 Customized running parameters added for a customized
configuration rule

8.3.1.3 Testing the Deployed Service
After an AI application is deployed as a real-time service, you can debug code or
add files for testing on the Prediction tab page. Based on the input request (JSON
text or file) defined by the AI application, the service can be tested in either of the
following ways:

● JSON Text Prediction: If the input type of the AI application of the deployed
service is JSON text, that is, the input does not contain files, you can enter the
JSON code on the Prediction tab page for service testing.

● File Prediction: If the input type of the AI application of the deployed service
is file, including images, audios, and videos, you can add images on the
Prediction tab page for service testing.

NO TE

● If the input type is image, the size of a single image must be less than 8 MB.
● The maximum size of the request body for JSON text prediction is 8 MB.
● Due to the limitation of API Gateway, the duration of a single prediction cannot exceed

40s.
● The following image types are supported: png, psd, jpg, jpeg, bmp, gif, webp, psd, svg,

and tiff.
● This function is used for commissioning. In actual production, you are advised to call

APIs. You can select Access Authenticated Using a Token based on the authentication
mode.

Input Parameters
After a service is deployed, obtain the input parameters of the service on the
Usage Guides tab page of the service details page.

The input parameters displayed on the Usage Guides tab page vary depending on
the AI application source that you select.

● If your metamodel comes from ExeML or a built-in algorithm, the input and
output parameters are defined by ModelArts. For details, see the Usage
Guides tab page. On the Prediction tab page, enter the corresponding JSON
text or file for service testing.

● If you use a custom meta model with the inference code and configuration
file compiled by yourself (Specifications for Writing the Model
Configuration File), ModelArts only visualizes your data on the Usage
Guides tab page. The following figure shows the mapping between the input
parameters displayed on the Usage Guides tab page and the configuration
file.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 498

Figure 8-6 Mapping between the configuration file and Usage Guides

JSON Text Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.
2. On the Real-Time Services page, click the name of the target service. The

service details page is displayed. Enter the inference code on the Prediction
tab, and click Predict to perform prediction.

File Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.
2. On the Real-Time Services page, click the name of the target service. The

service details page is displayed. On the Prediction tab page, click Upload
and select a test file. After the file is uploaded successfully, click Predict to
perform a prediction test.

8.3.1.4 Accessing Real-Time Services

8.3.1.4.1 Accessing a Real-Time Service

If a real-time service is in the Running status, the real-time service has been
deployed successfully. This service provides a standard RESTful API for you to call.
Before integrating the API to the production environment, commission the API.

By default, APIs of real-time services are accessed using HTTPS. WebSocket-based
access is also supported. If you select WebSocket during real-time service
deployment, the API URL is a WebSocket address after the service is deployed. For
details, see Accessing a Real-Time Service Through WebSocket.

ModelArts supports the following authentication methods for accessing real-time
services (HTTPS requests are used as an example):

● Access Authenticated Using a Token

ModelArts allows you to call APIs to access real-time services in the following
ways:

● Accessing a Real-Time Service (Public Network Channel)
● Accessing a Real-Time Service (VPC High-Speed Channel)

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 499

When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

8.3.1.4.2 Authentication Mode

Access Authenticated Using a Token

If a real-time service is in the Running state, it has been deployed successfully.
This service provides a standard RESTful API for users to call. Before integrating
the API to the production environment, commission the API. You can use the
following methods to send an inference request to the real-time service:

● Method 1: Use GUI-based Software for Inference (Postman). (Postman is
recommended for Windows.)

● Method 2: Run the cURL Command to Send an Inference Request. (curl
commands are recommended for Linux.)

● Method 3: Use Python to Send an Inference Request.

Prerequisites
You have obtained a user token, local path to the inference file, URL of the real-
time service, and input parameters of the real-time service.

● The local path to the inference file can be an absolute path (for example, D:/
test.png for Windows and /opt/data/test.png for Linux) or a relative path
(for example, ./test.png).

● You can obtain the service URL and input parameters of a real-time service on
the Usage Guides tab page of its service details page.
The API URL is the service URL of the real-time service. If a path is defined for
apis in the model configuration file, the URL must be followed by the user-
defined path, for example, {URL of the real-time service}/predictions/poetry.

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or install the Postman Chrome extension.

Alternatively, use other software that can send POST requests. Postman 7.24.0
is recommended.

2. Open Postman.
3. Set parameters on Postman. The following uses image classification as an

example.
– Select a POST task and copy the API URL to the POST text box. On the

Headers tab page, set Key to X-Auth-Token and Value to the user
token.

– On the Body tab page, file input and text input are available.

▪ File input

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 500

Select form-data. Set KEY to the input parameter of the AI
application, which must be the same as the input parameter of the
real-time service. In this example, the KEY is images. Set VALUE to
an image to be inferred (only one image can be inferred).

▪ Text input
Select raw and then JSON(application/json). Enter the request body
in the text box below. An example request body is as follows:
{
 "meta": {
 "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
 },
 "data": {
 "req_data": [
 {
 "sepal_length": 3,
 "sepal_width": 1,
 "petal_length": 2.2,
 "petal_width": 4
 }
]
 }
}

meta can carry a universally unique identifier (UUID). When the
inference result is returned after API calling, the UUID is returned to
trace the request. If you do not need this function, leave meta blank.
data contains a req_data array for one or multiple pieces of input
data. The parameters of each piece of data, such as sepal_length
and sepal_width in this example are determined by the AI
application.

4. After setting the parameters, click send to send the request. The result will be
displayed in Response.
– Inference result using file input: The field values in the return result vary

with the AI application.
– Inference result using text input: The request body contains meta and

data. If the request contains uuid, uuid will be returned in the response.
Otherwise, uuid is left blank. data contains a resp_data array for the
inference results of one or multiple pieces of input data. The parameters
of each result are determined by the AI application, for example,
sepal_length and predictresult in this example.

Method 2: Run the cURL Command to Send an Inference Request

The command for sending inference requests can be input as a file or text.

● File input
curl -kv -F 'images=@Image path' -H 'X-Auth-Token:Token value' -X POST Real-time service URL

– -k indicates that SSL websites can be accessed without using a security
certificate.

– -F indicates file input. In this example, the parameter name is images,
which can be changed as required. The image storage path follows @.

– -H indicates the header of a POST command. X-Auth-Token is the
header key, which is fixed. Token value indicates the user token.

– POST is followed by the API URL of the real-time service.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 501

The following is an example of the cURL command for inference with file
input:
curl -kv -F 'images=@/home/data/test.png' -H 'X-Auth-Token:MIISkAY***80T9wHQ==' -X POST https://
modelarts-infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

● Text input
curl -kv -d '{"data":{"req_data":
[{"sepal_length":3,"sepal_width":1,"petal_length":2.2,"petal_width":4}]}}' -H 'X-Auth-
Token:MIISkAY***80T9wHQ==' -H 'Content-type: application/json' -X POST https://modelarts-
infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

-d indicates the text input of the request body.

Method 3: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see .
2. Create a request body for inference.

– File input
coding=utf-8

import requests

if __name__ == '__main__':
 # Config url, token and file path.
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Auth-Token': token
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result.
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import requests

if __name__ == '__main__':
 # Config url, token and file path
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Set body,then send request
 headers = {
 'Content-Type': 'application/json',

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 502

 'X-Auth-Token': token
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. The value of base64_data in body is of the
string type.

8.3.1.4.3 Access Mode

Accessing a Real-Time Service (Public Network Channel)

Context

By default, ModelArts inference uses the public network to access real-time
services. After a real-time service is deployed, a standard RESTful API is provided
for you to call. You can view the API URL on the Usage Guides tab page of the
service details page.

Figure 8-7 API URL

Accessing a Real-Time Service

The following authentication modes are available for accessing real-time services
from a public network:

● Access Authenticated Using a Token

Accessing a Real-Time Service (VPC Channel)

Context

To access a ModelArts real-time service from an internal VPC node of your
account, you can use a VPC channel. By creating an endpoint in your VPC and
connecting to the ModelArts VPC endpoint service, you can access the real-time
service from your VPC endpoint.

Procedure

To access a real-time service through a VPC channel, perform the following steps:

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 503

1. Obtain the ModelArts VPC endpoint service address.
2. Buy and connect to a ModelArts endpoint.
3. Set a VPC access channel for real-time services.
4. Create a private DNS zone.
5. Access a real-time service through VPC.

Step 1 Obtain the ModelArts VPC endpoint service address.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

2. Click Access VPC. In the displayed dialog box, view the VPC endpoint service
address.

Figure 8-8 Viewing a VPC endpoint service address

Step 2 Buy and connect to a ModelArts endpoint.

1. Log in to the VPC management console. In the navigation pane, choose VPC
Endpoint > VPC Endpoints.

2. Click Buy VPC Endpoint in the upper right corner.
– Region: region where the VPC endpoint is located.

Resources in different regions cannot communicate with each other. The
region must be the same as that of ModelArts.

– Service Category: Select Find a service by name.
– VPC Endpoint Service Name: Enter the endpoint service address

obtained in 1. Click Verify on the right. The system automatically sets
VPC, Subnet, and Private IP Address.

– Create a Private Domain Name: Retain the default setting.
3. Confirm the specifications, and click Next and then Submit. The VPC

endpoint list page is displayed.

Step 3 Set a VPC access channel for real-time services.

1. Log in to the ModelArts management console. In the navigation pane, choose
Service Deployment > Real-Time Services.

2. Click Access VPC. In the displayed dialog box, select the VPC used in 2. The
endpoint ID and endpoint IP address are automatically displayed.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 504

Figure 8-9 Selecting VPC

Step 4 Create a private DNS zone.

1. Log in to the DNS console. In the navigation pane on the left, choose Private
Zones.

2. Click Create Private Zone. Set the following parameters:
– Domain Name: infer-modelarts-<regionId>.xxx.com. The current region

ID without hyphens (-) is the value of regionId.
– VPC: Select a VPC you want to associate with the private zone.

3. Click OK.

Step 5 Access a real-time service through VPC.

1. Use the following API to access a real-time service through VPC:
https://{Private DNS domain name}/{URL}

– Private DNS domain name: private domain name you set. You can also
click Access VPC on the real-time service list page to view the domain
name in the displayed dialog box.

– URL: The URL for a real-time service is the part after the domain name of
API URL in the Usage Guides tab of the service details page.

Figure 8-10 Obtaining the URL

2. Use GUI-based software, cURL command, or Python to access a real-time
service. For details, see Access Authenticated Using a Token.

----End

Accessing a Real-Time Service (VPC High-Speed Channel)

Context

When accessing a real-time service, you may require:

● High throughput and low latency
● TCP or RPC requests

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 505

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

NO TE

The following functions that are available through the inference platform will be
unavailable if you use high-speed access:

● Authentication

● Traffic distribution by configuration

● Load balancing

● Alarm, monitoring, and statistics

Figure 8-11 High-speed access through VPC peering

Preparations

Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

NO TICE

● For details about how to deploy services in new-version dedicated resource
pools, see Comprehensive Upgrades to ModelArts Resource Pool
Management Functions.

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, there is a limit on how often you can get the IP address

and port number of a real-time service. The number of calls of each tenant
account cannot exceed 2000 per minute, and that of each IAM user account
cannot exceed 20 per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 506

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the real-time service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts management console, choose Dedicated Resource Pools
> Elastic Cluster, locate the dedicated resource pool used for service deployment,
and click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 8-12 Locating the target dedicated resource pool

Figure 8-13 Obtaining the network configuration

Figure 8-14 Interconnecting the VPC

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 507

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

Figure 8-15 Selecting a VPC when purchasing an ECS

Figure 8-16 VPC

Step 3 Obtain the IP address and port number of the real-time service.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 508

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

● Method 1: Obtain the IP address and port number using GUI software.

Figure 8-17 Example response

● Method 2: Obtain the IP address and port number using Python.
The following parameters in the Python code below need to be modified:
– project_id: your project ID. To obtain it, see "Common Parameters" >

"Obtaining a Project ID and Name" in ModelArts API Reference.
– service_id: service ID, which can be viewed on the service details page.
– REGION_ENDPOINT: service endpoint. To obtain it, see "Before You

Start" > "Endpoints" in ModelArts API Reference.
def get_app_info(project_id, service_id):
 list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
 url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
 headers = {'X-Auth-Token': X_Auth_Token}
 response = requests.get(url, headers=headers)
 print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from 3.
● Run the following command to access the real-time service:

curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

Figure 8-18 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
 infer_url = "{}://{}:{}"

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 509

 url = infer_url.format(schema, ip, port)
 response = requests.post(url, data=body)
 print(response.content)

NO TE

High-speed access does not support load balancing. You need to customize load balancing
policies when you deploy multiple instances.

----End

8.3.1.4.4 Accessing a Real-Time Service Through WebSocket

Context
WebSocket is a network transmission protocol that supports full-duplex
communication over a single TCP connection. It is located at the application layer
in the OSI model. The WebSocket communication protocol was established by IETF
as standard RFC 6455 in 2011 and supplemented by RFC 7936. The WebSocket API
in the Web IDL is standardized by W3C.

WebSocket simplifies data exchange between the client and server and allows the
server to proactively push data to the client. In the WebSocket API, if the initial
handshake between the client and server is successful, a persistent connection can
be established between them and bidirectional data transmission can be
performed.

Prerequisites
● A real-time service has been deployed with WebSocket enabled.
● The image for importing the AI application is WebSocket-compliant.

Constraints
● WebSocket supports only the deployment of real-time services.
● WebSocket supports only real-time services deployed using AI applications

imported from custom images.

Calling a WebSocket Real-Time Service
WebSocket itself does not require additional authentication. ModelArts WebSocket
is WebSocket Secure-compliant, regardless of whether WebSocket or WebSocket
Secure is enabled in the custom image. WebSocket Secure supports only one-way
authentication, from the client to the server.

You can use one of the following authentication methods provided by ModelArts:

● Access Authenticated Using a Token

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call WebSocket.

1. Establish a WebSocket connection.
2. Exchange data between the WebSocket client and the server.

Step 1 Establish a WebSocket connection.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 510

1. Open Postman of a version later than 8.5, for example, 10.12.0. Click in
the upper left corner and choose File > New. In the displayed dialog box,
select WebSocket Request (beta version currently).

Figure 8-19 WebSocket Request

2. Configure parameters for the WebSocket connection.
Select Raw in the upper left corner. Do not select Socket.IO (a type of
WebSocket implementation, which requires that both the client and the server
run on Socket.IO). In the address box, enter the API Address obtained on the
Usage Guides tab on the service details page. If there is a finer-grained URL
in the custom image, add the URL to the end of the address. If queryString is
available, add this parameter in the params column. Add authentication
information into the header. The header varies depending on the
authentication mode, which is the same as that in the HTTPS-compliant
inference service. Click Connect in the upper right corner to establish a
WebSocket connection.

Figure 8-20 Obtaining the API address

NO TE

– If the information is correct, CONNECTED will be displayed in the lower right
corner.

– If establishing the connection failed and the status code is 401, check the
authentication.

– If a keyword such as WRONG_VERSION_NUMBER is displayed, check whether the
port configured in the custom image is the same as that configured in WebSocket
or WebSocket Secure.

The following shows an established WebSocket connection.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 511

Figure 8-21 Connection established

NO TICE

Preferentially check the WebSocket service provided by the custom image. The
type of implementing WebSocket varies depending on the tool you used.
Possible issues are as follows: A WebSocket connection can be established but
cannot be maintained, or the connection is interrupted after one request and
needs to be reconnected. ModelArts only ensures that it will not affect the
WebSocket status in a custom image (the API address and authentication
mode may be changed on ModelArts).

Step 2 Exchange data between the WebSocket client and the server.

After the connection is established, WebSocket uses TCP for full-duplex
communication. The WebSocket client sends data to the server. The
implementation types vary depending on the client, and the lib package may also
be different for the same language. Different implementation types are not
considered here.

The format of the data sent by the client is not limited by the protocol. Postman
supports text, JSON, XML, HTML, and Binary data. Take text as an example. Enter
the text data in the text box and click Send on the right to send the request to the
server. If the text is oversized, Postman may be suspended.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 512

Figure 8-22 Sending data

----End

8.3.1.4.5 Server-Sent Events

Context

Server-Sent Events (SSE) is a server push technology enabling a server to push
events to a client via an HTTP connection. This technology is usually used to
enable a server to push real-time data to a client, for example, a chat application
or a real-time news update.

SSE primarily facilitates unidirectional real-time communication from the server to
the client, such as streaming ChatGPT responses. In contrast to WebSockets, which
provide bidirectional real-time communication, SSE is designed to be more
lightweight and simpler to implement.

Prerequisites

The image for importing the AI application is SSE-compliant.

Constraints
● SSE supports only the deployment of real-time services.
● It supports only real-time services deployed using AI applications imported

from custom images.

Calling an SSE Real-Time Service

The SSE protocol itself does not introduce new authentication mechanisms; it
relies on the same methods as HTTP requests.

You can use one of the following authentication methods provided by ModelArts:

● Access Authenticated Using a Token

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call an SSE service.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 513

Figure 8-23 Calling an SSE service

Figure 8-24 Response header Content-Type

NO TE

In normal cases, the value of Content-Type in the response header is text/event-
stream;charset=UTF-8.

8.3.1.5 Cloud Shell

Scenarios

You can use Cloud Shell provided by the ModelArts console to log in to a running
real-time service instance container.

Constraints
● Cloud Shell can only access a container when the associated real-time service

is deployed within a dedicated resource pool

● Cloud Shell can only access a container when the associated real-time service
is running.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 514

Using Cloud Shell
1. Log in to the ModelArts console. In the navigation pane, choose Service

Deployment > Real-Time Services.
2. On the real-time service list page, click the name or ID of the target service.

The real-time service details page is displayed.
3. Click the Cloud Shell tab and select the AI application version and compute

node. When the connection status changes to , you have logged in to the
instance container.
If the server disconnects due to an error or remains idle for 10 minutes, you
can select Reconnect to regain access to the container instance.

NO TE

An exception may occur when some users log in to the Cloud Shell page. Click Enter
to rectify the fault.

Figure 8-25 Abnormal path

8.3.2 Deploying AI Applications as Batch Services

8.3.2.1 Deploying as a Batch Service
After an AI application is prepared, you can deploy it as a batch service. The
Service Deployment > Batch Services page lists all batch services.

Prerequisites
● A ModelArts application in the Normal state is available.
● Data to be batch processed is ready and has been upload to an OBS directory.
● At least one empty folder has been created in OBS for storing the output.

Context
● A maximum of 1,000 batch services can be created.
● Based on the input request (JSON or file) defined by the AI application,

different parameters are entered. If the AI application input is a JSON file, a
configuration file is required to generate a mapping file. If the AI application
input is a file, no mapping file is required.

● Batch services can only be deployed in a public resource pool, but not a
dedicated resource pool.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Batch Services. By default, the Batch Services
page is displayed.

2. In the batch service list, click Deploy in the upper left corner. The Deploy
page is displayed.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 515

3. Set parameters for a batch service.

a. Set the basic information, including Name and Description. The name is
generated by default, for example, service-bc0d. You can specify Name
and Description according to actual requirements.

b. Set other parameters, including AI application configurations. For details,
see Table 8-20.

Table 8-20 Parameters

Parameter Description

AI Application
Source

Select My AI Applications based on your
requirements.

AI Application
and Version

Select an AI application and version that are
running properly.

Input Path Select the OBS directory where the uploaded data is
stored. Select a folder or a .manifest file. For details
about the specifications of the .manifest file, see
Manifest File Specifications.
NOTE

● If the input data is an image, ensure that the size of a
single image is less than 10 MB.

● If the input data is in CSV format, ensure that no
Chinese character is included.

● If the input data is in CSV format, ensure that the file
size does not exceed 12 MB.

Request Path URL used for calling the AI application API in a
batch service, and also the request path of the AI
application service. Its value is obtained from the
url field of apis in the AI application configuration
file.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 516

Parameter Description

Mapping
Relationship

If the AI application input is in JSON format, the
system automatically generates the mapping based
on the configuration file corresponding to the AI
application. If the AI application input is other file,
mapping is not required.
Automatically generated mapping file. Enter the
field index corresponding to each parameter in the
CSV file. The index starts from 0.
Mapping rule: The mapping rule comes from the
input parameter (request) in the model
configuration file config.json. When type is set to
string, number, integer, or boolean, you are
required to set the index parameter. For details
about the mapping rule, see Example Mapping.
The index must be a positive integer starting from
0. If the value of index does not comply with the
rule, this parameter is ignored in the request. After
the mapping rule is configured, the corresponding
CSV data must be separated by commas (,).

Output Path Select the path for saving the batch prediction
result. You can select the empty folder that you
create.

Specifications Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used at the current region.

Compute Nodes Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If you
set the number of nodes to a value greater than 1,
the distributed computing mode is used. Select a
computing mode based on the actual requirements.

Environment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information in environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

4. After setting the parameters, deploy the model as a batch service as

prompted. Deploying a service generally requires a period of time, which may
be several minutes or tens of minutes depending on the amount of your data
and resources.
You can go to the batch service list to view the basic information about the
batch service. In the batch service list, after the status of the newly deployed

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 517

service changes from Deploying to Running, the service is deployed
successfully.

Manifest File Specifications
ModelArts batch services support manifest files, which describe data input and
output.

Example input manifest file
● File name: test.manifest
● File content:

{"source": "obs://test/data/1.jpg"}
{"source": "s3://test/data/2.jpg"}
{"source": "https://infers-data.obs.xxx.com:443/xgboosterdata/data.csv?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDM..."}

● Requirements on the file:

a. The file name extension must be .manifest.
b. The file content is in JSON format. Each row describes a piece of input

data, which must be accurate to a file instead of a folder.
c. The value of source is the OBS file path in the format of <OBS path>/

{{Bucket name}}/{{Object name}}.

Example output manifest file

A manifest file will be generated in the output directory of the batch services.
● Assume that the output path is //test-bucket/test/. The result is stored in the

following path:
OBS bucket/directory name
├── test-bucket
│ ├── test
│ │ ├── infer-result-{{task_id}}.manifest
│ │ ├── infer-result
│ │ │ ├── 1.jpg_result.txt
│ │ │ ├── 2.jpg_result.txt

● Content of the infer-result-0.manifest file:
{"source": "obs://obs-data-bucket/test/data/1.jpg","result":"SUCCESSFUL","inference-loc": "obs://test-
bucket/test/infer-result/1.jpg_result.txt"}
{"source": "s3://obs-data-bucket/test/data/2.jpg","result":"FAILED","error_message": "Download file
failed."}
{"source ": "https://infers-data.obs.xxx.com:443/xgboosterdata/2.jpg?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDMNZWxzhBZ6Q-3HcoZMh9gISwQOVBwm4ZytB_m8sg1fL6isU7T3CnoL9jmv
DGgT9VBC7dC1EyfSJrUcqfB_N0ykCsfrA1Tt_IQYZFDu_HyqVk-
GunUcTVdDfWlCV3TrYcpmznZjliAnYUO89kAwCYGeRZsCsC0ePu4PHMsBvYV9gWmN9AUZIDn1sfRL4vo
BpwQnp6tnAgHW49y5a6hP2hCAoQ-95SpUriJ434QlymoeKfTHVMKOeZxZea-
JxOvevOCGI5CcGehEJaz48sgH81UiHzl21zocNB_hpPfus2jY6KPglEJxMv6Kwmro-
ZBXWuSJUDOnSYXI-3ciYjg9-
h10b8W3sW1mOTFCWNGoWsd74it7l_5-7UUhoIeyPByO_REwkur2FOJsuMpGlRaPyglZxXm_jfdLFXobYtz
Zhbul4yWXga6oxTOkfcwykTOYH0NPoPRt5MYGYweOXXxFs3d5w2rd0y7p0QYhyTzIkk5CIz7FlWNapFISL
7zdhsl8RfchTqESq94KgkeqatSF_iIvnYMW2r8P8x2k_eb6NJ7U_q5ztMbO9oWEcfr0D2f7n7Bl_nb2HIB_H9tj
zKvqwngaimYhBbMRPfibvttW86GiwVP8vrC27FOn39Be9z2hSfJ_8pHej0yMlyNqZ481FQ5vWT_vFV3JHM-
7I1ZB0_hIdaHfItm-J69cTfHSEOzt7DGaMIES1o7U3w%3D%3D","result":"SUCCESSFUL","inference-loc":
"obs://test-bucket/test/infer-result/2.jpg_result.txt"}

● File format:

a. The file name is infer-result-{{task_id}}.manifest, where task_id is the
batch task ID, which is unique for a batch service.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 518

b. If a large number of files need to be processed, multiple manifest files
may be generated with the same suffix .manifest and are distinguished
by suffix, for example, infer-result-{{task_id}}_1.manifest.

c. The infer-result-{{task_id}} directory is created in the manifest directory
to store the file processing result.

d. The file content is in JSON format. Each row describes the output result
of a piece of input data.

e. The file contains multiple fields:

i. source: input data description, which is the same as that of the input
manifest file

ii. result: file processing result, which can be SUCCESSFUL or FAILED
iii. inference-loc: output result path. This field is available when result is

SUCCESSFUL. The format is obs://{{Bucket name}}/{Object name}.
iv. error_message: error information. This field is available when the

result is FAILED.

Example Mapping
The following example shows the relationship between the configuration file,
mapping rule, CSV data, and inference request.

The following uses a file for prediction as an example:

[
 {
 "method": "post",
 "url": "/",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number"
 },
 "input_2": {
 "type": "number"
 },
 "input_3": {
 "type": "number"
 },
 "input_4": {
 "type": "number"
 }
 }
 }
]
 }
 }
 }
 }
 }

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 519

 }
 }
]

The ModelArts management console automatically resolves the mapping
relationship from the configuration file as shown below. When calling a ModelArts
API, configure the mapping by following the rule.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number",
 "index": 0
 },
 "input_2": {
 "type": "number",
 "index": 1
 },
 "input_3": {
 "type": "number",
 "index": 2
 },
 "input_4": {
 "type": "number",
 "index": 3
 }
 }
 }
]
 }
 }
 }
 }
}

Multiple pieces of CSV data for inference are separated by commas (,) The
following shows an example:

5.1,3.5,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,1.3,0.2

Depending on the defined mapping relationship, the inference request is shown
below, whose format is similar to that for real-time services.

{
 "data": {
 "req_data": [{
 "input_1": 5.1,
 "input_2": 3.5,
 "input_3": 1.4,
 "input_4": 0.2
 }]
 }
}

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 520

8.3.2.2 Viewing the Batch Service Prediction Result

When deploying a batch service, you can select the location of the output data
directory. You can view the running result of the batch service that is in the
Completed status.

Procedure
1. Log in to the ModelArts management console and choose Service

Deployment > Batch Services.

2. Click the name of the target service in the Completed status. The service
details page is displayed.

– You can view the service name, status, ID, input path, output path, and
description.

– You can click in the Description area to edit the description.

3. Obtain the detailed OBS path next to Output Path, switch to the path and
obtain the batch service prediction results, including the prediction result file
and the AI application prediction result.

If the prediction is successful, the directory contains the prediction result file
and AI application prediction result. Otherwise, the directory contains only the
prediction result file.

– Prediction result file: The file is in xxx.manifest format, which contains
the file path and prediction result, and more.

– AI application prediction result:

▪ If images are input, a result file is generated for each image in the
Image name__result.txt format, for example,
IMG_20180919_115016.jpg_result.txt.

▪ If audio files are input, a result file is generated for each audio file in
the Audio file name__result.txt format, for example, 1-36929-
A-47.wav_result.txt.

▪ If table data is input, the result file is generated in the Table
name__result.txt format, for example, train.csv_result.txt.

8.3.3 Deploying AI Applications as Edge Services

8.3.3.1 Deploying an Edge Service

You can deploy an AI application as an edge service. The Service Deployment >
Edge Services page lists all edge services.

Prerequisites
● A ModelArts application in the Normal state is available.

● An edge resource pool is available if you want to use one to deploy an edge
service. For details, see Creating an Edge Resource Pool.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 521

Background

A maximum of 1,000 edge services can be deployed.

Deploying an Edge Service (Synchronous Request)
1. Log in to the ModelArts console. In the navigation pane, choose Service

Deployment > Edge Services. By default, the Edge Services page is
displayed.

2. In the edge service list, click Deploy in the upper left corner. The Deploy page
is displayed.

3. Set edge service parameters.

a. Set the basic information, including Name and Description. The name is
generated by default, for example, service-bc0d. You can specify Name
and Description based on your actual needs.

b. Set other parameters, including the resource pool and AI application
configurations. For details, see Table 8-21.

Table 8-21 Parameters

Parameter Description

Deployment
Mode

Only edge resource pool is supported.

Deployment
Instances

Set the number of deployment instances.

Select Edge
Resource Pool

Select an edge resource pool.

AI Application
and
Configuration

Select an AI application and set parameters. For
details, see Table 8-22.

Table 8-22 AI Application and Configuration

Parameter Description

AI Application
Source

Select My AI Applications.

AI Application
and Version

Select an AI application and version that are
running properly.

Specifications Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used.

Environment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information in environment variables.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 522

Parameter Description

Network
Configuration

This parameter is displayed when Deployment
Mode is set to Edge Resource Pool and a pool of
ModelArts edge nodes is selected. Only Port
Mapping is supported. If you use this access
method, you must configure the container port,
host NIC address, and host port information. You
can either choose a host port or let it be assigned
automatically. If you use an assigned port, you
need to define the minimum and maximum values
for the host port.

Volumes This parameter is displayed when Deployment
Mode is set to Edge Resource Pool and a pool of
ModelArts edge nodes is selected. You need to set
volume type, volume name, disk source, mount
path, storage media, and permission. The volume
type can be host path, temporary path, or NFS.
NOTE

To use NFS, install the NFS service on related nodes
beforehand. For details, see Installing and Configuring
NFS.

4. Click Create now. Deploying a service generally requires a period of time,

which may be several minutes or tens of minutes depending on the amount
of your data and resources.
You can go to the edge service list to check the status of the edge service. In
the edge service list, after the status of the service changes from Deploying
to Running, the service is deployed. In the edge service list, you can view the
request mode and deployment mode of the edge service.

Deploying an Edge Service (Asynchronous Request)
1. Log in to the ModelArts console. In the navigation pane, choose Service

Deployment > Edge Services. By default, the Edge Services page is
displayed.

2. In the edge service list, click Deploy in the upper left corner. The Deploy page
is displayed.

3. Set edge service parameters.
a. Set the basic information, including Name and Description. The name is
generated by default, for example, service-bc0d. You can enter Name and
Description as needed.
b. Set other parameters, including the resource pool and AI application
configurations. For details, see Table 8-23.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 523

Table 8-23 Parameters

Parameter Description

Select Edge
Resource Pool

In the edge resource pool list, select a running resource
pool. For details about how to create an edge resource
pool, see Creating an Edge Resource Pool.

AI Application
Source

Select My AI Applications.

AI Application and
Version

Select an AI application and version that are running
properly.

Streams Number of video streams that can be concurrently
processed.

Specifications Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used.

Deployment
Instances

Set the number of instances for the current AI
application version. For example, 1 indicates one
compute node is used. Enter a value based on actual
requirements.
NOTICE

To avoid deployment failure caused by traffic limiting, do not
exceed 10 instances when deploying or modifying an edge
service.

Service Startup
Parameters

This parameter is available when you select an AI
application with service startup parameters configured
during creation. Configure service startup parameters
you added during AI application creation.

4. Click Create now. Deploying a service generally requires a period of time,

which may be several minutes or tens of minutes depending on the amount
of your data and resources.
You can go to the edge service list to check the status of the edge service. In
the edge service list, after the status of the service changes from Deploying
to Running, the service is deployed.

8.3.3.2 Accessing an Edge Service Deployed on IEF Edge Nodes
If the edge service and edge node are in the Running status, the edge service has
been successfully deployed on the edge node.

The following methods describe how to perform predictions on the edge service
deployed in an edge pool.

● Method 1: Use GUI-based Software for Inference (Postman)
● Method 2: Run the cURL Command to Send an Inference Request

NO TE

The methods in this section apply only to edge services deployed on IEF edge nodes.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 524

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or add a Postman extension in Chrome.

Alternatively, use other software that can send POST requests.
2. Open Postman. Figure 8-26 shows the Postman interface.

Figure 8-26 Postman software interface

3. Set parameters on Postman. The following uses image classification as an
example.
– Select a POST task and copy the call address of an edge instance to the

box next to POST. To obtain the call address, go to the instances list tab
on the edge service details page to check the URL, click the node to
access the node details page, and view the IP address on the dashboard.
IPv4 and IPv6 addresses are supported.

Figure 8-27 POST parameter settings

– On the Body tab page, input parameters are divided into file input and
text input types.

▪ File input
Select form-data. Set KEY to the input parameter of the AI
application, for example, images. Set VALUE to an image to be
inferred (only one image can be inferred).

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 525

Figure 8-28 Entering Body configuration information

▪ Text input
Select raw and then select JSON(application/json). Enter the
request body in the text box below. An example request body is as
follows:
{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}
}

uuid can be specified in meta. When the inference result is returned,
this uuid is returned to trace the request. You can leave meta blank
based on your needs. data contains req_data, where you can input
one or more pieces of request data. The parameters of each piece of
data are determined by the AI application, such as sepal_length and
sepal_width in this example.

4. After setting the parameters, click Send to send the request. The result is
displayed in the response.
– For a file input, the returned result varies depending on the AI

application.
– The request body contains meta and data. If the request contains uuid,

uuid will be returned in the response. Otherwise, uuid is left blank. data
contains the req_data array. You can pass one or more pieces of request
data. The parameters of each piece of data are determined by the model,
such as sepal_length and sepal_width in this example.

Method 2: Run the cURL Command to Send an Inference Request
The command for sending inference requests can be input as a file or text.

1. File input
curl -F 'images=@Image path'-X POST Call address of the edge instance -k

– -F indicates file input. In this example, the parameter name is images,
which can be changed as required. The image storage path follows @.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 526

– POST is followed by the call address of the edge instance.

The following is an example of the cURL command for inference with file
input:
curl -F 'images=@/home/data/cat.jpg' -X POST https://192.168.0.158:1032 -k

Figure 8-29 shows the inference result.

Figure 8-29 Inference result using the cURL command with file input

2. Text input
curl -d '{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}
}' -X POST <Call address of the edge instance> -k

– -d indicates the text input of the request body. If the AI application uses
text input, this parameter is mandatory.

The following is an example of the cURL command for inference with text
input:
curl -d '{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
},
"data": {
"req_data": [
{
"sepal_length": 3,
"sepal_width": 1,
"petal_length": 2.2,
"petal_width": 4
}
]
}
}' -X POST https://192.168.0.158:1033 -k

8.3.3.3 Accessing an Edge Service Deployed in a ModelArts Edge Resource
Pool

If the edge service and edge node are in the Running status, the edge service has
been successfully deployed on the edge node.

You can use either of the following methods to send a prediction request to an
edge service deployed in an edge resource pool:

● Method 1: Use GUI-based Software for Inference (Postman)

● Method 2: Run the cURL Command to Send an Inference Request

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 527

NO TE

The methods in this section apply only to edge services deployed on ModelArts edge nodes.

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or add a Postman extension in Chrome.

Alternatively, use other software that can send POST requests.

2. Open Postman. Figure 8-30 shows the Postman interface.

Figure 8-30 Postman software interface

3. Set parameters on Postman. The following uses intelligent Q&A as an
example.

a. Select a POST task and copy the edge instance URL to the POST text box.

View the URL on the Load Edge Balance tab of edge services. Check the
forwarding configuration of the resource pool and enter the URL based
on the listener port and path matching rule. The IP address is that of the
master node. You can log in to the Linux interface of the master node
and run the ifconfig command to view the IP address.

Figure 8-31 POST parameter settings

b. On the Body tab, enter the content to be predicted based on the usage of
the AI application.

Select raw and then select JSON(application/json). Enter the request
body in the text box below. An example request body is as follows:
{
 "data":["Who are you?"]
}

In the preceding request body, data contains an array, where you can
input one or more pieces of request data.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 528

4. After setting the parameters, click Send to send the request. The result is
displayed in the response. The prediction result may vary according to AI
applications.

Method 2: Run the cURL Command to Send an Inference Request

The following is the curl command format:
curl --location --request POST <Edge instance URL>
--header 'Content-Type: application/json'
--data-raw '{
 "data":["Who are you?"]
}' -k

In the preceding request body, enter the text input of the AI application in --data-
raw.

The following is an example:

curl --location --request POST 'https://100.85.xxx.xxx:20350/v1/3a1bb61cc35e41bc9466a90164b8492e/
models/gpt/query'
--header 'Content-Type: application/json'
--data-raw '{
 "data":["Who are you?"]
}' -k

Figure 8-32 shows the prediction result.

Figure 8-32 Inference result using the cURL command with text input

8.3.3.4 Load Balancing

ModelArts allows you to enable load balancing for either an edge node or edge
resource pool that you specify. ModelArts monitors the port numbers of the nodes'
physical IP addresses and uses the round robin method to forward requests to the
appropriate edge service and access port for processing, according to the
forwarding configuration that you set up. This improves the application reliability
and stability.

A ModelArts edge node or edge resource pool must be available for creating a
load balancer. For details about how to create a ModelArts edge node, see
Creating an Edge Node. For details about how to create an edge resource pool,
see Creating an Edge Resource Pool.

Creating a Load Balancer
1. Log in to the ModelArts console and choose Edge Services from the

navigation pane.

2. Click the Load Edge Balance tab and click Create.

3. Set the parameters by referring to the following table.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 529

Table 8-24 Parameters for creating a load balancer

Parameter Description

Name Load balancer name, which cannot be modified after
creation.

Description Brief description of the load balancer.

Config Target Object of load balancing, which can be a single node or a
specified resource pool.
● Node: Select a ModelArts edge node.
● Resource Pool: Select an edge resource pool.

Listener Port Port number of the physical IP address of the node or
resource pool that you want to listen to. The value ranges
from 1 to 65,535.

Lb Edge Policy Load balancing scheduling algorithm for a resource pool.
Round-Robin is a method of distributing requests evenly
among a set of nodes, from the first node to the Nth node
in a circular order.

Sticky Session LB listening relies on IP address-based sticky session.
When sticky session is enabled, access requests from the
same IP address are always forwarded to the same edge
service.

Protocol Protocol used by the load balancer. The value can be
HTTP or HTTPS. Currently, only HTTP is supported.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 530

Parameter Description

Forward
Config

Set the forwarding configuration. When the access address
of a request matches the forwarding configuration, the
request will be forwarded to the target for processing. You
can Add or Delete a forwarding configuration.
● If Config Target is set to Node, set the following

parameters:
– Path Match Rule: Select a forwarding matching

rule. Currently, prefix match, exact match, and
regular expression match are supported.

– Path: Set the forwarding matching path. The path
cannot be empty and must start with a slash (/). It
contains 1 to 255 characters, including letters, digits,
asterisks (*), slashes (/), and hyphens (-).

– Target Service Name: Select the target edge
service.

– Container Port: Enter a container port.
● If Config Target is set to Pool, set the following

parameters:
– Path Match Rule: Select a forwarding matching

rule. Currently, prefix match, exact match, and
regular expression match are supported.

– Path: Set the forwarding matching path. The path
cannot be empty and must start with a slash (/). It
contains 1 to 255 characters, including letters, digits,
asterisks (*), slashes (/), and hyphens (-).

– Target Access Port: Select the target access port.
– Access Port: Select the port for accessing the

service.

4. Confirm the configuration and click OK. On the displayed load balancer list

page, wait until the status of the load balancer changes to Running. The
created load balancer can be modified and deleted.

Creating an Access Port
Before creating a load balancer, ensure that a ModelArts resource pool has been
created and an edge service has been deployed in the ModelArts resource pool.

1. Log in to the ModelArts console and choose Edge Services in the navigation
pane on the left.

2. Choose Load Edge Balance > Access Edge Port and click Create in the
displayed tab.

3. Set the parameters by referring to the following table.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 531

Table 8-25 Parameters for creating an access port

Parameter Description

Name Name of the access port.

Access Type Access type of the access port. Only ClusterIP is
supported.

Associated
Edge Service

Select the edge service associated with the access port.

Port Config Set the port configuration, including the protocol, access
port, and container port parameters. You can Add or
Delete the port configuration. At least one record must be
added.
● Protocol: Only TCP is supported.
● Access Port: Select the port for accessing the service.
● Container Port: Select the port used by the service to

access the target container. This port is related to the
applications running in the container.

4. Confirm the configuration and click OK. On the displayed access port list

page, wait until the status of the access port changes to Running. The
created access port can be modified and deleted.

Accessing a Load Balancer
Perform this call based on the created access ports and load balancers.

curl -X POST \
https://100.85.220.207:13458/v1/models/gpt/query \
-d`{
 "data": ["Hello"]
 }`

In the above example, 100.85.220.207 is the IP address of the master node, 13458
is the specified listening port when the load balancer is created, and /v1/
models/gpt/query must meet the route matching rules.

8.3.3.5 Installing and Configuring NFS
NFS is a data storage volume service provided by ModelArts edge resource pools.
When deploying a service, you can use NFS mounting to access shared data, such
as model files stored in OBS.

Configure NFS in the following scenarios:

● During AI application creation, Meta Model Source is set to OBS and AI
Engine is set to Custom.

● During service deployment, NFS storage volumes are used.

Installing NFS
1. Log in to a storage node.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 532

In the edge resource pool, select a node as the storage node. The node
provides the NFS web disk service for storing files shared by the cluster. Use a
node with a storage space large enough for storing large model files. Use
PuTTY to log in to the storage node.
ssh <Username>@<Node IP address>

– Username: Enter the username for logging in to the server.
– Node IP address: Enter the IP address of the server you want to log in to.

If the node is an ECS, you can obtain its IP address on the ECS console.
2. Install NFS.

Connect to the Internet and download dependent software packages.
– Ubuntu

Online installation:
sudo apt install nfs-kernel-server

– Euler OS
Online installation:
sudo yum install nfs-utils

3. Create a model directory.
The storage space of this path must be large enough for storing large model
files.
mkdir -p /var/docker/hilens

4. Add the access permissions.
Configure the nfs-server access whitelist and file storage path.
vim /etc/exports

Add the following configurations:
/var/docker/hilens 192.168.0.0/24(rw,no_all_squash,anonuid=1000,anongid=100,fsid=0)

192.168.0.0/24 is the IP address range of the cluster intranet. To obtain the IP
address, log in to the master node and run the ifconfig command.

5. Load the configuration.
exportfs -rv

6. Start NFS and rpcbind.
systemctl enable nfs-server && systemctl enable rpcbind && systemctl start rpcbind nfs-server

7. Run this command to check whether the preceding configuration is correct. If
the following information is displayed, the configuration is correct, that is, the
NFS service is installed.
showmount -e localhost

Configuring ModelArts Node Information
1. Log in to the Linux host of the master node.

ssh <Username>@<Node IP address>

– Username: Enter the username for logging in to the server.
– Node IP address: Enter the IP address of the server you want to log in to.

If the node is an ECS, you can obtain its IP address on the ECS console.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 533

2. Configure firmware boot parameters.
vim /etc/hilens/hda.conf

Add the following configurations. Replace 192.168.xxx.xxx with the actual
private IP address of the NFS storage node.
hilens.nfs.server.ip=192.168.xxx.xxx
hilens.nfs.mount.dir=/home/mind/model
hilens.nfs.source.dir=/var/docker/hilens

Parameter description:

– hilens.nfs.server.ip: private IP address of the NFS storage node

– hilens.nfs.mount.dir: default mount path of a large model, that is, the
access path in the container, which is determined by the image.

– hilens.nfs.source.dir: path for downloading a large model, that is, the
shared directory of the storage node. Configure the share permission for
the directory in /etc/exports. Otherwise, you do not have the permission
to mount the directory.

3. Restart the firmware.
systemctl restart hdad

8.3.4 Upgrading a Service
For a deployed service, you can modify its basic information to match service
changes and change the AI application version to upgrade it.

You can modify the basic information about a service in either of the following
ways:

Method 1: Modify Service Information on the Service Management Page

Method 2: Modify Service Information on the Service Details Page

Prerequisites

The service has been deployed. The service in the Deploying state cannot be
upgraded by modifying the service information.

Constraints
● Improper upgrade operations will interrupt service running during the

upgrade. Therefore, exercise caution when performing this operation.

● ModelArts supports hitless rolling upgrade of real-time services in some
scenarios. Before upgrade, prepare for it and confirm the prerequisites.

Table 8-26 Scenarios for hitless rolling upgrade

Meta Model Source
for Creating an AI
Application

Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Training job Not supported Not supported

Template Not supported Not supported

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 534

Meta Model Source
for Creating an AI
Application

Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Container image Not supported Supported. The custom
image for creating an AI
application must meet
Custom Image
Specifications for
Creating AI
Applications.

OBS Not supported Not supported

Method 1: Modify Service Information on the Service Management Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. In the service list, click Modify in the Operation column of the target service,
modify basic service information, and submit the modification task as
prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
– For details about the real-time service parameters, see Deploying as a

Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

Method 2: Modify Service Information on the Service Details Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. Click the name of the target service. The service details page is displayed.
3. Click Modify in the upper right corner of the page, modify the service details,

and submit the modification task as prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
– For details about the real-time service parameters, see Deploying as a

Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 535

8.3.5 Starting, Stopping, Deleting, or Restarting a Service

Starting a Service

You can start services in the Successful, Abnormal, or Stopped status. Services in
the Deploying state cannot be started. You can start a service in the following
ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Start in the Operation column to start the
target service.

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Start in the upper right corner of the page to
start the service.

Stopping a Service

Stop a service in either of the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Stop in the Operation column to stop a
service. (For a real-time service, choose More > Stop in the Operation
column.)

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Stop in the upper right corner of the page to
stop the service.

Deleting a Service

If a service is no longer in use, delete it to release resources.

Log in to the ModelArts management console and choose Service Deployment
from the left navigation pane. Go to the service management page of the target
service.
● Real-time services

– In the real-time service list, choose More > Delete in the Operation
column of the target service to delete it.

– Select services in the real-time service list and click Delete above the list
to delete services in batches.

– Click the name of the target service. On the displayed service details
page, click Delete in the upper right corner to delete the service.

● Batch services
– In the batch service list, click Delete in the Operation column of the

target service to delete it.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 536

– Select services in the batch service list and click Delete above the list to
delete services in batches.

– Click the name of the target service. On the displayed service details
page, click Delete in the upper right corner to delete the service.

NO TE

● A deleted service cannot be recovered.
● A service cannot be deleted without agency authorization.

Restarting a Service
You can restart a real-time service only when the service is in the Running or
Alarm state. Batch services and edge services cannot be restarted. You can restart
a real-time service in either of the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click More > Restart in the Operation column to restart the target service.

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click the name of the target service. The service details page is displayed.
Click Restart in the upper right corner of the page to restart the service.

8.3.6 Viewing Service Events
During the whole lifecycle of a service, every key event is automatically recorded.
You can view the events on the details page of the service at any time.

This helps you better understand the process of deploying a service and locate
faults more accurately when a task exception occurs. The following table lists the
available events.

Table 8-27 Events

Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The service starts to deploy.
Start to deploy service.

-

Abnormal Insufficient resources. Wait until idle
resources are sufficient.
Lack of resources, transform state to
waiting.

Wait until the
resources are
released and try
again.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 537

Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Insufficient xxx. The scheduling failed.
Supplementary information: xxx
%s %s Schedule failed due to insufficient
resources. Retry later. %s nodes are
available: %s Insufficient memory.

Learn about
resource
insufficiency
details based on
the
supplementary
information. For
details, see
FAQs.

Normal The image starts to create.
Start to build image.

-

Abnormal Failed to create model image xxx. For
details, see logs :\nxxx.
Failed to build image for model (%s %s),
docker build log:\n%s.

Locate and
rectify the fault
based on the
build logs.

Abnormal Failed to create the image.
Failed to build image.

Contact
technical
support.

Normal The image created.
Image built successfully.

-

Abnormal Service xxx failed. Error: xxx
Failed to %s service, retry later. Error
message: %s

Locate and
rectify the fault
based on the
error
information.

Abnormal Failed to update the service. Perform a
rollback.
Failed to update service, rollback it.

Contact
technical
support.

Normal The service is being updated.
Updating service.

-

Normal The service is being started.
Starting service.

-

Normal The service is being stopped.
Stopping service.

-

Normal The service has been stopped.
Service stopped.

-

Normal Auto stop has been disabled.
Auto-stop switched off.

-

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 538

Type Event (xxx should be replaced with the
actual value.)

Solution

Normal Auto stop has been enabled. The service
will stop after xs.
Auto-stop switched on, service will be
stopped in %d %s.

-

Normal The service stops when the auto stop time
expires.
Service stopped automatically because
due time is reached.

-

Abnormal The service is stopped because the quota
exceeds the upper limit.
Service stopped automatically because
over quota.

Contact
technical
support.

Abnormal Failed to automatically stop the service.
Error: xxx
Failed to stop service automatically, error
message: %s

Locate and
rectify the fault
based on the
error
information.

Normal Service instances deleted from resource
pool xxx.
Model in node(%s) deleted.

-

Normal Service instances stopped in resource pool
xxx.
Model in node(%s) stopped.

-

Abnormal The batch service failed. Try again later.
Error: xxx
Failed to %s batch service, retry later.
Error message: %s.

Locate and
rectify the fault
based on the
error
information.

Normal The service has been executed.
Service stopped automatically after
running.

-

Abnormal Failed to stop the service. Error: xxx
Failed to stopped service, error message:
%s

Locate and
rectify the fault
based on the
error
information.

Normal The subscription license xxx is to expire.
Impending expiration notice: %s

-

Normal Service xxx started.
Service %s started successfully.

-

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 539

Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Failed to start service xxx.
Service %s started failed.

For details
about how to
locate and
rectify the fault,
see FAQs.

Abnormal Service deployment timed out. Error: xxx
Deploying timeout, details: %s

Locate and
rectify the fault
based on the
error
information.

Normal Failed to update the service. The update
has been rolled back.
Failed to update service, rollback
succeeded.

-

Abnormal Failed to update the service. The rollback
failed.
Failed to update service, rollback failed.

Contact
technical
support.

During service deployment and running, key events can both be manually and
automatically refreshed.

Viewing Events
1. In the left navigation pane of the ModelArts management console, choose

Service Deployment > Real-Time Services or Batch Services or Edge
Services. In the service list, click the name or ID of the target service to go to
its details page.

2. View the events on the Events tab page.

8.4 Edge Resource Pool

8.4.1 Overview
An edge dedicated resource pool is a collection of tenant edge nodes for edge
service deployment. Inference services run in the edge pool. After you create an
asynchronous service or synchronous edge service, the edge service selects a
proper node to process this asynchronous service or synchronous edge service in
an asynchronous algorithm container.

● Node
ModelArts edge nodes are devices provided by ModelArts for deploying edge
services. Before creating an edge resource pool, you must create a ModelArts
edge node and activate the node.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 540

● Resource pool
An edge resource pool is dedicated for deploying edge services. When creating
an edge resource pool, you can add ModelArts edge nodes or edge nodes
managed by IEF.

Figure 8-33 Process of creating a ModelArts edge resource pool

Figure 8-34 Process of creating an IEF edge resource pool

8.4.2 Node
ModelArts edge nodes are devices provided by ModelArts for deploying edge
services. Before creating an edge resource pool, you must create a ModelArts edge
node. After a node is created, download the certificate and edge agent firmware,
copy the firmware to the node, and run the registration command to register the
device.

You can activate, modify, and delete the edge node, and view details about it. You
can also use it to create edge services.

Specifications Requirements
An edge node can be a physical machine or a virtual machine. Edge nodes must
meet the specifications listed in the following table.

Item Specifications

OS ● x86_64 architecture
Ubuntu LTS (Xenial Xerus), Ubuntu LTS (Bionic Beaver) ,
CentOS, EulerOS, and openEuler

● AArch64 (Arm64) architecture
Ubuntu LTS (Bionic Beaver), CentOS, EulerOS, and openEuler

Memory The basic memory overhead of an edge node is about 64 MB,
which varies among services. Set the memory to more than 256
MB.

CPU The basic overhead is at least one core. For Docker+K3S/K8S
scenarios, you need at least four cores.

Hard disk ≥ 512 MB

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 541

Item Specifications

GPU
(optional)

The GPU models of the same edge node or edge pool must be the
same. When registering an edge node, you can choose whether to
use GPUs. If an edge node needs to use GPUs, you must install the
GPU driver before registering the edge node.
NOTE

NVIDIA Tesla P3, P4, and T4 are supported.

NPU
(optional)

Ascend AI processors. When registering an edge node, you can
choose whether to use NPU acceleration.
● If an edge node needs to use NPUs, ensure that it has a driver

installed. For details about the installation, contact the device
vendor.

● To use an NPU accelerator card for an edge resource pool
(cluster), you must also install cluster-related plug-ins. For
details about the installation, contact the device vendor.

NOTE
Snt9, Snt9B, Snt3P, and Snt3 series NPU accelerator cards are supported.

Container
engine

The Docker version must be 19.0.0 or later. Install it using these
commands:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh
sudo systemctl daemon-reload
sudo systemctl restart docker

K3s engine v1.21.12+k3s1

Port Edge nodes must use ports 5066 and 5067. For edge pools
(clusters), K8s and K3s ports must be reserved, including 2379,
2380, and 6443.
NOTE

Port 5066 is used to provide HTTP and HTTPS REST services. 5067 functions
as the Kubernetes client proxy of worker nodes.

Time
synchroniz
ation

The time of an edge node must be the same as the UTC time.
Otherwise, the monitoring data of the edge node may be
inaccurate. You can use a proper NTP server for time
synchronization. You can also keep the connection with the cloud
and synchronize the time with the cloud.

Agency Authorization
When using edge nodes, you need to authorize users to use the log service and
enable LTS by referring to Enabling LTS. To add authorization, perform the
following steps:

Step 1 Create the hilens_admin_trust agency.

1. Log in to the ModelArts console. In the navigation pane, choose Settings.
2. Click Add Authorization. Set Agency Name to hilens_admin_trust, set

Permissions to Custom, and select OBS Administrator and SWR
Administrator.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 542

3. Click Create.

Step 2 Add the LTS Administrator permission for the hilens_admin_trust agency.

1. On the top menu bar of the console, click System.

2. Choose Permissions > Agencies. In the agency list, click Modify in the
Operation column of hilens_admin_trust.

3. Switch to the Agency Permissions tab, click Assign Permissions, and select
Resource spaces. In the search box in the upper right corner of the
permission list, search for and select LTS Administrator and AOM FullAccess.

4. Click OK. In the confirm dialog box, click OK.

----End

Creating an Edge Node
1. Log in to the ModelArts console and choose Edge Resource Pool from the

left navigation pane.

2. On the Nodes page, click Create. You will see the Create Edge Node page.

3. Configure parameters by referring to the following table.

Table 8-28 Parameters for creating an edge node

Parameter Description

Name Name of a node. The value contains 1 to 64
characters, including letters, digits, underscores (_),
and hyphens (-).

Description Brief description of a node. The value contains 0 to
255 characters and cannot contain the following
characters: #~^$%&*<>[]\|/ and ASCII characters (0–
31).

AI accelerator card You can choose whether to use an accelerator card
for a node.
● Do not use: No accelerator card is used.
● GPU: A GPU accelerator card is used.
● Ascend: An Ascend accelerator card is used.

Ascend accelerator cards include snt3, snt3p, and
snt9.

Batch Registration A certificate will be used for registration of multiple
nodes. This function is disabled by default. After this
function is enabled, you must set Batch
Registration Quantity to the number of nodes you
want to register.

Log Storage
Duration

Period of time that the system keeps the log data
before automatically deleting it. The unit is days and
the value can range from 1 to 30.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 543

Parameter Description

System Log Settings You can configure the following system log
parameters.
● Log level: log level, which defaults to Debug. The

options are Error, Warning, Info, and Debug.
● Size Limit: maximum size of a node's logs. The

default value is 50 MB and it cannot be changed.
● Log Rotate Count: The system scrolls local logs

based on the number of logs every N days and
deletes the earliest log file. Each log file has a
fixed size of 10 MB. The default value of this
parameter is 5 days.

● Uploading Logs: This function is disabled by
default. By default, system logs and application
logs are stored locally. After you enable
Uploading Logs and select a log level, logs of the
corresponding level are uploaded to LTS.

Application Log
Settings

You can configure the following application log
parameters.
● Log level: log level, which defaults to Debug. The

options are Error, Warning, Info, and Debug.
● Size Limit: maximum size of a node's logs. The

default value is 50 MB and it cannot be changed.
● Log Rotate Count: The system scrolls local logs

based on the number of logs every N days and
deletes the earliest log file. Each log file has a
fixed size of 10 MB. The default value of this
parameter is 5 days.

● Uploading Logs: This function is disabled by
default. By default, system logs and application
logs are stored locally. After you enable
Uploading Logs and select a log level, logs of the
corresponding level are uploaded to LTS.

4. After you confirm the configuration, click OK to create a node. You will see

the Node creation completed, download cert and agent page.
5. Click Download Now next to the certificate name to download the certificate

file. The certificate is valid within 24 hours after being downloaded. You must
complete the registration within the validity period of the certificate. The
certificate file can be downloaded only after the basic registration information
is configured. After the page is closed, the certificate file cannot be
downloaded again.

6. Download the edge Agent firmware. The following table lists the parameters.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 544

Table 8-29 Parameters for downloading an edge Agent firmware

Parameter Description

CPU Architecture Select a CPU architecture type. The options are x86,
ARM32, and ARM64.

Operating system Select an operating system. The options are Linux
and Windows.

Agent Name Select the name of the Agent you want to
download.

Version Select an Agent version. Currently, the available
version is 2.0.26.
NOTE

After ModelArts is installed and deployed, you must
upload the Agent firmware. After that, the firmware
version is displayed on the console. For details about how
to upload the firmware, see "Importing New Firmware
(ModelArts Edge Agent) to ModelArts Edge Nodes" in
ModelArts 6.5.0.1 Maintenance Guide (for HCS Online
24.3.0) 01 > ModelArts Configuration Guide 01.

NO TE

Download the firmware based on the node type, copy the firmware to the node, and
run the registration command based on Registering a Certificate.

7. After the certificate and firmware are downloaded, select I've finished
downloading certificates and firmware and click OK.

Registering a Certificate
After an edge node is created, register the node certificate. The certificate
registration method varies according to the operating system of the firmware.

● Windows
Prerequisites: The PC must run Windows 10 or later.

a. Decompress the firmware package downloaded in 6 and run the
program.

b. Copy the certificate downloaded in 5 to the decompressed file directory.
c. Open the CMD command line program and switch to the decompressed

file directory.
d. Run the registration command.

hdad.exe hdactl bind -p {Certificate name}

● Linux

a. Log in to the Linux PC and copy the firmware package downloaded in 6
to any directory on the PC.

b. Decompress the Agent firmware package and install the Agent. To do so,
run this command:
tar -xvf {Firmware package name}

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 545

c. Install the Agent firmware. To do so, run this command:
sh {Running file}

d. Copy the certificate downloaded in 5 to the directory where the
decompressed firmware package is stored.

e. Run the registration command.
hdactl bind -p {Certificate name}

Activating an Edge Node
After a node is registered, you need to activate it. Nodes in the UNCONNECTED
or ACTIVATED state cannot be activated.

1. On the Edge Resource Pool > Nodes page, click Activate in the Operation
column of the target node or batch select nodes and click Activate above the
list. Then, configure parameters by referring to the following table.

Table 8-30 Parameters for activating an edge node

Parameter Description

Name Name of a node you want to activate.

Quantity Number of nodes you want to activate. Only 50
nodes can be activated.

Effective Time Time when the node activation takes effect. Only
Immediately is supported.

Trial Duration Trial duration of an edge node. 1 month and 3
months are supported.

2. After you confirm the configuration, click Confirm to activate the node.

Modifying an Edge Node
On the Edge Resource Pool > Nodes page, click Modify in the Operation column
of the node you want to modify. Table 8-28 describes the parameters.

NO TE

● The IAM user, workspace, and batch registration parameters cannot be modified.
● The node name, log size limit, and log rotate count cannot be modified.

Deleting an Edge Node
On the Edge Resource Pool > Nodes page, choose More > Delete in the
Operation column of the node you want to remove. Before deleting an edge
node, delete the resource pool bound to the node. Deleted edge nodes cannot be
restored. You can also click Force Delete to delete a worker node.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 546

NO TE

● Master nodes of an edge resource pool cannot be deleted.

● You can use Force Delete to delete faulty worker nodes when the edge resource pool is
in the Running state.

● You can use Force Delete to delete a node that has been used to create services or load
balancers.

Viewing Details About an Edge Node

On the Edge Resource Pool > Nodes page, click the name of the target node. On
the node details page that appears, view the edge node details.

Table 8-31 Basic parameters

Parameter Description

Name Node name

ID Node ID

Node
Specifications

Node specifications

Description Node description

Operating system Node OS

Architecture Node architecture

Table 8-32 Management information

Parameter Description

Status Node status. The possible values are UNCONNECTED,
RUNNING, FAULTY, UPGRADING, and FREEZE.

Agent Version Version of the firmware bound to the node.

Agent Name Name of the firmware bound to the node.

Certificate/Profile Certificate and configuration file of the node.

Inference
Acceleration Card

Inference accelerator card mounted to the node.

IP IP address of the node.

Activation Status Activation status of the node, which can be Unactivated or
Activated.

Activation
Expiration Time

Expiration time of node activation.

Obtained At Time when the node is created.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 547

Parameter Description

Updated Last update time of the node.

IAM User IAM user to which the node belongs.

Resource Pool Resource pool to which the node belongs.

You can switch between tabs on the node details page to view more details.

Table 8-33 Node details

Parameter Description

Edge Services Edge services deployed on an edge node. You can:
● Obtain edge service information, such as the name,

status, request mode, creation time, and description.
● Create edge services.
● Modify or delete edge services.

Log Setting You can view the edge node's log settings, including
log storage duration, system log settings, and
application log settings. You can also edit the log
settings.

Monitoring You can view the edge node's monitoring information,
such as CPU, memory, and disk. If the node uses NPUs
or GPUs, select an NPU or GPU from the drop-down
list box in the upper right corner of the NPU/GPU icon.
The information collection period is 5 minutes.

8.4.3 Resource Pool
A ModelArts edge node must be activated or an IEF edge node must have been
managed for creating a resource pool. After an edge resource pool is created, you
can modify or delete it and view its details.

Creating an Edge Resource Pool
1. Log in to the ModelArts console and choose Edge Resource Pool from the

navigation pane.
2. Click the Resource Pools tab. The resource pool list page is displayed.
3. Click Create. On the Create Edge Resource Pool page that is displayed, set

parameters by referring to the following table.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 548

Table 8-34 Resource pool parameters

Parameter Description

Name Name of an edge resource pool.

Description Brief description of an edge resource pool.

Node Type Edge node type, which can be ModelArts edge node or
IEF edge node.
● ModelArts edge node: edge node created in Creating

an Edge Node.
– Master Nodes: A master node manages and

controls the entire resource pool. You can add no
more than three master nodes.

– Max. Worker Nodes: The upper limit of worker
nodes that can belong to a resource pool. The value
ranges from 1 to 64.

– Worker Nodes: A worker node in a resource pool
executes jobs assigned by master nodes.
NOTE

A resource pool cannot have the same node as both a
master node and a worker node.

● IEF edge node: edge nodes managed in IEF.
– Resource Instance: Select Platinum Service

Instance.
– Edge Nodes: Select edge nodes to run edge

applications, process your data, and collaborate
with cloud applications securely and conveniently.

4. Click Create Now.

Modifying an Edge Resource Pool
1. On the Edge Resource Pool > Resource Pools page, click Modify in the

Operation column of the resource pool you want to modify. The following
lists the parameters.

Table 8-35 Parameters for modifying an edge resource pool

Parameter Description

Name Name of a resource pool, which cannot be changed.

Description Brief description of a resource pool.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 549

Parameter Description

Node Type The edge node type cannot be modified.
If the edge node type is ModelArts edge node, the
following parameters are displayed:
● Master Nodes: A master node manages and

controls the entire resource pool. which cannot be
changed.

● Max. Worker Nodes: The upper limit of worker
nodes that can belong to an edge resource pool.
The value ranges from 1 to 64. This parameter
cannot be modified.

● Worker Nodes: You can add or delete edge
nodes.
NOTE

A resource pool cannot have the same node as both a
master node and a worker node.

If the edge node type is IEF edge node, you can
modify the following parameters:
● Resource Instance: You can select a professional

or platinum service instance.
● Edge Nodes: Edge nodes are your edge

computing devices used to run edge applications,
process your data, and collaborate with cloud
applications securely and conveniently.

2. Click Submit to finish the modification.

Deleting an Edge Resource Pool

On the Edge Resource Pool > Resource Pools page, locate the target edge
resource pool and click Delete in the Operation column. Before deleting an edge
resource pool, you need to delete the associated edge service, load balancer, and
access port. Deleted edge resource pools cannot be restored.

Obtaining Details About an Edge Resource Pool

On the Edge Resource Pool > Resource Pools page, click the name of the target
resource pool to go to the edge resource pool details page.

Table 8-36 Basic parameters

Parameter Description

Name Name of a resource pool.

Created Time when a resource pool is created.

Updated Time when a resource pool was last updated.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 550

Parameter Description

Description Description of a resource pool.

Status Status of a resource pool.

ID ID of a resource pool. This parameter is displayed for
edge resource pools created using ModelArts edge
nodes.

Instance ID ID of a resource instance. This parameter is displayed for
edge resource pools created using IEF edge nodes.

Node Type Edge node type of a resource pool. The value can be
ModelArts edge node or IEF edge node.

Switch between tabs on the resource pool details page to view more details.
Example:

Table 8-37 Resource pool details

Parameter Description

Edge Services Displays edge services associated with a resource pool.
You can create, modify, and delete edge services.

Node Displays information about nodes bound to a resource
pool. You can add or delete nodes.

8.4.4 Enabling LTS
You can enable LTS for your edge nodes. This section describes how to enable LTS.

Step 1 Create a node.

1. In the navigation pane on the left, choose Edge Resource Pool. Click the
Nodes tab.

2. Click Create to create an edge node. Enter basic information. In the log
settings area, enable uploading logs. Click OK to download the certificate and
firmware.

3. Click OK.

Step 2 Log in to the edge node and upload the device certificate and firmware.

1. Use PuTTY to log in to the VM.
ssh <Username>@<VM IP address>
– Username: Enter the username for logging in to the server.
– VM IP address: On the cloud server console, select a cloud service from

the cloud service list and copy its EIP.
2. Use a tool to upload the device certificate and firmware.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 551

Figure 8-35 Uploading the certificate and firmware

Step 3 Install the edge agent and register and bind the node.

1. Decompress the agent firmware package.
tar –xvf hilens-agent_x86_64_2.0.26_20231211193033.tar.gz

In the preceding command, hilens-
agent_x86_64_2.0.26_20231211193033.tar.gz indicates the firmware package.
Replace it with your own firmware package.

2. Install the agent.
sh install_manual.sh

3. Modify the agent configuration.
vi /etc/hilens/hda.conf

Add the following configurations:
hilens.lts.upload.url=https://8.28.30.68:8102
hilens.request.ctx.lts=v2
hilens.lts.url=https://lts.ei-a3-1.externala3.com

– To obtain the IP address of hilens.lts.upload.url, log in to the LTS
console, choose Host Management from the navigation pane, and click
Install ICAgent in the upper right corner. In the Copy the ICAgent
installation command area, obtain the IP address following https://,
which is the IP address of hilens.lts.upload.url.

– To construct the value of hilens.lts.url, use the following format: https://
lts.{region}.{external_global_domain_name}. You can obtain the value of
external_global_domain_name by searching for
external_global_domain_name on the LLD "Basic Parameters" sheet.

4. Restart the agent.
systemctl restart hdad

5. Register and bind the edge node.
hdactl bind –p edgeNode-lts.tar.gz

Step 4 Activate the edge node.

1. Log in to the ModelArts console. In the navigation pane on the left, choose
Edge Resource Pool.

2. In the Nodes tab, locate the bound node and click Activate in the Operation
column to activate the node.

Step 5 Log in to the LTS console to view the uploaded logs.

In the navigation pane on the left, choose Log Management. In Log Groups,
select the log group with the node name and select the log stream corresponding
to the node ID.

----End

8.5 Inference Specifications

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 552

8.5.1 Model Package Specifications

8.5.1.1 Introduction to Model Package Specifications
When creating an AI application on the AI application management page, make
sure that any meta model imported from OBS complies with certain specifications.

NO TE

● The model package specifications are used when you import one model. If you import
multiple models, for example, there are multiple model files, use custom images.

● If you want to use an AI engine that is not supported by ModelArts, use a custom
image.

● For details about how to create a custom image, see Custom Image Specifications for
Creating AI Applications and Creating a Custom Image and Using It to Create an AI
Application.

● For more examples of custom scripts, see Examples of Custom Scripts.

The model package must contain the model directory. The model directory stores
the model file, model configuration file, and model inference code file.

● Model files: The requirements for model files vary according to the model
package structure. For details, see Model Package Example.

● Model configuration file: The model configuration file must be available and
its name is consistently to be config.json. There must be only one model
configuration file. For details about how to edit a model configuration file, see
Specifications for Editing a Model Configuration File .

● Model inference code file: It is mandatory. The file name is consistently to be
customize_service.py. There must be only one model inference code file. For
details about how to edit model inference code, see Specifications for
Writing Model Inference Code .
– The .py file on which customize_service.py depends can be directly

stored in the model directory. Use a relative import mode to import the
custom package.

– The other files on which customize_service.py depends can be stored in
the model directory. You must use absolute paths to access these files.
For more details, see Obtaining an Absolute Path.

ModelArts also provides custom script examples of common AI engines. For
details, see Examples of Custom Scripts.

If you encounter any problem when importing a meta model, .

Model Package Example
● Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the ocr directory.
OBS bucket/directory name
|── ocr
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description
of the model

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 553

| │ ├── variables Name of a fixed sub-directory, which contains the weight and deviation rate of
the model. It is mandatory for the main file of the *.pb model.
| │ │ ├── variables.index Mandatory
| │ │ ├── variables.data-00000-of-00001 Mandatory
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists.
The files on which customize_service.py depends can be directly stored in the model directory.

● Structure of the MindSpore-based model package
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── checkpoint_lenet_1-1_1875.ckpt (Mandatory) Model file in ckpt or om format trained
using MindSpore
| │ ├── config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├── customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.
| │ ├── tmp.om (Mandatory) An empty .om file that enables the model package to be imported

● Structure of the PyTorch-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight
information and is saved as state_dict
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of a custom model package depends on the AI engine in your
custom image. For example, if the AI engine in your custom image is
TensorFlow, the model package uses the TensorFlow structure.

8.5.1.2 Specifications for Editing a Model Configuration File
A model developer needs to edit a configuration file config.json when publishing
a model. The model configuration file describes the model usage, computing
framework, precision, inference code dependency package, and model API.

Configuration File Format
The configuration file is in JSON format. Table 8-38 describes the parameters.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 554

Table 8-38 Parameters

Paramete
r

Mand
atory

Data
Type

Description

model_alg
orithm

Yes String Model algorithm, which is set by the model
developer to help model users understand the
usage of the model. The value must start with a
letter and contain no more than 36 characters.
Chinese characters and special characters
(&!'\"<>=) are not allowed. Common model
algorithms include image_classification (image
classification), object_detection (object
detection), and predict_analysis (prediction
analysis).

model_typ
e

Yes String Model AI engine, which indicates the computing
framework used by a model. Common AI engines
and Image are supported.
● For details about supported AI engines, see

Supported AI Engines for ModelArts
Inference.

● If model_type is set to Image, the AI
application is created using a custom image.
In this case, parameter swr_location is
mandatory. For details about specifications for
custom images, see Custom Image
Specifications for Creating AI Applications.

runtime No String Model runtime environment. Python3.6 is used
by default The value of runtime depends on the
value of model_type. If model_type is set to
Image, you do not need to set runtime. If
model_type is set to another mainstream
framework, select the engine and runtime
environment.

metrics No Objec
t

Model precision information, including the
average value, recall rate, precision, and accuracy.
For details about the metrics object structure,
see Table 8-39.
The result is displayed in the model precision
area on the AI application details page.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 555

Paramete
r

Mand
atory

Data
Type

Description

apis No api
array

Format of the requests received and returned by
a model. The value is structure data.
It is the RESTful API array provided by a model.
For details about the API data structure, see
Table 8-40. For details about the code example,
see Code Example of apis Parameters.
● If model_type is set to Image, the AI

application is created using a custom image.
● When model_type is not Image, only one API

whose request path is / can be declared in
apis because the preconfigured AI engine
exposes only one inference API whose request
path is /.

dependen
cies

No depen
dency
array

Package on which the model inference code
depends, which is structure data.
Model developers need to provide the package
name, installation mode, and version constraints.
Only the pip installation mode is supported.
Table 8-43 describes the dependency array.
If the model package does not contain the
customize_service.py file, you do not need to set
this parameter. Dependency packages cannot be
installed for custom image models.

health No healt
h
data
struct
ure

Configuration of an image health interface. This
parameter is mandatory only when model_type
is set to Image.
If services cannot be interrupted during a rolling
upgrade, a health check API must be provided for
ModelArts to call. For details about the health
data structure, see Table 8-45.

Table 8-39 metrics object description

Paramete
r

Mand
atory

Data
Type

Description

f1 No Numb
er

F1 score. The value is rounded to 17 decimal
places.

recall No Numb
er

Recall rate. The value is rounded to 17 decimal
places.

precision No Numb
er

Precision. The value is rounded to 17 decimal
places.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 556

Paramete
r

Mand
atory

Data
Type

Description

accuracy No Numb
er

Accuracy. The value is rounded to 17 decimal
places.

Table 8-40 api array

Paramet
er

Manda
tory

Data
Type

Description

url No String Request path. The default value is a slash (/). For
a custom image model (model_type is Image),
set this parameter to the actual request path
exposed in the image. For a non-custom image
model (model_type is not Image), the URL can
only be /.

method No String Request method. The default value is POST.

request No Object Request body. For details, see Table 8-41.

response No Object Response body. For details, see Table 8-42.

Table 8-41 request description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
The options are as follows:
● application/json: JSON data is uploaded.
● multipart/form-data: A file is uploaded.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The request body is described in JSON schema.
For details about the parameter description,
see the official guide.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 557

https://json-schema.org/understanding-json-schema/reference/array.html

Table 8-42 response description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The response body is described in JSON
schema. For details about the parameter
description, see the official guide.

Table 8-43 dependency array

Parameter Mandatory Data Type Description

installer Yes String Installation method. Only pip is
supported.

packages Yes package array Dependency package collection.
For details about the package
structure array, see Table 8-44.

Table 8-44 package array

Parameter Mandatory Type Description

package_na
me

Yes String Dependency package name.
Chinese characters and special
characters (&!'"<>=) are not
allowed.

package_ver
sion

No String Dependency package version. If
the dependency package does
not rely on package versions,
leave this field blank. Chinese
characters and special characters
(&!'"<>=) are not allowed.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 558

https://json-schema.org/understanding-json-schema/reference/array.html

Parameter Mandatory Type Description

restraint No String Version restriction. This
parameter is mandatory only
when package_version is
configured. Possible values are
EXACT, ATLEAST, and ATMOST.
● EXACT indicates that a

specified version is installed.
● ATLEAST indicates that the

version of the installation
package is not earlier than
the specified version.

● ATMOST indicates that the
version of the installation
package is not later than the
specified version.
NOTE

● If there are specific
requirements on the version,
preferentially use EXACT. If
EXACT conflicts with the
system installation packages,
you can select ATLEAST.

● If there is no specific
requirement on the version,
retain only the
package_name parameter
and leave restraint and
package_version blank.

Table 8-45 health data structure description

Parameter Mandatory Type Description

check_meth
od

Yes String Health check method. The value
can be HTTP or EXEC.
● HTTP: Use an HTTP request.
● EXEC: Execute a command.

command No String Health check command. This
parameter is mandatory when
check_method is set to EXEC.

url No String Request URL of a health check
API. This parameter is
mandatory when check_method
is set to HTTP.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 559

Parameter Mandatory Type Description

protocol No String Request protocol of a health
check API. The default value is
http. This parameter is
mandatory when check_method
is set to HTTP.

initial_delay
_seconds

No String Delay for initializing the health
check.

timeout_sec
onds

No String Health check timeout.

period_seco
nds

Yes String Health check period, in seconds.
Enter an integer greater than 0
and no more than 2147483647.

failure_thres
hold

Yes String Maximum number of health
check failures. Enter an integer
greater than 0 and no more than
2147483647.

Code Example of apis Parameters
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }
}]

Example of the Object Detection Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 560

● Model input
Key: images
Value: image files

● Model output
{
 "detection_classes": [
 "face",
 "arm"
],
 "detection_boxes": [
 [
 33.6,
 42.6,
 104.5,
 203.4
],
 [
 103.1,
 92.8,
 765.6,
 945.7
]
],
 "detection_scores": [0.99, 0.73]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "object_detection",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "detection_classes": {
 "type": "array",
 "items": [{
 "type": "string"
 }]
 },
 "detection_boxes": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 4,
 "maxItems": 4,
 "items": [{

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 561

 "type": "number"
 }]
 }]
 },
 "detection_scores": {
 "type": "array",
 "items": [{
 "type": "number"
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }]
}

Example of the Image Classification Model Configuration File

The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "predicted_label": "flower",
 "scores": [
 ["rose", 0.99],
 ["begonia", 0.01]
]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "image_classification",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 562

 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 {
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "ATLEAST",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "",
 "package_version": "",
 "package_name": "Pillow"
 }
]
 }]
}

The following code uses the MindSpore engine as an example. You can modify the
model_type parameter based on the type of the engine you use.

● Model input
Key: images
Value: image files

● Model output
"[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157
11.290332 -1.5861531 5.7887416]]"

● Configuration file
{
 "model_algorithm": "image_classification",
 "model_type": "MindSpore",
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.0023493892851938493,

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 563

 "accuracy": 0.00746268656716417
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [{
 "type": "string"
 }]
 }
 }
 }
 }
 }
],
 "dependencies": []
 }

Example of the Predictive Analytics Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
{
 "data": {
 "req_data": [
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 },
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 }
]
 }
}

● Model output
{
 "data": {

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 564

 "resp_data": [
 {
 "predict_result": "unacc"
 },
 {
 "predict_result": "unacc"
 }
]
 }
}

● Configuration file

NO TE

In the code, the data parameter in the request and response structures is described in
JSON Schema. The content in data and properties corresponds to the model input
and output.

{
 "model_type": "TensorFlow",
 "model_algorithm": "predict_analysis",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {}
 }
]

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 565

 }
 }
 }
 }
 }
 }
 }
],
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }
]
}

Example of the Custom Image Model Configuration File
The model input and output are similar to those in Example of the Object
Detection Model Configuration File.

● If the input is an image, the request example is as follows.
In the example, a model prediction request containing the parameter images
with the parameter type of file is received. For this example, the file upload
button is displayed on the inference page, and the inference is performed in
file format.
{
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
}

● If the input is JSON data, the request example is as follows.
In this example, the model prediction JSON request body is received. In the
request, there is only one prediction request containing the parameter input
with the parameter type of string. On the inference page, a text box is
displayed for you to enter the prediction request.
{
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "input": {
 "type": "string"
 }
 }
 }
}

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 566

A complete request example is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "Image",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "required": [
 "predicted_label",
 "scores"
],
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [{
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }]
}

Example of the Machine Learning Model Configuration File
The following uses XGBoost as an example:

● Model input
{
 "req_data": [
 {
 "sepal_length": 5,
 "sepal_width": 3.3,

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 567

 "petal_length": 1.4,
 "petal_width": 0.2
 },
 {
 "sepal_length": 5,
 "sepal_width": 2,
 "petal_length": 3.5,
 "petal_width": 1
 },
 {
 "sepal_length": 6,
 "sepal_width": 2.2,
 "petal_length": 5,
 "petal_width": 1.5
 }
]
}

● Model output
{
 "resp_data": [
 {
 "predict_result": "Iris-setosa"
 },
 {
 "predict_result": "Iris-versicolor"
 }
]
}

● Configuration file
{
 "model_type": "XGBoost",
 "model_algorithm": "xgboost_iris_test",
 "runtime": "python2.7",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 568

 {
 "type": "object",
 "properties": {
 "predict_result": {}
 }
 }
]
 }
 }
 }
 }
 }
]
}

Example of a Model Configuration File Using a Custom Dependency Package
The following example defines the NumPy 1.16.4 dependency environment.

{
 "model_algorithm": "image_classification",
 "model_type": "TensorFlow",
 "runtime": "python3.6",
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }
 }
],
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.00234938928519385,
 "accuracy": 0.00746268656716417
 },
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 569

 "package_version": "1.16.4",
 "package_name": "numpy"
 }
]
 }
]
}

8.5.1.3 Specifications for Writing Model Inference Code
This section describes the general method of editing model inference code in
ModelArts. This section also provides an inference code example for the
TensorFlow engine and an example of customizing the inference logic in the
inference script.

Due to the limitation of API Gateway, the duration of a single prediction in
ModelArts cannot exceed 40s. The model inference code must be logically clear
and concise for satisfactory inference performance.

Specifications for Compiling Inference Code
1. In the model inference code file customize_service.py, add a child model

class. This child model class inherits properties from its parent model class.
For details about the import statements of different types of parent model
classes, see Table 8-46.

Table 8-46 Import statements of different types of parent model classes

Model Type Parent Class Import Statement

TensorFlow TfServingBaseService from model_service.tfserving_model_service
import TfServingBaseService

PyTorch PTServingBaseService from model_service.pytorch_model_service
import PTServingBaseService

MindSpore SingleNodeService from model_service.model_service import
SingleNodeService

2. The following methods can be rewritten:

Table 8-47 Methods to be rewritten

Method Description

__init__(self,
model_name,
model_path)

Initialization method, which is suitable for models
created based on deep learning frameworks. Models
and labels are loaded using this method. This method
must be rewritten for models based on PyTorch and
Caffe to implement the model loading logic.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 570

Method Description

__init__(self,
model_path)

Initialization method, which is suitable for models
created based on machine learning frameworks. The
model path (self.model_path) is initialized using this
method. In Spark_MLlib, this method also initializes
SparkSession (self.spark).

_preprocess(self,
data)

Preprocess method, which is called before an inference
request and is used to convert the original request data
of an API into the expected input data of a model

_inference(self,
data)

Inference request method. You are advised not to
rewrite the method because once the method is
rewritten, the built-in inference process of ModelArts
will be overwritten and the custom inference logic will
run.

_postprocess(self,
data)

Postprocess method, which is called after an inference
request is complete and is used to convert the model
output to the API output

NO TE

● You can choose to rewrite the preprocess and postprocess methods to implement
preprocessing of the API input and postprocessing of the inference output.

● Rewriting the init method of the parent model class may cause an AI application to
run abnormally.

3. The attribute that can be used is the local path where the model resides. The
attribute name is self.model_path. In addition, PySpark-based models can use
self.spark to obtain the SparkSession object in customize_service.py.

NO TE

An absolute path is required for reading files in the inference code. You can obtain the
local path of the model from the self.model_path attribute.
● When TensorFlow, Caffe, or MXNet is used, self.model_path indicates the path of

the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
with open(os.path.join(self.model_path, 'label.json')) as f:
 self.label = json.load(f)

● When PyTorch, Scikit_Learn, or PySpark is used, self.model_path indicates the path
of the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
dir_path = os.path.dirname(os.path.realpath(self.model_path))
with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

4. data imported through the API for pre-processing, actual inference request,
and post-processing can be multipart/form-data or application/json.
– multipart/form-data request

curl -X POST \
 <modelarts-inference-endpoint> \
 -F image1=@cat.jpg \
 -F images2=@horse.jpg

The corresponding input data is as follows:

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 571

[
 {
 "image1":{
 "cat.jpg":"<cat.jpg file io>"
 }
 },
 {
 "image2":{
 "horse.jpg":"<horse.jpg file io>"
 }
 }
]

– application/json request
 curl -X POST \
 <modelarts-inference-endpoint> \
 -d '{
 "images":"base64 encode image"
 }'

The corresponding input data is python dict.
 {
 "images":"base64 encode image"
 }

TensorFlow Inference Script Example

The following is an example of TensorFlow MnistService.
● Inference code

from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 def _preprocess(self, data):
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 784))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _postprocess(self, data):

 infer_output = {}

 for output_name, result in data.items():

 infer_output["mnist_result"] = result[0].index(max(result[0]))

 return infer_output

● Request
curl -X POST \ Real-time service address \ -F images=@test.jpg

● Response
{"mnist_result": 7}

The preceding code example resizes images imported to the user's form to adapt
to the model input shape. The 32×32 image is read from the Pillow library and
resized to 1×784 to match the model input. In subsequent processing, convert the
model output into a list for the RESTful API to display.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 572

Inference Script Example of the Custom Inference Logic
Customize a dependency package in the configuration file by referring to Example
of a Model Configuration File Using a Custom Dependency Package. Then, use
the following code example to load the model in saved_model format for
inference.

NO TE

The logging module of Python used by the base inference image uses the default log level
Warning. Only warning logs can be queried by default. To query INFO logs, set the log level
to INFO in the code.

-*- coding: utf-8 -*-
import json
import os
import threading
import numpy as np
import tensorflow as tf
from PIL import Image
from model_service.tfserving_model_service import TfServingBaseService
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model_inputs = {}
 self.model_outputs = {}

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.get_tf_sess)
 thread.start()

 def get_tf_sess(self):
 # Load the model in saved_model format.
 # The session will be reused. Do not use the with statement.
 sess = tf.Session(graph=tf.Graph())
 meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING],
self.model_path)
 signature_defs = meta_graph_def.signature_def
 self.sess = sess
 signature = []

 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)
 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logger.warning("signatures more than one, use serving_default signature")
 model_signature = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 logger.info("model signature: %s", model_signature)

 for signature_name in meta_graph_def.signature_def[model_signature].inputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].inputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_inputs[signature_name] = op

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 573

 logger.info("model inputs: %s", self.model_inputs)

 for signature_name in meta_graph_def.signature_def[model_signature].outputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].outputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_outputs[signature_name] = op

 logger.info("model outputs: %s", self.model_outputs)

 def _preprocess(self, data):
 # Two request modes using HTTPS
 # 1. The request in form-data file format is as follows: data = {"Request key value":{"File
name":<File io>}}
 # 2. Request in JSON format is as follows: data = json.loads("JSON body transferred by the API")
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 28, 28))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _inference(self, data):
 feed_dict = {}
 for k, v in data.items():
 if k not in self.model_inputs.keys():
 logger.error("input key %s is not in model inputs %s", k, list(self.model_inputs.keys()))
 raise Exception("input key %s is not in model inputs %s" % (k, list(self.model_inputs.keys())))
 feed_dict[self.model_inputs[k]] = v

 result = self.sess.run(self.model_outputs, feed_dict=feed_dict)
 logger.info('predict result : ' + str(result))
 return result

 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 for output_name, results in data.items():

 for result in results:
 infer_output["mnist_result"].append(np.argmax(result))

 return infer_output

 def __del__(self):
 self.sess.close()

NO TE

To load models that are not supported by ModelArts or multiple models, specify the
loading path using the __init__ method. Example code:
-*- coding: utf-8 -*-
import os
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 # Obtain the path to the model folder.
 root = os.path.dirname(os.path.abspath(__file__))
 # test.onnx is the name of the model file to be loaded and must be stored in the model folder.
 self.model_path = os.path.join(root, test.onnx)

 # Loading multiple models, for example, test2.onnx
 # self.model_path2 = os.path.join(root, test2.onnx)

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 574

MindSpore Inference Script Example
● The inference script is as follows:

import threading

import mindspore
import mindspore.nn as nn
import numpy as np
import logging
from mindspore import Tensor, context
from mindspore.common.initializer import Normal
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from model_service.model_service import SingleNodeService
from PIL import Image

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

class LeNet5(nn.Cell):
 """Lenet network structure."""

 # define the operator required
 def __init__(self, num_class=10, num_channel=1):
 super(LeNet5, self).__init__()
 self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
 self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
 self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
 self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
 self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
 self.relu = nn.ReLU()
 self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
 self.flatten = nn.Flatten()

 # use the preceding operators to construct networks
 def construct(self, x):
 x = self.max_pool2d(self.relu(self.conv1(x)))
 x = self.max_pool2d(self.relu(self.conv2(x)))
 x = self.flatten(x)
 x = self.relu(self.fc1(x))
 x = self.relu(self.fc2(x))
 x = self.fc3(x)
 return x

class MnistService(SingleNodeService):
 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 logger.info("self.model_name:%s self.model_path: %s", self.model_name,
 self.model_path)
 self.network = None
 # Load the model in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.load_model)
 thread.start()

 def load_model(self):
 logger.info("load network ... \n")
 self.network = LeNet5()
 ckpt_file = self.model_path + "/checkpoint_lenet_1-1_1875.ckpt"
 logger.info("ckpt_file: %s", ckpt_file)
 param_dict = load_checkpoint(ckpt_file)
 load_param_into_net(self.network, param_dict)
 # Inference warm-up. Otherwise, the initial inference will take a long time.
 self.network_warmup()
 logger.info("load network successfully ! \n")

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 575

 def network_warmup(self):
 # Inference warm-up. Otherwise, the initial inference will take a long time.
 logger.info("warmup network ... \n")
 images = np.array(np.random.randn(1, 1, 32, 32), dtype=np.float32)
 inputs = Tensor(images, mindspore.float32)
 inference_result = self.network(inputs)
 logger.info("warmup network successfully ! \n")

 def _preprocess(self, input_data):
 preprocessed_result = {}
 images = []
 for k, v in input_data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = image1.resize((1, 32 * 32))
 image1 = np.array(image1, dtype=np.float32)
 images.append(image1)

 images = np.array(images, dtype=np.float32)
 logger.info(images.shape)
 images.resize([len(input_data), 1, 32, 32])
 logger.info("images shape: %s", images.shape)
 inputs = Tensor(images, mindspore.float32)
 preprocessed_result['images'] = inputs

 return preprocessed_result

 def _inference(self, preprocessed_result):
 inference_result = self.network(preprocessed_result['images'])
 return inference_result

 def _postprocess(self, inference_result):
 return str(inference_result)

8.5.2 Examples of Custom Scripts

8.5.2.1 TensorFlow
There are two types of TensorFlow APIs, Keras and tf. They use different code for
training and saving models, but the same code for inference.

Training a Model (Keras API)
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

Import a training dataset.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

from keras.layers import Dense
from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

Define a model network.
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 576

model.add(Dense(units=10, activation='softmax'))

Define an optimizer and loss functions.
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.summary()
Train the model.
model.fit(x_train, y_train, epochs=2)
Evaluate the model.
model.evaluate(x_test, y_test)

Saving a Model (Keras API)
from keras import backend as K

K.get_session().run(tf.global_variables_initializer())

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={"images" : model.input},
 outputs={"scores" : model.output}
)

Define a save path.
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

 sess = K.get_session(),
 # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment.
 tags=[tf.saved_model.tag_constants.SERVING],
 """
 signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows:
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
 """
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
 predict_signature
 }

)
builder.save()

Training a Model (tf API)
from __future__ import print_function

import gzip
import os
import urllib

import numpy
import tensorflow as tf
from six.moves import urllib

Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/.
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 577

def maybe_download(filename, work_directory):
 """Download the data from Yann's website, unless it's already here."""
 if not os.path.exists(work_directory):
 os.mkdir(work_directory)
 filepath = os.path.join(work_directory, filename)
 if not os.path.exists(filepath):
 filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
 statinfo = os.stat(filepath)
 print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
 return filepath

def _read32(bytestream):
 dt = numpy.dtype(numpy.uint32).newbyteorder('>')
 return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
 """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2051:
 raise ValueError(
 'Invalid magic number %d in MNIST image file: %s' %
 (magic, filename))
 num_images = _read32(bytestream)
 rows = _read32(bytestream)
 cols = _read32(bytestream)
 buf = bytestream.read(rows * cols * num_images)
 data = numpy.frombuffer(buf, dtype=numpy.uint8)
 data = data.reshape(num_images, rows, cols, 1)
 return data

def dense_to_one_hot(labels_dense, num_classes=10):
 """Convert class labels from scalars to one-hot vectors."""
 num_labels = labels_dense.shape[0]
 index_offset = numpy.arange(num_labels) * num_classes
 labels_one_hot = numpy.zeros((num_labels, num_classes))
 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
 return labels_one_hot

def extract_labels(filename, one_hot=False):
 """Extract the labels into a 1D uint8 numpy array [index]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2049:
 raise ValueError(
 'Invalid magic number %d in MNIST label file: %s' %
 (magic, filename))
 num_items = _read32(bytestream)
 buf = bytestream.read(num_items)
 labels = numpy.frombuffer(buf, dtype=numpy.uint8)
 if one_hot:
 return dense_to_one_hot(labels)
 return labels

class DataSet(object):
 """Class encompassing test, validation and training MNIST data set."""

 def __init__(self, images, labels, fake_data=False, one_hot=False):
 """Construct a DataSet. one_hot arg is used only if fake_data is true."""

 if fake_data:

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 578

 self._num_examples = 10000
 self.one_hot = one_hot
 else:
 assert images.shape[0] == labels.shape[0], (
 'images.shape: %s labels.shape: %s' % (images.shape,
 labels.shape))
 self._num_examples = images.shape[0]

 # Convert shape from [num examples, rows, columns, depth]
 # to [num examples, rows*columns] (assuming depth == 1)
 assert images.shape[3] == 1
 images = images.reshape(images.shape[0],
 images.shape[1] * images.shape[2])
 # Convert from [0, 255] -> [0.0, 1.0].
 images = images.astype(numpy.float32)
 images = numpy.multiply(images, 1.0 / 255.0)
 self._images = images
 self._labels = labels
 self._epochs_completed = 0
 self._index_in_epoch = 0

 @property
 def images(self):
 return self._images

 @property
 def labels(self):
 return self._labels

 @property
 def num_examples(self):
 return self._num_examples

 @property
 def epochs_completed(self):
 return self._epochs_completed

 def next_batch(self, batch_size, fake_data=False):
 """Return the next `batch_size` examples from this data set."""
 if fake_data:
 fake_image = [1] * 784
 if self.one_hot:
 fake_label = [1] + [0] * 9
 else:
 fake_label = 0
 return [fake_image for _ in range(batch_size)], [
 fake_label for _ in range(batch_size)
]
 start = self._index_in_epoch
 self._index_in_epoch += batch_size
 if self._index_in_epoch > self._num_examples:
 # Finished epoch
 self._epochs_completed += 1
 # Shuffle the data
 perm = numpy.arange(self._num_examples)
 numpy.random.shuffle(perm)
 self._images = self._images[perm]
 self._labels = self._labels[perm]
 # Start next epoch
 start = 0
 self._index_in_epoch = batch_size
 assert batch_size <= self._num_examples
 end = self._index_in_epoch
 return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False):
 """Return training, validation and testing data sets."""

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 579

 class DataSets(object):
 pass

 data_sets = DataSets()

 if fake_data:
 data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
 return data_sets

 local_file = maybe_download(TRAIN_IMAGES, train_dir)
 train_images = extract_images(local_file)

 local_file = maybe_download(TRAIN_LABELS, train_dir)
 train_labels = extract_labels(local_file, one_hot=one_hot)

 local_file = maybe_download(TEST_IMAGES, train_dir)
 test_images = extract_images(local_file)

 local_file = maybe_download(TEST_LABELS, train_dir)
 test_labels = extract_labels(local_file, one_hot=one_hot)

 validation_images = train_images[:VALIDATION_SIZE]
 validation_labels = train_labels[:VALIDATION_SIZE]
 train_images = train_images[VALIDATION_SIZE:]
 train_labels = train_labels[VALIDATION_SIZE:]

 data_sets.train = DataSet(train_images, train_labels)
 data_sets.validation = DataSet(validation_images, validation_labels)
 data_sets.test = DataSet(test_images, test_labels)
 return data_sets

training_iteration = 1000

modelarts_example_path = './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
 tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))
for _ in range(training_iteration):
 batch = mnist.train.next_batch(50)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
 accuracy, feed_dict={
 x: mnist.test.images,
 y_: mnist.test.labels
 }))
print('Done training!')

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 580

Saving a Model (tf API)
Export the model.
The model needs to be saved using the saved_model API.
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
prediction_signature = (
 tf.saved_model.signature_def_utils.build_signature_def(
 inputs={'images': tensor_info_x},
 outputs={'scores': tensor_info_y},
 method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
 # Set tag to serve/tf.saved_model.tag_constants.SERVING.
 sess, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'predict_images':
 prediction_signature,
 },
 legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

Inference Code (Keras and tf APIs)
In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the import
statements of different types of parent model classes, see Table 8-46.

from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 # Match the model input with the user's HTTPS API input during preprocessing.
 # The model input corresponding to the preceding training part is {"images":<array>}.
 def _preprocess(self, data):

 preprocessed_data = {}
 images = []
 # Iterate the input data.
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1,784))
 images.append(image1)
 # Return the numpy array.
 images = np.array(images,dtype=np.float32)
 # Perform batch processing on multiple input samples and ensure that the shape is the same as that
inputted during training.
 images.resize((len(data), 784))
 preprocessed_data['images'] = images
 return preprocessed_data

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 581

 # Processing logic of the inference for invoking the parent class.

 # The output corresponding to model saving in the preceding training part is {"scores":<array>}.
 # Postprocess the HTTPS output.
 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 # Iterate the model output.
 for output_name, results in data.items():
 for result in results:
 infer_output["mnist_result"].append(result.index(max(result)))
 return infer_output

8.6 ModelArts Monitoring on Cloud Eye

8.6.1 ModelArts Metrics

Description

The cloud service platform provides Cloud Eye to help you better understand the
status of your ModelArts real-time services and models. You can use Cloud Eye to
automatically monitor your ModelArts real-time services and model loads in real
time and manage alarms and notifications so that you can obtain the
performance metrics of ModelArts and models.

Namespace

SYS.ModelArts

Monitoring Metrics

Table 8-48 ModelArts metrics

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

cpu_usag
e

CPU
Usage

CPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

mem_usa
ge

Memory
Usage

Memory usage
of ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_util GPU
Usage

GPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_mem
_usage

GPU
Memory
Usage

GPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 582

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

npu_util NPU
Usage

NPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

npu_mem
_usage

NPU
Memory
Usage

NPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

successful
ly_called_t
imes

Number
of
Successfu
l Calls

Times that
ModelArts has
been
successfully
called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

failed_call
ed_times

Number
of Failed
Calls

Times that
ModelArts failed
to be called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

total_calle
d_times

Total
Calls

Times that
ModelArts is
called
Unit: times/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 583

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

If a measurement object has multiple measurement dimensions, all the
measurement dimensions are mandatory when you use an API to query
monitoring metrics.
● The following provides an example of using the multi-dimensional dim to

query a single monitoring metric:
dim.0=service_id,530cd6b0-86d7-4818-837f-935f6a27414d&dim.1="model_id,
3773b058-5b4f-4366-9035-9bbd9964714a

● The following provides an example of using the multi-dimensional dim to
query monitoring metrics in batches:
"dimensions": [
{
"name": "service_id",
"value": "530cd6b0-86d7-4818-837f-935f6a27414d"
}
{
"name": "model_id",
"value": "3773b058-5b4f-4366-9035-9bbd9964714a"
}
]

Dimensions

Table 8-49 Dimension description

Key Value

service_id Real-time service ID

model_id Model ID

8.6.2 Setting Alarm Rules

Scenario

Setting alarm rules allows you to customize the monitored objects and notification
policies so that you can know the status of ModelArts real-time services and
models in a timely manner.

An alarm rule includes the alarm rule name, monitored object, metric, threshold,
monitoring interval, and whether to send a notification. This section describes how
to set alarm rules for ModelArts services and models.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 584

NO TE

Only real-time services in the Running status can be interconnected with CES.

Prerequisites
● A ModelArts real-time service has been created.
● ModelArts monitoring has been enabled on Cloud Eye. To do so, log in to the

Cloud Eye console. On the Cloud Eye page, click Custom Monitoring. Then,
enable ModelArts monitoring as prompted.

Procedure
Set an alarm rule in any of the following ways:

● Set an alarm rule for all ModelArts services.
● Set an alarm rule for a ModelArts service.
● Set an alarm rule for a model version.
● Set an alarm rule for a metric of a service or model version.

Method 1: Setting an Alarm Rule for All ModelArts Services
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the navigation pane on the left, choose Alarm Management > Alarm

Rules and click Create Alarm Rule.
4. On the Create Alarm Rule page, set Resource Type to ModelArts,

Dimension to Service, and Method to Configure manually, and set alarm
policies. Then, confirm settings and click Create.

Method 2: Setting an Alarm Rule for a Single Service
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Select a real-time service for which you want to create an alarm rule and click

Create Alarm Rule in the Operation column.
5. On the Create Alarm Rule page, create an alarm rule for ModelArts real-time

services and models as prompted.

Method 3: Setting an Alarm Rule for a Model Version
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Click the down arrow next to the target real-time service name. Then, click

Create Alarm Rule in the Operation column of the target version.
5. On the Create Alarm Rule page, create an alarm rule for model loads as

prompted.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 585

Method 4: Setting an Alarm Rule for a Metric of a Service or Model Version
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Click the down arrow next to the target real-time service name. Then, click

the target version and view alarm rule details.
5. On the alarm rule details page, click the plus sign (+) in the upper right

corner of a metric and set an alarm rule for the metric.

8.6.3 Viewing Monitoring Metrics

Scenario
Cloud Eye on the cloud service platform monitors the status of ModelArts real-
time services and model loads. You can obtain the monitoring metrics of each
ModelArts real-time service and model loads on the management console.
Monitored data requires a period of time for transmission and display. The status
of ModelArts displayed on the Cloud Eye console is usually the status obtained 5
to 10 minutes before. You can view the monitored data of a newly created real-
time service 5 to 10 minutes later.

Prerequisites
● The ModelArts real-time service is running properly.
● Alarm rules have been configured on the Cloud Eye page. For details, see

Setting Alarm Rules.
● The real-time service has been properly running for at least 10 minutes.
● The monitored data and graphics are available for a new real-time service

after the service runs for at least 10 minutes.
● Cloud Eye does not display the metrics of a faulty or deleted real-time service.

The monitoring metrics can be viewed after the real-time service starts or
recovers.

Monitoring data is unavailable without alarm rules configured on Cloud Eye. For
details, see Setting Alarm Rules.

Procedure
1. Log in to the management console.
2. In the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. View monitoring graphs.

– Viewing monitoring graphs of a real-time service: Click View Metric in
the Operation column.

– Viewing monitoring graphs of the model loads: Click next to the
target real-time service, and click View Metric in the Operation column
of the target model.

5. In the monitoring area, you can select a duration to view the monitoring data.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 586

You can view the monitoring data in the recent 1 hour, 3 hours, or 12 hours.

To view the monitoring curve of a longer time range, click to enlarge the
graph.

Modelarts
Usermanual 8 Inference Deployment

2024-04-30 587

9 Resource Management

9.1 Resource Pool

ModelArts Resource Pools

When using ModelArts for AI development, you can use either of the following
resource pools:

● Dedicated resource pool: It delivers more controllable resources and cannot
be shared with other users. Create a dedicated resource pool and select it
during AI development. The dedicated resource pool can be an elastic cluster
or an elastic BMS.
– Elastic cluster: It can be Standard or Lite.

▪ In a Standard elastic cluster, exclusive computing resources are
provided, with which you can deliver instances during job training,
model deployment, and environment development on ModelArts.

▪ A Lite elastic cluster provides hosted Kubernetes clusters with
mainstream AI development plug-ins for Kubernetes resource users.
You can operate the nodes and Kubernetes clusters in the resource
pool with provided AI Native resources and tasks.

– Elastic BMS: It provides different models of xPU BMSs. You can access an
elastic BMS through an EIP and install GPU- and NPU-related drivers and
software on a specified OS image. To meet the routine training
requirements of algorithm engineers, SFS and OBS can be used to store
and read data.

● Public Resource Pool: provides large-scale public computing clusters, which
are allocated based on job parameter settings. Resources are isolated by job.
You can use ModelArts public resource pools to deliver training jobs, deploy
models, or run DevEnviron instances and will be billed on a pay-per-use basis.

Differences Between Dedicated Resource Pools and Public Resource Pools
● Dedicated resource pools provide dedicated computing clusters and network

resources for users. The dedicated resource pools of different users are

Modelarts
Usermanual 9 Resource Management

2024-04-30 588

physically isolated, while public resource pools are only logically isolated.
Compared with public resource pools, dedicated resource pools feature better
performance in isolation and security.

● When a dedicated resource pool is used for creating jobs and the resources
are sufficient, the jobs will not be queued. When a public resource pool is
used for creating jobs, there is a high probability that the jobs will be queued.

● A dedicated resource pool is accessible to your network. All running jobs in
the pool can access storage and resources in your network. For example, if
you select a dedicated resource pool with an accessible network when
creating a training job, you can access SFS data after the training job is
created.

● Dedicated resource pools allow you to customize the runtime environment of
physical nodes, for example, you can upgrade GPU or Ascend drivers. This
function is not supported by public resource pools.

9.2 Elastic Cluster

9.2.1 Comprehensive Upgrades to ModelArts Resource Pool
Management Functions

ModelArts dedicated resource pools have been upgraded. In the new system, there
are only unified ModelArts dedicated resource pools, which are no longer classified
as the pools dedicated for development/training and the pools dedicated for
service deployment. The new-version dedicated resource pools support flexible
configuration of job types, and allow you to manage networks and interconnect
VPCs with the networks.

The new dedicated resource pool management page provides more
comprehensive functions and displays more information about the resource pools.
More details about how to use and manage dedicated resource pools are provided
in subsequent sections of this document. If you are new to ModelArts dedicated
resource pools, try new-version dedicated resource pools. If you have used
ModelArts dedicated resource pools, the old-version pools will be smoothly
switched to new-version pools.

Read the following contents to learn about new-version dedicated resource pools.

Features of New-Version Dedicated Resource Pools
The new-version dedicated resource pool management is a comprehensive
technology and product improvement. The main improvements are as follows:

● Single dedicated resource pool type for diverse purposes: Dedicated
resource pools are no longer classified into those for development/training
and those for service deployment. You can run both training and inference
workloads in a dedicated resource pool. You can also set the job types
supported by a dedicated resource pool based on your needs.

● Dedicated resource pool network connection: You can create and manage
dedicated resource pool networks on the ModelArts management console. If
you need to access resources in your VPC for jobs running in a dedicated
resource pool, interconnect the VPC with the dedicated resource pool network.

Modelarts
Usermanual 9 Resource Management

2024-04-30 589

● More cluster details: The new-version dedicated resource pool details page
provides more cluster details, such as jobs, nodes, and resource monitoring,
helping you learn about the cluster status and better plan and use resources.

● Cluster GPU/NPU driver management: On the new-version dedicated
resource pool details page, you can select an accelerator card driver and
perform change upon submission or smooth upgrade of the driver based on
service requirements.

● Fine-grained resource allocation (coming soon): You can divide your
dedicated resource pool into multiple small pools and assign different quotas
and permissions to each small pool for flexible and refined resource allocation
and management.

More features will be provided in later versions for a better user experience.

Can I Continue to Use the Existing Dedicated Resource Pools After the
Upgrade Takes Effect?

If you have created dedicated resource pools, you can still access the old-version
dedicated resource pool (elastic cluster) management page on the ModelArts
management console and use the created resource pools, but you cannot create
dedicated resource pool on that page. ModelArts allows you to migrate existing
dedicated resource pools to the new management page. You will be contacted to
complete the migration and this does not require you to perform any operations.
In addition, the migration does not affect the workloads running in the dedicated
resource pools. Pay attention to the easy-to-use new management functions of
dedicated resource pools. There is no change in creating training jobs or inference
services.

Differences Between New and Old Dedicated Resource Pools
● In the old version, the dedicated resource pools dedicated for development/

training are separated from those dedicated for service deployment. In
addition, the pools of the two types offer different functions and their user
experience varies. In the new version, the dedicated resource pools of the two
types are unified. You only need to configure one or multiple job types. Then,
the dedicated resource pool automatically supports the configured job type.

● New dedicated resource pools inherit all functions of the old ones and have
greatly improved user experience in key functions such as purchasing and
resizing a resource pool. Use new dedicated resource pools for smooth,
transparent experience.

● Additionally, the new dedicated resource pools offer enhanced functions, for
example, allowing you to upgrade GPU or Ascend drivers, view details about
job queuing, and use one network for multiple pools. More new functions of
the new dedicated resource pools are coming soon.

How Can I Get Help or Provide Feedback if I Encounter Problems During
Use?

Similar to other ModelArts functions, you can report problems or obtain help in
the sidebar of the console. In addition, you are advised to read the subsequent
sections of this document to further understand how to use ModelArts dedicated
resource pools.

Modelarts
Usermanual 9 Resource Management

2024-04-30 590

Instructions of Dedicated Resource Pools
● If you use dedicated resource pools for the first time, get started by reading

Resource Pool.
● Create a dedicated resource pool by referring to Creating a Resource Pool.
● View the details about a created dedicated resource pool by referring to

Viewing Details About a Resource Pool.
● If the specifications of a dedicated resource pool do not meet your service

requirements, adjust the specifications by referring to Resizing a Resource
Pool.

● Set or change job types supported by a dedicated resource pool by referring
to Changing Job Types Supported by a Resource Pool.

● Upgrade the GPU/Ascend driver of your dedicated resource pools by referring
to Upgrading a Resource Pool Driver.

● If a dedicated resource pool is no longer needed, delete it by referring to
Deleting a Resource Pool.

● If any exception occurs when you use a dedicated resource pool, handle the
exception by referring to Abnormal Status of a Dedicated Resource Pool.

● Manage dedicated resource pool networks or interconnect VPCs with the
networks by referring to ModelArts Network.

9.2.2 Creating a Resource Pool
This section describes how to create a dedicated resource pool.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose Dedicated

Resource Pools > Elastic Cluster.

NO TE

For new users, only new-version elastic clusters are available on the ModelArts
console. For users who have used old-version dedicated resource pools, they can
access both old-version and new-version elastic clusters.

2. On the Resource Pools tab, click Create and configure parameters.

Table 9-1 Dedicated resource pool parameters

Para
met
er

Sub-
Para
met
er

Description

Na
me

N/A Name of a dedicated resource pool.
Only lowercase letters, digits, and hyphens (-) are allowed.
The value must start with a lowercase letter and cannot end
with a hyphen (-).

Desc
ripti
on

N/A Brief description of a dedicated resource pool.

Modelarts
Usermanual 9 Resource Management

2024-04-30 591

Para
met
er

Sub-
Para
met
er

Description

Billi
ng
Mod
e

N/A You can select Pay-per-use.

Reso
urce
Pool
Type

N/A You can select Physical or Logical. If there is no logical
specification, Logical is not displayed.

Job
Type

N/A Select job types supported by the resource pool based on
service requirements.
● Physical: DevEnviron, Training Job, and Inference

Service are supported.
● Logical: Only Training Job is supported.

Net
wor
k

N/A Network in which the target service instance is deployed. The
instance can exchange data with other cloud service
resources in the same network. The network needs to be set
only for physical resource pools.
Select a network from the drop-down list box. If no network
is available, click Create on the right to create a network. For
details about how to create a network, see Creating a
Network.

Spec
ifica
tion
Man
age
men
t

Spec
ificat
ions

Select required specifications. Due to system loss, the actual
available resources are less than those specified in the
specifications. After a dedicated resource pool is created, you
can view the actual available resources on the Nodes tab
page of the dedicated resource pool details page.

AZ You can select Automatically allocated or Specifies AZ. An
AZ is a physical region where resources use independent
power supplies and networks. AZs are physically isolated but
interconnected over an intranet.
● Automatically allocated: AZs are automatically allocated.
● Specifies AZ: Specify AZs for resource pool nodes. To

ensure system disaster recovery, deploy all nodes in the
same AZ. You can set the number of nodes in an AZ.

Nod
es

Select the number of nodes in a dedicated resource pool.
More nodes mean higher computing performance.
If AZ is set to Specifies AZ, you do not need to configure
Nodes.
NOTE

It is a good practice to create no more than 30 nodes at a time.
Otherwise, the creation may fail due to traffic limiting.

Modelarts
Usermanual 9 Resource Management

2024-04-30 592

Para
met
er

Sub-
Para
met
er

Description

Adva
nced
Conf
igura
tion

This allows you to set the container engine space.
You must enter an integer for the container engine space. It
cannot be less than 50 GB, which is the default and
minimum value. The maximum value depends on the
specifications. To see the valid values, check the console
prompt. Customizing the container engine space does not
increase costs.

Cust
om
Driv
er

N/A This parameter is available only when a GPU or Ascend flavor
is selected. Enable this function and select a driver.

GPU
Driv
er

N/A This parameter is available only when custom driver is
enabled. Select a GPU accelerator driver.
NOTE

You should choose NVIDIA driver 535.129.03 or later for hnt8 series
specifications.

Adv
ance
d
Opti
ons

N/A Select Configure Now to set the tag information, CIDR block,
and controller node distribution.

CID
R
bloc
k

N/A You can select Default or Custom.
● Default: The system randomly allocates an available CIDR

block to you, which cannot be modified after the resource
pool is created. For commercial use, customize your CIDR
block.

● Custom: You need to customize K8S container and K8S
service CIDR blocks.
– K8S Container Network: used by the container in a

cluster, which determines how many containers there
can be in a cluster. The value cannot be changed after
the resource pool is created.

– K8S Service Network: used when the containers in the
same cluster access each other, which determines how
many Services there can be. The value cannot be
changed after the resource pool is created.

Clus
ter
Spec
ifica
tion
s

N/A Cluster Scale: maximum number of nodes that can be
managed by the cluster. After the creation, the cluster can be
scaled out but cannot be scaled in.
You can select Default or Custom.

Modelarts
Usermanual 9 Resource Management

2024-04-30 593

Para
met
er

Sub-
Para
met
er

Description

Mas
ter
Distr
ibuti
on

N/A Distribution locations of controller nodes. You can select
Random or Custom.
● Random: Use the AZs randomly allocated by the system.
● Custom: Select AZs for controller nodes.
Distribute controller nodes in different AZs for disaster
recovery.

3. Click Next and confirm the settings. Then, click Submit to create the

dedicated resource pool.
– After a resource pool is created, its status changes to Running. Only

when the number of available nodes is greater than 0, tasks can be
delivered to this resource pool.

– Hover the cursor over Creating to view the details about the creation
process. Click View Details. The operation record page is displayed.

– You can view the task records of the resource pool by clicking Records in
the upper left corner of the resource pool list.

FAQs
Q: Why cannot I use all the CPU resources on a node in a resource pool?

Resource pool nodes have systems and plug-ins installed on them. These take up
some CPU resources. For example, if a node has 8 vCPUs, but some of them are
used by system components, the available resources will be fewer than 8 vCPUs.

You can check the available CPU resources by clicking the Nodes tab on the
resource pool details page, before you start a task.

9.2.3 Viewing Details About a Resource Pool

Resource Pool Details Page
● Log in to the ModelArts console. In the navigation pane, choose Dedicated

Resource Pools > Elastic Cluster.

● Click next to the resource pool type or status in the table header. In the
top right corner of the list, select Name or Resource ID to filter resource
pools. To obtain the resource ID, go to the Billing Center > Orders > My
Orders page and click Details in the Operation column of the target order.

● In the resource pool list, click a resource pool to go to its details page and
view its information.
– If there are multiple resource pools, click in the top left corner of the

details page of one resource pool to switch between resource pools. Click
More in the top right corner to perform operations such as resize or
delete the resource pool. The available operations vary depending on the
resource pool.

Modelarts
Usermanual 9 Resource Management

2024-04-30 594

– In the Network area of Basic Information, you can click the number of
resource pools associated to view associated resource pools.

– In the extended information area, you can view the monitoring
information, jobs, nodes, specifications, and events. For details, see the
following section.

Viewing Jobs in a Resource Pool

On the resource pool details page, click Jobs. You can view all jobs running in the
resource pool. If a job is queuing, you can view its queuing position.

NO TE

Only training jobs can be viewed.

Viewing Resource Pool Events

On the resource pool details page, click Events. You can view all events of the
resource pool. The cause of an event is PoolStatusChange or
PoolResourcesStatusChange.

In the event list, click on the right of Event Type to filter events.

● When a resource pool starts to be created or becomes abnormal, the resource
pool status changes and the change will be recorded as an event.

● When the number of nodes that are available or abnormal or in the process
of being created or deleted changes, the resource pool node status changes
and the change will be recorded as an event.

Figure 9-1 Viewing Resource Pool Events

Viewing Resource Pool Nodes

On the resource pool details page, click Nodes. You can view all nodes in the
resource pool and the resource usage of each node.

Some resources are reserved for cluster components. Therefore, CPUs (Available/
Total) does not indicate the number of physical resources on the node. It only
displays the number of resources that can be used by services. CPU cores are
metered in milicores, and 1000 milicores equal 1 physical core.

● Replacing a node
In the Nodes tab, locate the node to be replaced. In the Operation column,
click Replace. No fee is charged for this operation.
Check the node replacement records on the Records page. Running indicates
that the node is being replaced. After the replacement, you can check the new
node in the node list.

Modelarts
Usermanual 9 Resource Management

2024-04-30 595

The replacement can last no longer than 24 hours. If no suitable resource is
found after the replacement times out, the status changes to Failed. Hover

over to check the failure cause.

NO TE

● The number of replacements per day cannot exceed 20% of the total nodes in the
resource pool. The number of nodes to be replaced cannot exceed 5% of the total
nodes in the resource pool.

● Ensure that there are idle node resources. Otherwise, the replacement may fail.

● If there are any nodes in the resetting status in the operation records, nodes in this
resource pool cannot be replaced.

● Resetting a node
In the Nodes tab, locate the node you want to reset. Click Reset in the
Operation column to reset a node. You can also select multiple nodes, and
click Reset to reset multiple nodes.
Configure the parameters described in the table below.

Table 9-2 Parameters

Parameter Description

Operating
system

Select an OS from the drop-down list box.

Configurati
on Mode

Select a configuration mode for resetting the node.
● By node percentage: the maximum ratio of nodes that

can be reset if there are multiple nodes in the reset task
● By node quantity: the maximum number of nodes that

can be reset if there are multiple nodes in the reset task

Check the node reset records on the Records page. If the node is being reset,
its status is Resetting. After the reset is complete, the node status changes to
Available. Resetting a node will not be charged.

NO TE

● Resetting a node will affect running services.

● Only nodes in the Available state can be reset.

● A single node can be in only one reset task at a time. Multiple reset tasks cannot
be delivered to the same node at a time.

● If there are any nodes in the replacing status in the operation records, nodes in this
resource pool cannot be reset.

● When the driver of a resource pool is being upgraded, nodes in this resource pool
cannot be reset.

● For GPU and NPU specifications, after the node is reset, the driver of the node may
be upgraded. Wait patiently.

● Deleting, unsubscribing from, or releasing a node
For a pay-per-use resource pool, click Delete in the Operation column.

Modelarts
Usermanual 9 Resource Management

2024-04-30 596

To delete nodes in batches, select the check boxes next to the node names,
and click Delete.

NO TE

● Before deleting, unsubscribing from, or releasing a node, ensure that there are no
running jobs on this node. Otherwise, the jobs will be interrupted.

● Delete, unsubscribe from, or release abnormal nodes in a resource pool and add
new ones for substitution.

● If there is only one node, it cannot be deleted, unsubscribed from, or released.

Viewing Resource Pool Specifications
On the resource pool details page, click Specifications. You can view the
specifications used by the resource pool and the number of each specification.

Figure 9-2 View resource pool specifications (The container engine size is
displayed as the default value if it is not set.)

Viewing Resource Pool Monitoring Information
On the resource pool details page, click Monitoring. The resource usage including
used CPUs, memory usage, and available disk capacity of the resource pool is
displayed. If AI accelerators are used in the resource pool, the GPU and NPU
monitoring information is also displayed.

9.2.4 Resizing a Resource Pool

Description
The demand for resources in a dedicated resource pool may change due to the
changes of AI development services. In this case, you can resize your dedicated
resource pool in ModelArts.

● You can add nodes for existing flavors in the resource pool.
● You can delete nodes for existing flavors in the resource pool.

NO TE

Before scaling in a resource pool, ensure that there are no services running in the pool.
Alternatively, go to the resource pool details page, delete the nodes where no services are
running to scale in the pool.

Constraints
● Only dedicated resource pools in the Running status can be resized.
● When scaling in a dedicated resource pool, the number of flavors or nodes of

a flavor cannot be decreased to 0.

Resizing a Dedicated Resource Pool
You can resize a resource pool in any of the following ways:

Modelarts
Usermanual 9 Resource Management

2024-04-30 597

● Adjusting the number of nodes of existing specifications
● Resizing the container engine space
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.

NO TE

A resource pool is suspended when it is migrated from the old version to the new
version. You cannot adjust the capacity of such a resource pool or unsubscribe from it.

2. Add or delete nodes.
Click Adjust Capacity in the Operation column of the target resource pool.
In the Resource Configurations area, set AZ to Automatically allocated or
Specifies AZ. Click Submit and then OK to save the changes.
– If AZ is set to Automatically allocated, you can increase or decrease the

number of nodes to scale out or in the resource pool. After the scaling,
nodes are automatically allocated to AZs.

– If you select Specifies AZ, you can allocate nodes to different AZs.

Figure 9-3 Resource configuration (The container engine size is displayed
as the default value if it is not set.)

3. Resizing the container engine space
If you need larger container engine size, perform any of the following
operations:
– For new resources, you can specify the container engine space when

creating a resource pool. For details, see advanced configurations of
Specification Management in Creating a Resource Pool.

– For existing resources, the container engine space can be modified.

▪ Method 1: Click the target resource pool to view its details. Click the
Specifications tab, locate the target specifications, and click Change
the container engine space size in the Operation column.

▪ Method 2: Locate the target resource pool and click Adjust Capacity
in the Operation column.

NO TICE

Resizing the container engine space is only applicable to new nodes.
Furthermore, dockerBaseSize may vary across nodes of this flavor within
the resource pool. Consequently, this can lead to discrepancies in the
status of tasks distributed among different nodes.

Modelarts
Usermanual 9 Resource Management

2024-04-30 598

9.2.5 Migrating the Workspace

Context
The workspace of a dedicated resource pool is associated with an enterprise
project, which involves bill collection. ModelArts provides workspaces to isolate
resource operation permissions of different IAM users. Workspace migration
includes resource pool migration and network migration. For details, see the
following sections.

Migrating the Workspace for a Resource Pool
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.
2. In the resource pool list, choose More > Migrate Workspace in the

Operation column of the target resource pool.
3. In the Migrate Dedicated Resource Pool dialog box that appears, select the

target workspace and click OK.

Migrating the Workspace for a Network
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster. Then, click the Network tab.
2. In the network list, choose More > Migrate Workspace in the Operation

column of the target network.
3. In the dialog box that appears, select the target workspace and click OK.

9.2.6 Changing Job Types Supported by a Resource Pool

Description
ModelArts supports many types of jobs. Some of them can run in dedicated
resource pools, including training jobs, inference services, and notebook
development environments.

You can change job types supported by a dedicated resource pool. Available
options for Job Type are Training Job, Inference Service, and DevEnviron.

Only selected types of jobs can be delivered to the corresponding dedicated
resource pool.

CA UTION

To support different job types, different operations are performed in the backend,
such as installing plug-ins and setting the network environment. Some operations
use resources in the resource pool. As a result, available resources for you
decrease. Therefore, select only the job types you need to avoid resource waste.

Constraints
The target dedicated resource pool must be running.

Modelarts
Usermanual 9 Resource Management

2024-04-30 599

Procedure
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.
2. In the Operation column of a resource pool, choose More > Set Job Type.
3. In the Set Job Type dialog box, select job types.
4. Click OK.

9.2.7 Upgrading a Resource Pool Driver

Description
If GPUs or Ascend resources are used in a dedicated resource pool, you may need
to customize GPU or Ascend drivers. ModelArts allows you to upgrade GPU or
Ascend drivers of your dedicated resource pools.

There are two driver upgrade modes: secure upgrade and forcible upgrade.

NO TE

● Secure upgrade: Running services are not affected. After the upgrade starts, the nodes
are isolated (new jobs cannot be delivered). After the existing jobs on the nodes are
complete, the upgrade is performed. The secure upgrade may take a long time because
the jobs must be completed first.

● Forcible upgrade: The drivers are directly upgraded, regardless of whether there are
running jobs.

Constraints
● The target dedicated resource pool must be running, and the resource pool

contains GPU or Ascend resources.
● For a logical resource pool, the driver can be upgraded only after node

binding is enabled. To enable node binding, submit a service ticket to contact
engineers.

Upgrading the Driver
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.
2. In the Operation column of the target resource pool, choose More >

Upgrade Driver.
3. In the Upgrade Driver dialog box, the driver type, number of nodes, current

version, target version, and upgrade mode of the dedicated resource pool are
displayed.
– Target Version: Select a target driver version from the drop-down list.
– Upgrade Mode: Select Secure upgrade or Forcible upgrade.

4. Click OK to start the driver upgrade.

9.2.8 Deleting a Resource Pool
If a dedicated resource pool is no longer needed for AI service development, you
can delete the resource pool to release resources.

Modelarts
Usermanual 9 Resource Management

2024-04-30 600

NO TE

After a dedicated resource pool is deleted, the development environments, training jobs,
and inference services that depend on the resource pool are unavailable. A dedicated
resource pool cannot be restored after being deleted.

1. Log in to the ModelArts management console. In the navigation pane, choose
Dedicated Resource Pools > Elastic Cluster.

2. Locate the row that contains the target resource pool, choose More > Delete
in the Operation column.

3. In the Delete Dedicated Resource Pool dialog box, enter DELETE in the text
box and click OK.
You can switch between tabs on the details page to view the training jobs and
notebook instances created using the resource pool, and inference services
deployed in the resource pool.

9.2.9 Abnormal Status of a Dedicated Resource Pool

Resource Quota Limit
When you use a dedicated resource pool (for example, scaling resources, creating
a VPC, creating a VPC and subnet, or interconnecting a VPC), if the system
displays a message indicating that the resource quota is limited, .

Creation Failed/Change Failed
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.
2. Click Records on the right of Create. On the Records dialog box, view failed

task records.

Figure 9-4 Creating a resource pool failed

3. Hover the cursor over , view the cause of task failures.

NO TE

By default, failed task records are sorted by application time. A maximum of 500 failed
task records can be displayed and retained for three days.

Locating Faulty Node
ModelArts will add a taint on a detected K8S faulty node so that jobs will not be
affected or scheduled to the tainted node. The following table lists the faults can

Modelarts
Usermanual 9 Resource Management

2024-04-30 601

be detected. You can locate the fault by referring to the isolation code and
detection method.

Modelarts
Usermanual 9 Resource Management

2024-04-30 602

Table 9-3 Isolation code

Isol
atio
n
Cod
e

Cate
gory

Sub-
Categ
ory

Description Detection Method

A05
0101

GPU GPU
memo
ry

GPU ECC error
exists.

Run the nvidia-smi -a command
and check whether Pending Page
Blacklist is Yes or the value of
multi-bit Register File is greater
than 0. For Ampere GPUs, check
whether the following content exists:
● Uncorrectable SRAM error
● Remapping Failure records
● Xid 95 events in dmsg
(For details, see NVIDIA GPU
Memory Error Management.)
The Ampere architecture has the
following levels of GPU memory
errors:
● L1: These are single-bit ECC errors

that can be corrected. They do
not affect the running services. To
check for these errors, run the
nvidia-smi -a command and look
for Volatile Correctable.

● L2: These are multi-bit ECC errors
that cannot be corrected. They
cause the running services to fail
and require a process restart to
recover. To check for these errors,
run the nvidia-smi -a command
and look for Volatile
Uncorrectable.

● L3: These are unsuppressed errors
and may affect other services.
They require a card reset or a
node reboot to clear. To check for
these errors, look for the Xid
events that contain the number
95. (The Remapped Pending
records are only for reference. You
need to reset the cards when the
service is idle to trigger the
remapping process.)

● L4: These are errors that require a
card replacement. To check for
these errors, look for the SRAM

Modelarts
Usermanual 9 Resource Management

2024-04-30 603

https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html#overview
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html#overview

Isol
atio
n
Cod
e

Cate
gory

Sub-
Categ
ory

Description Detection Method

Uncorrectable field that is
greater than 4 or the Remapped
Failed field that is not zero.

A05
0102

GPU Other The nvidia-smi
output contains
ERR.

Run nvidia-smi -a and check
whether the output contains ERR.
Normally, the hardware, such as the
power supply or the fan, is faulty.

A05
0103

GPU Other The execution of
nvidia-smi times
out or does not
exist.

Check that exit code of nvidia-smi is
not 0.

A05
0104

GPU GPU
Memo
ry

ECC error
occurred 64
times.

Run the nvidia-smi -a command,
locate Retired Pages, and check
whether the sum of Single Bit and
Double Bit is greater than 64.

A05
0148

GPU Other An infoROM
alarm occurs.

Run the nvidia-smi command and
check whether the output contains
the alarm "infoROM is corrupted".

A05
0109

GPU Other Other GPU
errors

Check whether other GPU error
exists. Normally, there is a faulty
hardware. Contact the technical
engineer.

A05
0147

IB Link The IB NIC is
abnormal.

Run the ibstat command and check
whether the NIC is not in active
state.

A05
0121

NPU Other A driver
exception is
detected by NPU
DCMI.

The NPU driver environment is
abnormal.

A05
0122

NPU Other The NPU DCMI
device is
abnormal.

The NPU device is abnormal. The
Ascend DCMI interface returns a
major or urgent alarm.

A05
0123

NPU Link The NPU DCMI
net is abnormal.

The NPU network connection is
abnormal.

A05
0129

NPU Other Other NPU
errors

Check whether other NPU error
exists. You cannot rectify the fault.
Contact the technical engineer.

Modelarts
Usermanual 9 Resource Management

2024-04-30 604

Isol
atio
n
Cod
e

Cate
gory

Sub-
Categ
ory

Description Detection Method

A05
0149

NPU Link Check whether
the network port
of the hccn tool
is intermittently
disconnected.

The NPU network is unstable and
intermittently disconnected. Run the
hccn_tool-i ${device_id} -link_stat
-g command and the network is
disconnected more than five times
within 24 hours.

A05
0951

NPU GPU
memo
ry

The number of
NPU ECCs
reaches the
maintenance
threshold.

The NPU's HBM Double Bit Isolated
Pages Count value is greater than or
equal to 64.

A05
0146

Runti
me

Other The NTP is
abnormal.

The ntpd or chronyd service is
abnormal.

A05
0202

Runti
me

Other The node is not
ready.

The node is unavailable. The K8S
node contains one of the following
taints:
● node.kubernetes.io/unreachable
● node.kubernetes.io/not-ready

A05
0203

Runti
me

Discon
nectio
n

The number of
normal AI cards
does not match
the actual
capacity.

The GPU or NPU is disconnected.

A05
0206

Runti
me

Other The Kubelet
hard disk is
read-only.

The /mnt/paas/kubernetes/kubelet
directory is read-only.

A05
0801

Node
man
age
ment

Node
O&M

Resource is
reserved.

The node is marked as the standby
node and contains a taint.

A05
0802

Node
man
age
ment

Node
O&M

An unknown
error occurs.

The node is marked with an
unknown taint.

A20
0001

Node
man
age
ment

Driver
upgra
de

The GPU is being
upgraded.

The GPU is being upgraded.

Modelarts
Usermanual 9 Resource Management

2024-04-30 605

Isol
atio
n
Cod
e

Cate
gory

Sub-
Categ
ory

Description Detection Method

A20
0002

Node
man
age
ment

Driver
upgra
de

The NPU is
being upgraded.

The NPU is being upgraded.

A20
0008

Node
man
age
ment

Node
admiss
ion

The admission is
being examined.

The admission is being examined,
including basic node configuration
check and simple service verification.

A05
0933

Node
man
age
ment

Fault
tolera
nce
Failov
er

The Failover
service on the
tainted node will
be migrated.

The Failover service on the tainted
node will be migrated.

A05
0931

Traini
ng
toolk
it

Pre-
check
contai
ner

A GPU error is
detected in the
pre-check
container.

A GPU error is detected in the pre-
check container.

A05
0932

Traini
ng
toolk
it

Pre-
check
contai
ner

An IB error is
detected in the
pre-check
container.

An IB error is detected in the pre-
check container.

9.2.10 ModelArts Network

ModelArts Network and VPC

ModelArts networks are used for interconnecting nodes in a ModelArts resource
pool. You can only configure the name and CIDR block for a network. To ensure
that there is no IP address segment in the CIDR block overlapped with that of the
VPC to be accessed, multiple CIDR blocks are available for you to select.

A VPC provides a logically isolated virtual network for your instances. You can
configure and manage the network as required. VPC provides logically isolated,
configurable, and manageable virtual networks for cloud servers, cloud containers,
and cloud databases. It helps you improve cloud service security and simplify
network deployment.

Prerequisites
● A VPC is available.

● A subnet is available.

Modelarts
Usermanual 9 Resource Management

2024-04-30 606

Creating a Network
1. Log in to the ModelArts management console. In the navigation pane, choose

Dedicated Resource Pools > Elastic Cluster.
2. Click Network and then Create.
3. In the Create Network dialog box, set parameters.

– Network Name: customizable name
– CIDR Block: You can select Preset or Custom.

NO TE

● Each user can create a maximum of 15 networks.

● Ensure there is no IP address segment in the CIDR block overlaps that of the VPC
to be accessed. The CIDR block cannot be changed after the network is created.
Possible conflict CIDR blocks are as follows:

● Your VPC CIDR block

● Container CIDR block (consistently to be 172.16.0.0/16)

● Service CIDR block (consistently to be 10.247.0.0/16)

4. Confirm the settings and click OK.

(Optional) Interconnecting a VPC with a ModelArts Network
VPC interconnection allows you to use resources across VPCs, improving resource
utilization.

1. On the Network page, click Interconnect VPC in the Operation column of
the target network.

Figure 9-5 Interconnect VPC

2. In the displayed dialog box, click the button on the right of Interconnect VPC,
and select an available VPC and subnet from the drop-down lists.

NO TE

The peer network to be interconnected cannot overlap with the current CIDR block.

– If no VPC is available, click Create VPC on the right to create a VPC.
– If no subnet is available, click Create Subnet on the right to create a

subnet.
– Multiple subnets in a VPC can be interconnected. You can click + to add

up to 10 subnets.

Enabling a Dedicated Resource Pool to Access the Internet
To enable a dedicated resource pool to access the Internet, follow these steps:

Step 1 Interconnect a VPC. For details, see (Optional) Interconnecting a VPC with a
ModelArts Network .

Modelarts
Usermanual 9 Resource Management

2024-04-30 607

Step 2 For details about how to configure an SNAT server for a VPC, see section
"Configuring an SNAT Server" in Virtual Private Cloud (VPC) Usage Guide > User
Guide.

----End

Deleting a Network

If a network is no longer needed for AI service development, you can delete the
network.

1. Go to the Network tab page and click Delete in the Operation column of a
network.

2. Confirm the information and click OK.

9.3 Elastic Server

9.3.1 Overview
Elastic Server provides you with dedicated physical servers on the cloud. You can
log in to a BMS as user root and install and deploy third-party software, such as
AI frameworks and applications. To create an elastic server, you only need to
specify the flavor, image, required network configuration, and key pair.

Table 9-4 Terms

Term Description

BMS A Bare Metal Server (BMS) features both the scalability of VMs
and high performance of physical servers. It provides dedicated
servers on the cloud, delivering the performance and security
required by core databases, critical applications, high-
performance computing (HPC), and big data.

Image Elastic Server provides public images. The image version is
EulerOS 2.8 and the driver version is C78.

Disk Elastic Server provides local disks based on BMS.
Local disks include NVMe SSDs, SATA disks, and others. They
provide low latency, high throughput, and high cost-effectiveness
product and are applicable to scenarios that have large volumes
of data and require high storage I/O performance and real-time
performance.

SSH key pair You can log in to an elastic server only using an SSH key pair.
Therefore, you do not need to worry about password
interception, cracking, and leakage.
As an alternative to the traditional username+password
authentication method, key pairs allow you to remotely log in to
Linux ECSs.

Modelarts
Usermanual 9 Resource Management

2024-04-30 608

Term Description

Network ● Virtual Private Cloud (VPC)
A VPC is a logically isolated, configurable, and manageable
virtual network. It helps improve the security of cloud
resources and simplifies network deployment. Within your
own VPC, you can create security groups and VPNs, configure
IP address ranges, specify bandwidth sizes, by customizing
security groups, VPNs, IP address ranges, and bandwidth. This
simplifies network management. You can also customize
access rules to control BMS access within a security group and
across different security groups to enhance BMS security.

● RoCE network
Elastic Server supports RoCE networks, facilitating large-scale
distributed computing. RoCE is a network protocol that
leverages Remote Direct Memory Access (RDMA) capabilities,
and is commonly used in distributed storage networks. By
using related hardware and network technologies, the NICs of
server 1 can directly read and write the memory of server 2,
achieving high bandwidth, low latency, and low resource
utilization.

9.3.2 Preparations

Step 1: Enable the Feature
To use Elastic Server, contact your region owner to enable it.

Step 2: Enable Basic Permissions
To enable basic permissions, log in to the management console as the
administrator account and assign the basic permissions (such as ModelArts
FullAccess, BMS FullAccess, ECS FullAccess, VPC FullAccess, and VPC
Administrator) required by Elastic Server to IAM users.

Step 1 Log in to the IAM console.

Step 2 Click User Groups and then click Create User Group.

Step 3 Enter the user group name and click OK.

Step 4 Click Manage User in the Operation column and add the users for which you
want to assign permissions to the user group.

Step 5 Click the name of the user group to go to the group details page.

Step 6 On the Permissions tab page, click Assign Permissions.

Modelarts
Usermanual 9 Resource Management

2024-04-30 609

Figure 9-6 Assign Permissions

Step 7 Set Scope to Region-specific projects and select All resources (including future
projects in all regions) from the drop-down list.

Figure 9-7 Scope

Step 8 Enter ModelArts FullAccess in the search box and select ModelArts FullAccess.

Figure 9-8 ModelArts FullAccess

Step 9 Use the same method to select BMS FullAccess, ECS FullAccess, VPC FullAccess,
and VPC Administrator. (Server Administrator is the dependency of VPC
Administrator and is automatically selected.)

Figure 9-9 Basic permissions

Step 10 Click OK.

----End

Step 3: Create a VPC

To create a VPC, you need to log in to the management console as the
administrator account.

Step 1 Log in to the management console.

Step 2 In the service list on the left, choose Networking > Virtual Private Cloud.

Step 3 On the displayed page, click Create VPC in the upper right corner and click Create
Now.

Modelarts
Usermanual 9 Resource Management

2024-04-30 610

Figure 9-10 Create VPC

----End

Step 4: Create a Key Pair
Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 Click Create.

Step 4 Click Create Key Pair.

Step 5 On the displayed page, click Create Key Pair in the upper right corner and click
OK to save the key pair to your local PC.

Figure 9-11 Creating a key pair

----End

9.3.3 Getting Started
This section describes how to create an elastic server, log in to it through SSH, and
release it.

Prerequisites
You have enabled Elastic Server and created a VPC and a key pair. For details, see
Preparations.

Modelarts
Usermanual 9 Resource Management

2024-04-30 611

Procedure

Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 Click Create. On the Create DevServer Instance page that is displayed, set
parameters.
● Resource Type: Select BMS.
● CPU Architecture: Select Arm.
● Network: Select your VPC and subnet.
● Key Pair: Select your key pair.
● Retain default settings for other parameters.

Figure 9-12 Parameters

Step 4 Click Next.

Step 5 Contact the administrator to configure the network and obtain the EIP address
and public port number.

Step 6 Start the SSH tool and set parameters (MobaXterm is used as an example).

Click SSH and type the EIP, username, and port.

Modelarts
Usermanual 9 Resource Management

2024-04-30 612

https://mobaxterm.mobatek.net/download.html

Figure 9-13 Establishing an SSH connection

Figure 9-14 Setting parameters

Click Advanced SSH settings, select the key pair used for creating the instance,
and click OK.

Modelarts
Usermanual 9 Resource Management

2024-04-30 613

Figure 9-15 Configuring a key pair

Figure 9-16 Successful login

Step 7 (Optional) To release an instance, in the elastic server list on the console, click
Delete in the Operation column of the target instance. In the displayed dialog
box, confirm the operation.

Figure 9-17 Deleting an instance

----End

9.3.4 Managing an Elastic Server

Modelarts
Usermanual 9 Resource Management

2024-04-30 614

9.3.4.1 Creating an Elastic Server

Prerequisites

You have enabled basic permissions, created a VPC, and created a key pair. For
details, see Preparations.

Procedure

Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 Click Create. On the Create DevServer Instance page that is displayed, set
parameters.

Table 9-5 Basic information

Parameter Description

Name Name of an elastic server. Enter 1 to 64 characters.
Only letters, digits, hyphens (-), and underscores (_)
are allowed.

Billing Mode Currently, only pay-per-use is supported.

Table 9-6 Detailed specifications

Parameter Description

Resource Type ECS and BMS are supported.
● ECS provides scalable, on-demand cloud servers.
● BMS features both the scalability of VMs and

high performance of physical servers. It provides
dedicated servers on the cloud.

CPU Architecture CPU architecture of the resource type, which can be
x86 or Arm

AZ A standalone data center with an independent
network and power supply. When deploying
resources, consider your applications' requirements
on disaster recovery (DR) and network latency.
● For high DR capability, deploy resources in

different AZs within the same region.
● For lower network latency, deploy resources in the

same AZ.

Flavor General-computing and GPU-accelerated flavors are
supported. The flavors vary by region. The actual
flavors are displayed on the console.

Modelarts
Usermanual 9 Resource Management

2024-04-30 615

Parameter Description

Image VM image provided by ModelArts

Table 9-7 Network resource parameters

Parameter Description

Network Network environment of the elastic server

RoCE Network Configure the RoCE network for the elastic server if
distributed scenarios are involved. If no RoCE
network is available, contact the region personnel.

Name RoCE network name. Set this parameter when the
RoCE network is enabled.

Security Group A security group implements access control for
elastic servers that have the same security protection
requirements in a VPC.

System Disk This parameter is displayed only when you select a
flavor that supports mounting. After an ECS is
created, you can mount a data disk to the ECS or
expand the capacity of the system disk on the ECS.
The recommended value is not smaller than 100 GB.

Key Pair This key pair is the only way to access the elastic
server through SSH.

Enterprise Project (Optional) You can select an enterprise project.

Step 4 Click Next.

----End

9.3.4.2 Viewing Instance Details

Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 In the Elastic Server list, click the target instance name to go to the instance
details page and view details about the instance.

Table 9-8 Parameters

Parameter Description

Name Name of an instance

ID Unique instance ID

Modelarts
Usermanual 9 Resource Management

2024-04-30 616

Parameter Description

VPC VPC of the instance

Image Image used by the instance

Access Key Key pair for logging in to the instance

Flavor Specifications of the instance

Status Status of the instance

BMS BMS of an instance

Created At Time when the instance is created

Updated At Time when an instance is modified

----End

9.3.4.3 Using SSH to Remotely Log In to an Instance

Prerequisites
● An elastic server is in the Running state.
● The key pair is available.

A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

● Operations in Configuring the Network as an Administrator have been
performed.

Procedure

Step 1 Contact the administrator to obtain the EIP and public port number.

Step 2 Start the SSH tool and set parameters (MobaXterm is used as an example).

Click SSH and type the EIP, username, and port.

Modelarts
Usermanual 9 Resource Management

2024-04-30 617

https://mobaxterm.mobatek.net/download.html

Figure 9-18 Establishing an SSH connection

Figure 9-19 Setting parameters

Click Advanced SSH settings, select the key pair used for creating the instance,
and click OK.

Modelarts
Usermanual 9 Resource Management

2024-04-30 618

Figure 9-20 Configuring a key pair

Step 3 Check whether the login is successful as shown in the following figure.

Figure 9-21 Successful login

----End

9.3.4.4 Starting or Stopping an Instance

Stop instances that are not needed and restart them when they are needed again.

1. Log in to the ModelArts management console. In the navigation pane, choose
Dedicated Resource Pools > Elastic Server.

2. Perform the following operations to start or stop an elastic server:
– To start an elastic server, click Start in the Operation column. Only

stopped instances can be started.

Modelarts
Usermanual 9 Resource Management

2024-04-30 619

– To stop an elastic server, click Stop in the Operation column. Only
running instances can be stopped.

NO TE

Please note that instances are stopped in forcible shutdown mode, which may
interrupt your services. Make sure you have saved the files on them before stopping.

9.3.4.5 Synchronizing the Status of an Elastic Server
After you change the status of a BMS on the Cloud Server Console, synchronize
the change to the elastic server on ModelArts.

Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 In the Elastic Server list, click Synchronize in the Operation column of the target
instance. In the dialog box that is displayed, click OK.

----End

9.3.4.6 Deleting an Instance
Delete the elastic servers that are no longer used.

Step 1 Log in to the ModelArts management console.

Step 2 In the navigation pane, choose Dedicated Resource Pools > Elastic Server.

Step 3 In the Elastic Server list, click Delete in the Operation column of the target
instance. In the dialog box that is displayed, click OK.

----End

9.3.5 Configuring the Network as an Administrator

Context
After an elastic server is created, you need to contact the administrator to
configure the network before accessing the elastic server using SSH. This section
describes how to configure the network as the administrator. The following steps
must be performed using the administrator account.

Prerequisites
An elastic server has been created.

Step 1: Create an EIP and a NAT Gateway

Step 1 Log in to the management console.

Step 2 In the service list on the left, choose Networking > Elastic IP.

Step 3 Click Buy EIP.

Step 4 Retain the default settings and click Next.

Modelarts
Usermanual 9 Resource Management

2024-04-30 620

Step 5 Choose NAT Gateway > Public NAT Gateway.

Step 6 Click Buy Public NAT Gateway.

Step 7 Select the VPC and subnet for the elastic server, retain the default settings for
other parameters, and click Next.

----End

Step 2: Configure SNAT and DNAT Rules

Step 1 On the Public NAT Gateways page, click the name of the created NAT gateway.

Step 2 On the SNAT Rules tab, click Add SNAT Rule.

Step 3 Add an SNAT rule.

Scenario: VPC

Subnet: Use an existing subnet.

EIP: Select the created EIP.

Step 4 Click OK.

Step 5 On the DNAT Rules tab, click Add DNAT Rule.

Step 6 Configure a DNAT rule.

Scenario: VPC

Port Type: Specific port

Protocol: TCP

EIP: Select the created EIP.

Outside Port: You are advised to set this parameter to a value ranging from
20000 to 30000 to ensure that the port number is unique.

Private IP Address: Enter the IP address of the elastic server. You can click View
ECS IP Address and then click Bare Metal Server to view the IP address.

Inside Port: 22

Step 7 Click OK.

----End

9.4 Monitoring Resources

9.4.1 Overview
All metrics reported by ModelArts are stored in AOM, which enables you to
consume metrics. You can view metric threshold alarms and reported alarms on
the AOM console or use visualization tools such as Grafana to view and analyze
the alarms. Grafana provides different views and templates for monitoring, which
allow you to see the real-time resource usage on dashboards clearly.

Modelarts
Usermanual 9 Resource Management

2024-04-30 621

9.4.2 Using Grafana to View AOM Monitoring Metrics

9.4.2.1 Procedure
Grafana supports various monitoring views and templates, meeting your diverse
requirements. After adding the data source in Grafana, you can view all ModelArts
monitoring metrics stored in AOM using Grafana.

To view AOM monitoring metrics using Grafana plugins, perform the following
steps:

1. Installing and Configuring Grafana

NO TE

You can install and configure Grafana using any of the following ways: Installing and
Configuring Grafana on Windows, Installing and Configuring Grafana on Linux,
and Installing and Configuring Grafana on a Notebook Instance.

2. Configuring a Grafana Data Source
3. Using Grafana to Configure Dashboards and View Metric Data

9.4.2.2 Installing and Configuring Grafana

9.4.2.2.1 Installing and Configuring Grafana on Windows

Application Scenario
This section describes how to install and configure Grafana on a Windows
operating system.

Procedure
1. Download the Grafana installation package.

Go to the download link, click Download the installer, and wait until the
download is successful.

2. Install Grafana.
Double-click the installation package and install Grafana as instructed.

3. In Windows Services Manager, enable Grafana.

4. Log in to Grafana.
Grafana runs on port 3000 by default. After you open http://localhost:3000,
the Grafana login page is displayed. The default username and password for
the first login are admin. After the login is successful, change the password as
prompted.

Modelarts
Usermanual 9 Resource Management

2024-04-30 622

https://grafana.com/grafana/download?platform=windows

9.4.2.2.2 Installing and Configuring Grafana on Linux

Prerequisites
● An Ubuntu server that is accessible to the Internet is available. If no, the

following conditions must be met:
● You have obtained an ECS. (You are advised to select 8 vCPUs or higher,

Ubuntu image of 22.04 version, and 100 GB local storage.) For details, see
"Getting Started" > "Purchasing an ECS with Customized Configurations" in
the "Elastic Cloud Server User Guide.

● You have purchased an EIP and bound it to the ECS. For details, see "Getting
Started" > "Assigning an EIP and binding it to an ECS" in the Elastic IP User
Guide.

Procedure
1. Log in to the ECS. Select a login method. For details, see "ECS Instances" >

"Logging In to a Linux ECS" > "Linux ECS Login Overview" in the Elastic Cloud
Server User Guide.

2. Run the following command to install libfontconfig1:
sudo apt-get install -y adduser libfontconfig1

The operation is successful if the following information is displayed:

Modelarts
Usermanual 9 Resource Management

2024-04-30 623

3. Run the following command to download the Grafana installation package:
wget https://dl.grafana.com/oss/release/grafana_9.3.6_amd64.deb --no-check-certificate

Download completed:

4. Run the following command to install Grafana:
sudo dpkg -i grafana_9.3.6_amd64.deb

5. Run the following command to start Grafana:
sudo /bin/systemctl start grafana-server

6. Access Grafana configurations on your local PC.
Ensure that an EIP has been bound to the ECS and the security group
configuration is correct (the inbound traffic from TCP port 3000 and all
outbound traffic are allowed). Configuration process:

a. Click the ECS name to go to the ECS details page. Then, click the Security
Groups tab, and click Manage Rule.

Modelarts
Usermanual 9 Resource Management

2024-04-30 624

https://dl.grafana.com/oss/release/grafana_9.3.6_amd64.deb

b. Click Inbound Rules and allow inbound traffic from TCP port 3000. By
default, all outbound traffic is allowed.

7. Access http://{EIP}:3000 in a browser. The default username and password
for the first login are admin. After the login is successful, change the
password as prompted.

Modelarts
Usermanual 9 Resource Management

2024-04-30 625

9.4.2.2.3 Installing and Configuring Grafana on a Notebook Instance

Prerequisites
● A running CPU- or GPU-based notebook instance is available.
● A terminal is opened.

Modelarts
Usermanual 9 Resource Management

2024-04-30 626

Procedure
1. Run the following commands in sequence in your terminal to download and

install Grafana:
mkdir -p /home/ma-user/work/grf
cd /home/ma-user/work/grf
wget https://dl.grafana.com/oss/release/grafana-9.1.6.linux-amd64.tar.gz
tar -zxvf grafana-9.1.6.linux-amd64.tar.gz

2. Register Grafana with jupyter-server-proxy.

a. Run the following commands in your terminal:
mkdir -p /home/ma-user/.local/etc/jupyter
vi /home/ma-user/.local/etc/jupyter/jupyter_notebook_config.py

Modelarts
Usermanual 9 Resource Management

2024-04-30 627

b. In jupyter_notebook_config.py, add the following code, press Esc to exit,
and type :wq to save the changes:
c.ServerProxy.servers = {
 'grafana': {
 'command': ['/home/ma-user/work/grf/grafana-9.1.6/bin/grafana-server', '--
homepath', '/home/ma-user/work/grf/grafana-9.1.6', 'web'],
 'timeout': 1800,
 'port': 3000
 }
}

NO TE

If jupyter_notebook_config.py (path: /home/ma-user/.local/etc/jupyter/
jupyter_notebook_config.py) contains the c.ServerProxy.servers field, add the
corresponding key-value pair.

3. Modify the URL for accessing Grafana in JupyterLab.

a. In the navigation pane on the left, open the vi /home/ma-user/
work/grf/grafana-9.1.6/conf/defaults.ini file.

b. Change the root_url and serve_from_sub_path fields in [server].

Figure 9-22 Modifying the defaults.ini file

In the file:

▪ The value of root_url is in the format of https:{Jupyterlab domain
name}/{Instance ID}/grafana. You can obtain the domain name and
instance ID from the address box of the JupyterLab page.

▪ Set Serve_from_sub_path to true.

4. Save the image of the notebook instance.

a. Log in to the ModelArts console and choose DevEnviron > Notebook. In
the notebook instance list, choose More > Save Image in the Operation
column of the target instance.

Modelarts
Usermanual 9 Resource Management

2024-04-30 628

b. In the Save Image dialog box, configure parameters. Click OK to save the
image.

Figure 9-23 Saving an image

c. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the
instance.

Figure 9-24 Snapshotting

d. After the image is saved, the instance status changes to Running. Then,
restart the notebook instance.

Modelarts
Usermanual 9 Resource Management

2024-04-30 629

Figure 9-25 Image saved

5. Open the Grafana page.
Open a browser window and type the value of root_url configured in 3 in the
address box. If the Grafana login page is displayed, Grafana is installed and
configured in the notebook instance. The default username and password for
the first login are admin. After the login is successful, change the password as
prompted.

9.4.2.3 Configuring a Grafana Data Source

Before viewing ModelArts monitoring data on Grafana, configure the data source.

Prerequisites
● Grafana has been installed.

Procedure
1. Add an access code.

Modelarts
Usermanual 9 Resource Management

2024-04-30 630

a. Log in to the AOM console.

b. In the navigation pane on the left, choose Configuration Management >
Agent Access, and click Add Access Code to generate an access code.

Figure 9-26 Generating an access code

c. Click to view the generated access code.

Figure 9-27 Viewing the access code

2. Obtain the data source URL.
The URL is in the format of https://{Endpoint}/v1/{project_id}.
– Endpoints vary depending on services and regions. To obtain the regions

and endpoints, contact the enterprise administrator.
A service endpoint consists of the service name, region ID, and external
domain name in the format of "{service_name}.{region_id}.
{external_domain_name}". Table 9-9 describes these parameters.

Modelarts
Usermanual 9 Resource Management

2024-04-30 631

Table 9-9 Endpoint parameters

Parameter Description How to Obtain

service_name Abbreviation of a
case-insensitive
service name

aom for AOM by default.

region_id Region ID Obtain the value from the
system administrator.

external_domain_
name

External domain
name suffix

Obtain the value from the
system administrator.

– Set project_id to the project ID of the corresponding region. You can

obtain the project ID from My Credentials.

Figure 9-28 My Credentials

Figure 9-29 Obtaining the project ID

3. Add a data source to Grafana.

a. Log in to Grafana. The default username and password for the first login
are admin. After the login is successful, change the password as
prompted.

Modelarts
Usermanual 9 Resource Management

2024-04-30 632

b. In the navigation pane, choose Configuration > Data Sources. Then,
click Add data source.

Figure 9-30 Configuring Grafana

c. Click Prometheus to access the configuration page.

Figure 9-31 Entering the Prometheus configuration page

d. Configure parameters as shown in the following figure.

Modelarts
Usermanual 9 Resource Management

2024-04-30 633

Figure 9-32 Configuring a Grafana data source

NO TE

The actual Grafana version varies depending on the installation method. Figure
9-32 is only an example.

Table 9-10 Parameters

Parameter Description

Name Customizable name

URL URL https://{Endpoint}/v1/
{project_id} combined in Obtain
the data source URL.

Basic auth Enabled

Skip TLS Verify Enabled

User aom_access_code

Modelarts
Usermanual 9 Resource Management

2024-04-30 634

Parameter Description

Password Access code generated in Add an
access code.

e. After the configuration, click Save & test. If the message Data source is
working is displayed, the data source is configured.

Figure 9-33 Data source added

9.4.2.4 Using Grafana to Configure Dashboards and View Metric Data

In Grafana, you can customize dashboards for various views. ModelArts also
provides configuration templates for clusters. This section describes how to
configure a dashboard by using a ModelArts template or creating a dashboard. For
more usage, see Grafana tutorials.

Preparations

ModelArts provides templates for cluster view, node view, user view, task view, and
task details view. These templates can be downloaded from Grafana official
documents. You can import and use them on Dashboards.

Table 9-11 Template download URLs

Template Name Download URL

Cluster view https://grafana.com/grafana/dashboards/18582-
modelarts-cluster-view/

Node view https://grafana.com/grafana/dashboards/18583-
modelarts-node-view/

User view https://grafana.com/grafana/dashboards/18588-
modelarts-user-view/

Task view https://grafana.com/grafana/dashboards/18604-
modelarts-task-view/

Task details view https://grafana.com/grafana/dashboards/18590-
modelarts-task-detail-view/

Modelarts
Usermanual 9 Resource Management

2024-04-30 635

https://grafana.com/tutorials

Using a ModelArts Template to View Metrics
1. (Optional) Select the template you want to use. Preparations displays the

download addresses of all templates. Open the target address and click
Download JSON.

Figure 9-34 Downloading the template for the task details view

2. Open Dashboards and choose New > Import.

3. Import a dashboard template in either of the following ways:
– Method 1: Upload the JSON file downloaded in 1, as shown in Figure

9-35.
– Method 2: Copy the template download address provided in Preparations

and click Load, as shown in Figure 9-36.

Modelarts
Usermanual 9 Resource Management

2024-04-30 636

Figure 9-35 Uploading a JSON file to import a dashboard template

Modelarts
Usermanual 9 Resource Management

2024-04-30 637

Figure 9-36 Copying the template address and importing the dashboard
template

4. Change the view name and click Import.

Modelarts
Usermanual 9 Resource Management

2024-04-30 638

Figure 9-37 Changing the view name

Note: If a message is displayed, indicating that the UID is duplicate, change
the UID in the JSON file and click Import.

Figure 9-38 Changing the UID

5. After the import, view the imported views in Dashboards. Then, click a view
to open the monitoring page.

Modelarts
Usermanual 9 Resource Management

2024-04-30 639

6. Use the template.

After the import is successful, you can click the template to view its details.
This section introduces some common functions.

– Changing the data source and resource pool

Figure 9-39 Changing the data source and resource pool

Click the area marked by the red box. A drop-down list will appear. From
there, you can change the data source and the resource pool.

– Refreshing data

Click the refresh button in the upper right corner to refresh all data on
the dashboard. The data on each panel is also updated.

– Changing the automatic refresh time

Figure 9-40 Changing the automatic refresh time

The default refresh interval of a template is 15 minutes. If you need to
update the interval, change the value from the drop-down list box in the
upper right corner.

– Changing the time range for obtaining dashboard data

Modelarts
Usermanual 9 Resource Management

2024-04-30 640

Figure 9-41 Changing the time range for obtaining data

Click the button in the upper right corner to change time range for
obtaining data. This time range affects all panels except those with a
fixed time.

– Adding a panel

Figure 9-42 Adding a panel

Click the + icon in the upper right corner to add a panel.

After a panel is added, you can obtain the data in the panel. Configure
the data source and resource pool as follows to use the current
dashboard settings.

Figure 9-43 Using the current dashboard settings

Creating a Dashboard to View Metrics
1. Open Dashboards, click New, and choose New Dashboard.

2. Click Add a new panel.

3. On the New dashboard / Edit Panel page, set the following parameters:

Data source: Configured Grafana data source

Metric: Metric name. You can obtain the metric to be queried by referring to
Table 9-12, Table 9-13, and Table 9-14.

Labels: Used for filtering the metric. For details, see Table 9-15 and .

Modelarts
Usermanual 9 Resource Management

2024-04-30 641

Figure 9-44 Creating a dashboard to view metrics

9.4.3 Viewing All ModelArts Monitoring Metrics on the AOM
Console

ModelArts periodically collects the usage of key metrics (such as GPUs, NPUs,
CPUs, and memory) of each node in a resource pool as well as the usage of key
metrics of the development environment, training jobs, and inference services, and
reports the data to AOM. You can view the information on AOM.

1. Log in to the console and search for AOM to go to the AOM console.
2. Choose Metric Monitoring. On the Metric Monitoring page that is displayed,

click Add Metric.

3. Add metrics and click Add to Metric List.

– Add By: Select All Metrics.
– Metric Name: Select the desired ones for query. For details, see Table

9-12, Table 9-13, and Table 9-14.
– Scope: Enter the tag for filtering the metric. For details, see Table 9-15.

The following shows an example.

4. View the metrics.

Modelarts
Usermanual 9 Resource Management

2024-04-30 642

Table 9-12 Container metrics

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

CPU CPU Usage ma_container_c
pu_util

CPU usage
of a
measured
object

% 0%–100%

Used CPU
Cores

ma_container_c
pu_used_core

Number of
CPU cores
used by a
measured
object

Cores ≥ 0

Total CPU
Cores

ma_container_c
pu_limit_core

Total
number of
CPU cores
that have
been
applied for
a
measured
object

Cores ≥ 1

Memo
ry

Total
Physical
Memory

ma_container_
memory_capaci
ty_megabytes

Total
physical
memory
that has
been
applied for
a
measured
object

MB ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 643

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

Physical
Memory
Usage

ma_container_
memory_util

Percentage
of the used
physical
memory to
the total
physical
memory

% 0%–100%

Used
Physical
Memory

ma_container_
memory_used_
megabytes

Physical
memory
that has
been used
by a
measured
object
(container
memory
working_s
et_bytes in
the current
working
set)
(Memory
usage in a
working
set = Active
anonymou
s page and
cache, and
file-baked
page ≤
container_
memory_u
sage_bytes
)

MB ≥ 0

Storag
e

Disk Read
Rate

ma_container_
disk_read_kilob
ytes

Volume of
data read
from a disk
per second

KB/s ≥ 0

Disk Write
Rate

ma_container_
disk_write_kilo
bytes

Volume of
data
written
into a disk
per second

KB/s ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 644

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

GPU
memo
ry

Total GPU
Memory

ma_container_
gpu_mem_total
_megabytes

Total GPU
memory of
a training
job

MB > 0

GPU
Memory
Usage

ma_container_
gpu_mem_util

Percentage
of the used
GPU
memory to
the total
GPU
memory

% 0%–100%

Used GPU
Memory

ma_container_
gpu_mem_used
_megabytes

GPU
memory
used by a
measured
object

MB ≥ 0

GPU GPU Usage ma_container_
gpu_util

GPU usage
of a
measured
object

% 0%–100%

GPU
Memory
Bandwidth
Usage

ma_container_
gpu_mem_copy
_util

GPU
memory
bandwidth
usage of a
measured
object For
example,
the
maximum
memory
bandwidth
of NVIDIA
GPU V100
is 900
GB/s. If the
current
memory
bandwidth
is 450
GB/s, the
memory
bandwidth
usage is
50%.

% 0%–100%

Modelarts
Usermanual 9 Resource Management

2024-04-30 645

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

GPU
Encoder
Usage

ma_container_
gpu_enc_util

GPU
encoder
usage of a
measured
object

% %

GPU
Decoder
Usage

ma_container_
gpu_dec_util

GPU
decoder
usage of a
measured
object

% %

GPU
Temperatur
e

DCGM_FI_DEV_
GPU_TEMP

GPU
temperatur
e

°C Natural
number

GPU Power DCGM_FI_DEV_
POWER_USAGE

GPU power Watt (W) > 0

GPU
Memory
Temperatur
e

DCGM_FI_DEV_
MEMORY_TEM
P

GPU
memory
temperatur
e

°C Natural
number

Netwo
rk I/O

Downlink
rate

ma_container_
network_receiv
e_bytes

Inbound
traffic rate
of a
measured
object

Bytes/s ≥ 0

Packet
receive rate

ma_container_
network_receiv
e_packets

Number of
data
packets
received by
an NIC per
second

Packets/s ≥ 0

Downlink
Error Rate

ma_container_
network_receiv
e_error_packets

Number of
error
packets
received by
an NIC per
second

Packets/s ≥ 0

Uplink rate ma_container_
network_trans
mit_bytes

Outbound
traffic rate
of a
measured
object

Bytes/s ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 646

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

Uplink Error
Rate

ma_container_
network_trans
mit_error_pack
ets

Number of
error
packets
sent by an
NIC per
second

Packets/s ≥ 0

Packet send
rate

ma_container_
network_trans
mit_packets

Number of
data
packets
sent by an
NIC per
second

Packets/s ≥ 0

NPU NPU Usage ma_container_
npu_util

NPU usage
of a
measured
object (To
be replaced
by
ma_contai
ner_npu_ai
_core_util)

% 0%–100%

NPU
Memory
Usage

ma_container_
npu_memory_u
til

Percentage
of the used
NPU
memory to
the total
NPU
memory
(To be
replaced by
ma_contai
ner_npu_d
dr_memor
y_util for
Snt3 series,
and
ma_contai
ner_npu_h
bm_util for
Snt9
series)

% 0%–100%

Modelarts
Usermanual 9 Resource Management

2024-04-30 647

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

Used NPU
Memory

ma_container_
npu_memory_u
sed_megabytes

NPU
memory
used by a
measured
object (To
be replaced
by
ma_contai
ner_npu_d
dr_memor
y_usage_b
ytes for
Snt3 series,
and
ma_contai
ner_npu_h
bm_usage
_bytes for
Snt9
series)

≥ 0 MB

Total NPU
Memory

ma_container_
npu_memory_t
otal_megabyte
s

Total NPU
memory of
a
measured
object (To
be replaced
by
ma_contai
ner_npu_d
dr_memor
y_bytes for
Snt3 series,
and
ma_contai
ner_npu_h
bm_bytes
for Snt9
series)

> 0 MB

AI Processor
Error Codes

ma_container_
npu_ai_core_err
or_code

Error codes
of Ascend
AI
processors

N/A N/A

Modelarts
Usermanual 9 Resource Management

2024-04-30 648

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

AI Processor
Health
Status

ma_container_
npu_ai_core_he
alth_status

Health
status of
Ascend AI
processors

N/A ● 1:
healthy

● 0:
unhealt
hy

AI Processor
Power
Consumptio
n

ma_container_
npu_ai_core_po
wer_usage_wat
ts

Power
consumpti
on of
Ascend AI
processors

Watt (W) > 0

AI Processor
Temperatur
e

ma_container_
npu_ai_core_te
mperature_celsi
us

Temperatur
e of
Ascend AI
processors

°C Natural
number

AI Core
Usage

ma_container_
npu_ai_core_uti
l

AI core
usage of
Ascend AI
processors

% 0%–100%

AI Core
Clock
Frequency

ma_container_
npu_ai_core_fre
quency_hertz

AI core
clock
frequency
of Ascend
AI
processors

Hertz (Hz) > 0

AI Processor
Voltage

ma_container_
npu_ai_core_vo
ltage_volts

Voltage of
Ascend AI
processors

Volt (V) Natural
number

AI Processor
DDR
Memory

ma_container_
npu_ddr_memo
ry_bytes

Total DDR
memory
capacity of
Ascend AI
processors

Byte > 0

AI Processor
DDR Usage

ma_container_
npu_ddr_memo
ry_usage_bytes

DDR
memory
usage of
Ascend AI
processors

Byte > 0

AI Processor
DDR
Memory
Utilization

ma_container_
npu_ddr_memo
ry_util

DDR
memory
utilization
of Ascend
AI
processors

% 0%–100%

Modelarts
Usermanual 9 Resource Management

2024-04-30 649

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

AI Processor
HBM
Memory

ma_container_
npu_hbm_bytes

Total HBM
memory of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0

AI Processor
HBM
Memory
Usage

ma_container_
npu_hbm_usag
e_bytes

HBM
memory
usage of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0

AI Processor
HBM
Memory
Utilization

ma_container_
npu_hbm_util

HBM
memory
utilization
of Ascend
AI
processors
(dedicated
for Snt9
processors)

% 0%–100%

AI Processor
HBM
Memory
Bandwidth
Utilization

ma_container_
npu_hbm_band
width_util

HBM
memory
bandwidth
utilization
of Ascend
AI
processors
(dedicated
for Snt9
processors)

% 0%–100%

AI Processor
HBM
Memory
Clock
Frequency

ma_container_
npu_hbm_frequ
ency_hertz

HBM
memory
clock
frequency
of Ascend
AI
processors
(dedicated
for Snt9
processors)

Hertz (Hz) > 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 650

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

AI Processor
HBM
Memory
Temperatur
e

ma_container_
npu_hbm_temp
erature_celsius

HBM
memory
temperatur
e of
Ascend AI
processors
(dedicated
for Snt9
processors)

°C Natural
number

AI CPU
Utilization

ma_container_
npu_ai_cpu_util

AI CPU
utilization
of Ascend
AI
processors

% 0%–100%

AI Processor
Control CPU
Utilization

ma_container_
npu_ctrl_cpu_u
til

Control
CPU
utilization
of Ascend
AI
processors

% 0%–100%

NPU
RoCE
netwo
rk

NPU RoCE
Network
Uplink Rate

ma_container_
npu_roce_tx_ra
te_bytes_per_se
cond

Uplink rate
of the NPU
network
module
used by the
container

Bytes/s ≥ 0

NPU RoCE
Network
Downlink
Rate

ma_container_
npu_roce_rx_ra
te_bytes_per_se
cond

Downlink
rate of the
NPU
network
module
used by the
container

Bytes/s ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 651

Classif
icatio
n

Name Metric Descriptio
n

Unit Value
Range

Noteb
ook
servic
e
metric
s

Notebook
Cache
Directory
Size

ma_container_
notebook_cach
e_dir_size_byte
s

A high-
speed local
disk is
attached to
the /cache
directory
for GPU
and NPU
notebook
instances.
This metric
indicates
the total
size of the
directory.

Bytes ≥ 0

Notebook
Cache
Directory
Utilization

ma_container_
notebook_cach
e_dir_util

A high-
speed local
disk is
attached to
the /cache
directory
for GPU
and NPU
notebook
instances.
This metric
indicates
the
utilization
of the
directory.

% 0%–100%

Table 9-13 Node metrics (collected only in dedicated resource pools)

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

CPU Total CPU
Cores

ma_node_c
pu_limit_co
re

Total
number of
CPU cores
that have
been
applied for
a
measured
object

Cores ≥ 1

Modelarts
Usermanual 9 Resource Management

2024-04-30 652

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

Used CPU
Cores

ma_node_c
pu_used_co
re

Number of
CPU cores
used by a
measured
object

Cores ≥ 0

CPU Usage ma_node_c
pu_util

CPU usage
of a
measured
object

% 0%–100%

CPU I/O
Wait Time

ma_node_c
pu_iowait_
counter

Disk I/O
wait time
accumulate
d since
system
startup

jiffies ≥ 0

Memory Physical
Memory
Usage

ma_node_
memory_ut
il

Percentage
of the used
physical
memory to
the total
physical
memory

% 0%–100%

Total
Physical
Memory

ma_node_
memory_to
tal_megab
ytes

Total
physical
memory
that has
been
applied for
a
measured
object

MB ≥ 0

Network
I/O

Downlink
rate

ma_node_n
etwork_rec
eive_rate_b
ytes_secon
ds

Inbound
traffic rate
of a
measured
object

Bytes/s ≥ 0

Uplink rate ma_node_n
etwork_tra
nsmit_rate_
bytes_seco
nds

Outbound
traffic rate
of a
measured
object

Bytes/s ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 653

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

Storage Disk Read
Rate

ma_node_d
isk_read_ra
te_kilobyte
s_seconds

Volume of
data read
from a disk
per second
(Only data
disks used
by
containers
are
collected.)

KB/s ≥ 0

Disk Write
Rate

ma_node_d
isk_write_r
ate_kilobyt
es_seconds

Volume of
data
written
into a disk
per second
(Only data
disks used
by
containers
are
collected.)

KB/s ≥ 0

Total
Cache

ma_node_c
ache_space
capacity
megabytes

Total cache
of the
Kubernetes
space

MB ≥ 0

Used
Cache

ma_node_c
ache_space
_used_capa
city_megab
ytes

Used cache
of the
Kubernetes
space

MB ≥ 0

Total
Container
Space

ma_node_c
ontainer_sp
ace_capacit
y_megabyt
es

Total
container
space

MB ≥ 0

Used
Container
Space

ma_node_c
ontainer_sp
ace_used_c
apacity_me
gabytes

Used
container
space

MB ≥ 0

Disk
Informatio
n

ma_node_d
isk_info

Basic disk
informatio
n

N/A ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 654

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

Total Reads ma_node_d
isk_reads_c
ompleted_t
otal

Total
number of
successful
reads

N/A ≥ 0

Merged
Reads

ma_node_d
isk_reads_
merged_tot
al

Number of
merged
reads

N/A ≥ 0

Bytes Read ma_node_d
isk_read_by
tes_total

Total
number of
bytes that
are
successfully
read

Bytes ≥ 0

Read Time
Spent

ma_node_d
isk_read_ti
me_second
s_total

Time spent
on all
reads

Seconds ≥ 0

Total
Writes

ma_node_d
isk_writes_
completed_
total

Total
number of
successful
writes

N/A ≥ 0

Merged
Writes

ma_node_d
isk_writes_
merged_tot
al

Number of
merged
writes

N/A ≥ 0

Written
Bytes

ma_node_d
isk_written
_bytes_tota
l

Total
number of
bytes that
are
successfully
written

Bytes ≥ 0

Write Time
Spent

ma_node_d
isk_write_ti
me_second
s_total

Time spent
on all write
operations

Seconds ≥ 0

Ongoing
I/Os

ma_node_d
isk_io_now

Number of
ongoing
I/Os

N/A ≥ 0

I/O
Execution
Duration

ma_node_d
isk_io_time
_seconds_t
otal

Time spent
on
executing
I/Os

Seconds ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 655

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

I/O
Execution
Weighted
Time

ma_node_d
isk_io_time
weighted
seconds_to
ta

Weighted
time spent
on
executing
I/Os

Seconds ≥ 0

GPU GPU Usage ma_node_g
pu_util

GPU usage
of a
measured
object

% 0%–100%

Total GPU
Memory

ma_node_g
pu_mem_t
otal_mega
bytes

Total GPU
memory of
a
measured
object

MB > 0

GPU
Memory
Usage

ma_node_g
pu_mem_u
til

Percentage
of the used
GPU
memory to
the total
GPU
memory

% 0%–100%

Used GPU
Memory

ma_node_g
pu_mem_u
sed_megab
ytes

GPU
memory
used by a
measured
object

MB ≥ 0

Tasks on a
Shared
GPU

node_gpu_
share_job_c
ount

Number of
tasks
running on
a shared
GPU

Number ≥ 0

GPU
Temperatur
e

DCGM_FI_
DEV_GPU_
TEMP

GPU
temperatur
e

°C Natural
number

GPU Power DCGM_FI_
DEV_POWE
R_USAGE

GPU power Watt (W) > 0

GPU
Memory
Temperatur
e

DCGM_FI_
DEV_MEM
ORY_TEMP

GPU
memory
temperatur
e

°C Natural
number

Modelarts
Usermanual 9 Resource Management

2024-04-30 656

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NPU NPU Usage ma_node_n
pu_util

NPU usage
of a
measured
object (To
be replaced
by
ma_node_
npu_ai_cor
e_util)

% 0%–100%

NPU
Memory
Usage

ma_node_n
pu_memor
y_util

Percentage
of the used
NPU
memory to
the total
NPU
memory
(To be
replaced by
ma_node_
npu_ddr_
memory_u
til for Snt3
series, and
ma_node_
npu_hbm_
util for
Snt9
series)

% 0%–100%

Used NPU
Memory

ma_node_n
pu_memor
y_used_me
gabytes

NPU
memory
used by a
measured
object (To
be replaced
by
ma_node_
npu_ddr_
memory_u
sage_bytes
for Snt3
series, and
ma_node_
npu_hbm_
usage_byt
es for Snt9
series)

≥ 0 MB

Modelarts
Usermanual 9 Resource Management

2024-04-30 657

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

Total NPU
Memory

ma_node_n
pu_memor
y_total_me
gabytes

Total NPU
memory of
a
measured
object (To
be replaced
by
ma_node_
npu_ddr_
memory_b
ytes for
Snt3 series,
and
ma_node_
npu_hbm_
bytes for
Snt9
series)

> 0 MB

AI
Processor
Error Codes

ma_node_n
pu_ai_core_
error_code

Error codes
of Ascend
AI
processors

N/A N/A

AI
Processor
Health
Status

ma_node_n
pu_ai_core_
health_stat
us

Health
status of
Ascend AI
processors

N/A ● 1:
healthy

● 0:
unhealt
hy

AI
Processor
Power
Consumpti
on

ma_node_n
pu_ai_core_
power_usa
ge_watts

Power
consumpti
on of
Ascend AI
processors

Watt (W) > 0

AI
Processor
Temperatur
e

ma_node_n
pu_ai_core_
temperatur
e_celsius

Temperatur
e of
Ascend AI
processors

°C Natural
number

AI Core
Usage

ma_node_n
pu_ai_core_
util

AI core
usage of
Ascend AI
processors

% 0%–100%

Modelarts
Usermanual 9 Resource Management

2024-04-30 658

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

AI Core
Clock
Frequency

ma_node_n
pu_ai_core_
frequency_
hertz

AI core
clock
frequency
of Ascend
AI
processors

Hertz (Hz) > 0

AI
Processor
Voltage

ma_node_n
pu_ai_core_
voltage_vol
ts

Voltage of
Ascend AI
processors

Volt (V) Natural
number

AI
Processor
DDR
Memory

ma_node_n
pu_ddr_me
mory_bytes

Total DDR
memory
capacity of
Ascend AI
processors

Byte > 0

AI
Processor
DDR Usage

ma_node_n
pu_ddr_me
mory_usag
e_bytes

DDR
memory
usage of
Ascend AI
processors

Byte > 0

AI
Processor
DDR
Memory
Utilization

ma_node_n
pu_ddr_me
mory_util

DDR
memory
utilization
of Ascend
AI
processors

% 0%–100%

AI
Processor
HBM
Memory

ma_node_n
pu_hbm_by
tes

Total HBM
memory of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0

AI
Processor
HBM
Memory
Usage

ma_node_n
pu_hbm_us
age_bytes

HBM
memory
usage of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 659

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

AI
Processor
HBM
Memory
Utilization

ma_node_n
pu_hbm_ut
il

HBM
memory
utilization
of Ascend
AI
processors
(dedicated
for Snt9
processors)

% 0%–100%

AI
Processor
HBM
Memory
Bandwidth
Utilization

ma_node_n
pu_hbm_ba
ndwidth_ut
il

HBM
memory
bandwidth
utilization
of Ascend
AI
processors
(dedicated
for Snt9
processors)

% 0%–100%

AI
Processor
HBM
Memory
Clock
Frequency

ma_node_n
pu_hbm_fr
equency_h
ertz

HBM
memory
clock
frequency
of Ascend
AI
processors
(dedicated
for Snt9
processors)

Hertz (Hz) > 0

AI
Processor
HBM
Memory
Temperatur
e

ma_node_n
pu_hbm_te
mperature_
celsius

HBM
memory
temperatur
e of
Ascend AI
processors
(dedicated
for Snt9
processors)

°C Natural
number

AI CPU
Utilization

ma_node_n
pu_ai_cpu_
util

AI CPU
utilization
of Ascend
AI
processors

% 0%–100%

Modelarts
Usermanual 9 Resource Management

2024-04-30 660

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

AI
Processor
Control
CPU
Utilization

ma_node_n
pu_ctrl_cpu
_util

Control
CPU
utilization
of Ascend
AI
processors

% 0%–100%

NPU RoCE
network

NPU RoCE
Network
Uplink
Rate

ma_node_n
pu_roce_tx
_rate_bytes
_per_secon
d

NPU RoCE
network
uplink rate

Bytes/s ≥ 0

NPU RoCE
Network
Downlink
Rate

ma_node_n
pu_roce_rx
_rate_bytes
_per_secon
d

NPU RoCE
network
downlink
rate

Bytes/s ≥ 0

MAC
Uplink
Pause
Frames

ma_node_n
pu_roce_m
ac_tx_paus
e_packets_t
otal

Total
number of
pause
frame
packets
sent by
NPU RoCE
network
MAC

Number ≥ 0

MAC
Downlink
Pause
Frames

ma_node_n
pu_roce_m
ac_rx_paus
e_packets_t
otal

Total
number of
pause
frame
packets
received by
NPU RoCE
network
MAC

Number ≥ 0

MAC
Uplink PFC
Frames

ma_node_n
pu_roce_m
ac_tx_pfc_p
ackets_tota
l

Total
number of
PFC frame
packets
sent by
NPU RoCE
network
MAC

Number ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 661

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

MAC
Downlink
PFC
Frames

ma_node_n
pu_roce_m
ac_rx_pfc_p
ackets_tota
l

Total
number of
PFC frame
packets
received by
NPU RoCE
network
MAC

Number ≥ 0

MAC
Uplink Bad
Packets

ma_node_n
pu_roce_m
ac_tx_bad_
packets_tot
al

Total
number of
bad
packets
sent by
NPU RoCE
network
MAC

Number ≥ 0

MAC
Downlink
Bad
Packets

ma_node_n
pu_roce_m
ac_rx_bad_
packets_tot
al

Total
number of
bad
packets
received by
NPU RoCE
network
MAC

Number ≥ 0

RoCE
Uplink Bad
Packets

ma_node_n
pu_roce_tx
_err_packet
s_total

Total
number of
bad
packets
sent by
NPU RoCE

Number ≥ 0

RoCE
Downlink
Bad
Packets

ma_node_n
pu_roce_rx
_err_packet
s_total

Total
number of
bad
packets
received by
NPU RoCE

Number ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 662

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

InfiniBand
or RoCE
network

Total
Amount of
Data
Received
by an NIC

ma_node_i
nfiniband_
port_receiv
ed_data_by
tes_total

The total
number of
data
octets,
divided by
4,
(counting
in double
words, 32
bits),
received on
all VLs
from the
port.

Double
words (32
bits)

≥ 0

Total
Amount of
Data Sent
by an NIC

ma_node_i
nfiniband_
port_trans
mitted_dat
a_bytes_tot
al

The total
number of
data
octets,
divided by
4,
(counting
in double
words, 32
bits),
transmitted
on all VLs
from the
port.

Double
words (32
bits)

≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 663

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS
mounting
status

NFS
Getattr
Congestion
Time

ma_node_
mountstats
_getattr_ba
cklog_wait

Getattr is
an NFS
operation
that
retrieves
the
attributes
of a file or
directory,
such as
size,
permission
s, owner,
etc.
Backlog
wait is the
time that
the NFS
requests
have to
wait in the
backlog
queue
before
being sent
to the NFS
server. It
indicates
the
congestion
on the NFS
client side.
A high
backlog
wait can
cause poor
NFS
performanc
e and slow
system
response
times.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 664

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS
Getattr
Round Trip
Time

ma_node_
mountstats
_getattr_rtt

Getattr is
an NFS
operation
that
retrieves
the
attributes
of a file or
directory,
such as
size,
permission
s, owner,
etc.
RTT stands
for Round
Trip Time
and it is
the time
from when
the kernel
RPC client
sends the
RPC
request to
the time it
receives
the
reply34.
RTT
includes
network
transit time
and server
execution
time. RTT
is a good
measurem
ent for NFS
latency. A
high RTT
can
indicate
network or
server
issues.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 665

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Access
Congestion
Time

ma_node_
mountstats
_access_ba
cklog_wait

Access is
an NFS
operation
that checks
the access
permission
s of a file
or directory
for a given
user.
Backlog
wait is the
time that
the NFS
requests
have to
wait in the
backlog
queue
before
being sent
to the NFS
server. It
indicates
the
congestion
on the NFS
client side.
A high
backlog
wait can
cause poor
NFS
performanc
e and slow
system
response
times.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 666

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Access
Round Trip
Time

ma_node_
mountstats
_access_rtt

Access is
an NFS
operation
that checks
the access
permission
s of a file
or directory
for a given
user. RTT
stands for
Round Trip
Time and it
is the time
from when
the kernel
RPC client
sends the
RPC
request to
the time it
receives
the
reply34.
RTT
includes
network
transit time
and server
execution
time. RTT
is a good
measurem
ent for NFS
latency. A
high RTT
can
indicate
network or
server
issues.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 667

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS
Lookup
Congestion
Time

ma_node_
mountstats
_lookup_ba
cklog_wait

Lookup is
an NFS
operation
that
resolves a
file name
in a
directory to
a file
handle.
Backlog
wait is the
time that
the NFS
requests
have to
wait in the
backlog
queue
before
being sent
to the NFS
server. It
indicates
the
congestion
on the NFS
client side.
A high
backlog
wait can
cause poor
NFS
performanc
e and slow
system
response
times.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 668

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS
Lookup
Round Trip
Time

ma_node_
mountstats
_lookup_rtt

Lookup is
an NFS
operation
that
resolves a
file name
in a
directory to
a file
handle.
RTT stands
for Round
Trip Time
and it is
the time
from when
the kernel
RPC client
sends the
RPC
request to
the time it
receives
the
reply34.
RTT
includes
network
transit time
and server
execution
time. RTT
is a good
measurem
ent for NFS
latency. A
high RTT
can
indicate
network or
server
issues.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 669

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Read
Congestion
Time

ma_node_
mountstats
_read_back
log_wait

Read is an
NFS
operation
that reads
data from
a file.
Backlog
wait is the
time that
the NFS
requests
have to
wait in the
backlog
queue
before
being sent
to the NFS
server. It
indicates
the
congestion
on the NFS
client side.
A high
backlog
wait can
cause poor
NFS
performanc
e and slow
system
response
times.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 670

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Read
Round Trip
Time

ma_node_
mountstats
_read_rtt

Read is an
NFS
operation
that reads
data from
a file. RTT
stands for
Round Trip
Time and it
is the time
from when
the kernel
RPC client
sends the
RPC
request to
the time it
receives
the
reply34.
RTT
includes
network
transit time
and server
execution
time. RTT
is a good
measurem
ent for NFS
latency. A
high RTT
can
indicate
network or
server
issues.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 671

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Write
Congestion
Time

ma_node_
mountstats
_write_bac
klog_wait

Write is an
NFS
operation
that writes
data to a
file.
Backlog
wait is the
time that
the NFS
requests
have to
wait in the
backlog
queue
before
being sent
to the NFS
server. It
indicates
the
congestion
on the NFS
client side.
A high
backlog
wait can
cause poor
NFS
performanc
e and slow
system
response
times.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 672

Classificati
on

Name Metric Descriptio
n

Unit Value
Range

NFS Write
Round Trip
Time

ma_node_
mountstats
_write_rtt

Write is an
NFS
operation
that writes
data to a
file. RTT
stands for
Round Trip
Time and it
is the time
from when
the kernel
RPC client
sends the
RPC
request to
the time it
receives
the
reply34.
RTT
includes
network
transit time
and server
execution
time. RTT
is a good
measurem
ent for NFS
latency. A
high RTT
can
indicate
network or
server
issues.

ms ≥ 0

Modelarts
Usermanual 9 Resource Management

2024-04-30 673

Table 9-14 Diagnosis (IB, collected only in dedicated resource pools)

Classif
icatio
n

Name Metric Description Uni
t

Value
Rang
e

InfiniB
and or
RoCE
netwo
rk

PortXmitData infiniband_po
rt_xmit_data_
total

The total number of
data octets, divided by
4, (counting in double
words, 32 bits),
transmitted on all VLs
from the port.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvData infiniband_po
rt_rcv_data_to
tal

The total number of
data octets, divided by
4, (counting in double
words, 32 bits),
received on all VLs
from the port.

Tota
l
cou
nt

Natur
al
numb
er

SymbolErrorC
ounter

infiniband_sy
mbol_error_c
ounter_total

Total number of minor
link errors detected on
one or more physical
lanes.

Tota
l
cou
nt

Natur
al
numb
er

LinkErrorRec
overyCounter

infiniband_lin
k_error_recov
ery_counter_t
otal

Total number of times
the Port Training state
machine has
successfully completed
the link error recovery
process.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvErrors infiniband_po
rt_rcv_errors_t
otal

Total number of
packets containing
errors that were
received on the port
including:
Local physical errors
(ICRC, VCRC, LPCRC,
and all physical errors
that cause entry into
the BAD PACKET or
BAD PACKET DISCARD
states of the packet
receiver state machine)
Malformed data packet
errors (LVer, length, VL)
Malformed link packet
errors (operand, length,
VL)
Packets discarded due
to buffer overrun
(overflow)

Tota
l
cou
nt

Natur
al
numb
er

Modelarts
Usermanual 9 Resource Management

2024-04-30 674

Classif
icatio
n

Name Metric Description Uni
t

Value
Rang
e

LocalLinkInte
grityErrors

infiniband_loc
al_link_integri
ty_errors_tota
l

This counter indicates
the number of retries
initiated by a link
transfer layer receiver.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvRemo
tePhysicalErr
ors

infiniband_po
rt_rcv_remote
_physical_erro
rs_total

Total number of
packets marked with
the EBP delimiter
received on the port.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvSwitc
hRelayErrors

infiniband_po
rt_rcv_switch_
relay_errors_t
otal

Total number of
packets received on the
port that were
discarded when they
could not be forwarded
by the switch relay for
the following reasons:
DLID mapping
VL mapping
Looping (output port =
input port)

Tota
l
cou
nt

Natur
al
numb
er

PortXmitWait infiniband_po
rt_transmit_w
ait_total

The number of ticks
during which the port
had data to transmit
but no data was sent
during the entire tick
(either because of
insufficient credits or
because of lack of
arbitration).

Tota
l
cou
nt

Natur
al
numb
er

PortXmitDisc
ards

infiniband_po
rt_xmit_discar
ds_total

Total number of
outbound packets
discarded by the port
because the port is
down or congested.

Tota
l
cou
nt

Natur
al
numb
er

For details about the metrics of an InfiniBand or RoCE network, see NVIDIA
Mellanox documents.

Table 9-15 Metric names

Classification Metric Description

Container
metrics

modelarts_service Service to which a container belongs,
which can be notebook, train, or infer

Modelarts
Usermanual 9 Resource Management

2024-04-30 675

https://mellanox.my.site.com/mellanoxcommunity/s/article/infiniband-port-counters
https://mellanox.my.site.com/mellanoxcommunity/s/article/infiniband-port-counters

Classification Metric Description

instance_name Name of the pod to which the container
belongs

service_id Instance or job ID displayed on the page,
for example,
cf55829e-9bd3-48fa-8071-7ae870dae9
3a for a development environment
9f322d5a-
b1d2-4370-94df-5a87de27d36e for a
training job

node_ip IP address of the node to which the
container belongs

container_id Container ID

cid Cluster ID

container_name Name of the container

project_id Project ID of the account to which the
user belongs

user_id User ID of the account to which the user
who submits the job belongs

npu_id Ascend card ID, for example, davinci0
(to be discarded)

device_id Physical ID of Ascend AI processors

device_type Type of Ascend AI processors

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

pool_name Name of a resource pool corresponding
to a physical dedicated resource pool

logical_pool_id ID of a logical subpool

logical_pool_name Name of a logical subpool

gpu_uuid UUID of the GPU used by the container

gpu_index Index of the GPU used by the container

gpu_type Type of the GPU used by the container

account_name Account name of the creator of a
training, inference, or development
environment task

user_name Username of the creator of a training,
inference, or development environment
task

Modelarts
Usermanual 9 Resource Management

2024-04-30 676

Classification Metric Description

task_creation_time Time when a training, inference, or
development environment task is
created

task_name Name of a training, inference, or
development environment task

task_spec_code Specifications of a training, inference, or
development environment task

cluster_name CCE cluster name

Node metrics cid ID of the CCE cluster to which the node
belongs

node_ip IP address of the node

host_name Hostname of a node

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

project_id Project ID of the user in a physical
dedicated resource pool

npu_id Ascend card ID, for example, davinci0
(to be discarded)

device_id Physical ID of Ascend AI processors

device_type Type of Ascend AI processors

gpu_uuid UUID of a node GPU

gpu_index Index of a node GPU

gpu_type Type of a node GPU

device_name Device name of an InfiniBand or RoCE
network NIC

port Port number of the IB NIC

physical_state Status of each port on the IB NIC

firmware_version Firmware version of the IB NIC

filesystem NFS-mounted file system

mount_point NFS mount point

Diagnos cid ID of the CCE cluster to which the node
where the GPU resides belongs

node_ip IP address of the node where the GPU
resides

Modelarts
Usermanual 9 Resource Management

2024-04-30 677

Classification Metric Description

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

project_id Project ID of the user in a physical
dedicated resource pool

gpu_uuid GPU UUID

gpu_index Index of a node GPU

gpu_type Type of a node GPU

device_name Name of a network device or disk device

port Port number of the IB NIC

physical_state Status of each port on the IB NIC

firmware_version Firmware version of the IB NIC

Modelarts
Usermanual 9 Resource Management

2024-04-30 678

10 AI Hub

10.1 AI Hub
AI Hub is a ModelArts-empowered developer ecosystem community. In this
community, scientific research institutions, AI application developers, solution
integrators, enterprises, and individual developers can share and purchase AI
assets such as algorithms, models, datasets, and workflows. This accelerates the
development and implementation of AI assets and enables every participant in the
AI development ecosystem to achieve business success.

AI Hub provides , where you can share AI assets such as algorithms, models,
datasets, and workflows.

● Data: Datasets are shared.
Datasets on the Data page can be shared and downloaded. You can search
for and download datasets meeting your service requirements on the Data
page. You can also publish your local datasets in AI Hub and share them with
other users.

● Algorithms: Algorithms are shared.
You can share and subscribe to algorithms on the Algorithms page. You are
allowed to search for algorithms, subscribe to assets, and use them on the
ModelArts management console. Additionally, you can publish self-developed
algorithms to AI Hub and share them with other users.

● Asset Hub > Models: ModelArts models are shared.
You can publish and subscribe to shared models on the Models page. You are
allowed to search for ModelArts models, subscribe to assets, and use them on
the ModelArts management console. Additionally, you can publish self-
developed ModelArts models to AI Hub and share them with other users.

● Workflows: Workflows are shared.
You can share and subscribe to workflows on the Workflows page. You are
allowed to search for workflows, subscribe to assets, and use them on the
ModelArts management console. Additionally, you can publish self-developed
workflows to AI Hub and share them with other users.

Modelarts
Usermanual 10 AI Hub

2024-04-30 679

AI Hub Constraints
● Subscribing to an AI asset is to purchase the usage quota of it. This AI asset

can be used based on the quota.
● If you do not want to display a published AI asset in the asset list, discontinue

it. After an AI asset is discontinued, it is visible only to the publisher. Even if a
subscribed AI asset has been discontinued, the subscribers can still use it
based on the quota. This ensures the subscribers' rights and prevents
problems caused by discontinue operations.

10.2 Registering with AI Hub
Before sharing AI assets in AI Hub, register with AI Hub.

1. Click Publish on the Algorithms or Models page. The Welcome to AI Hub
page is displayed.

2. On the Welcome to AI Hub page, enter your nickname. Then, click OK.
3. After the registration is complete, publish AI assets such as datasets and

models in AI Hub.

10.3 Management Center
View your information and the AI assets you have published and subscribed to in
Management Center.

Table 10-1 Management Center

Option Description

My Algorithms Displays your published and algorithms that have been
subscribed to.
● Published Algorithms: View your published algorithms,

such as the number of views, favorites, and subscriptions.
Click Release or Discontinue on the right to manage
published algorithms. After an asset is discontinued, users
who have subscribed to the asset can continue using it,
but other users cannot view or subscribe to it.
Discontinued assets can be released again.

● My Subscriptions: View your subscribed algorithms, such
as the publisher, application console, and remaining
quota. Click Cancel Subscription or Retrieve
Subscription on the right to manage subscribed
algorithms. After a subscription is canceled, the algorithm
will not be available in Subscription on the ModelArts
console. You can retrieve the subscription of an algorithm
that has been unsubscribed from and continue to use the
algorithm under the original quota constraints.

Modelarts
Usermanual 10 AI Hub

2024-04-30 680

Option Description

My Models Displays the models you have published and subscribed to,
including ModelArts models and HiLens skills.
● Published Models: View your published models, such as

the number of views, favorites, and subscriptions. Click
Release or Discontinue on the right to manage published
models. After an asset is discontinued, users who have
subscribed to the asset can continue using it, but other
users cannot view or subscribe to it. Discontinued assets
can be released again.

● My Subscriptions: View your subscribed models, such as
the publisher, application console, and remaining quota.
Click Cancel Subscription or Retrieve Subscription on
the right to manage subscribed ModelArts models. After a
subscription is canceled, the model will not be available in
AI Application Management > AI Applications > My
Subscriptions on the ModelArts management console.
You can retrieve the subscription of a model that has been
unsubscribed from and continue to use the model under
the original quota constraints.

My Data Displays the datasets you have released and downloaded.
● Published Data: View your published datasets, such as

the file size and number of files. Click Retry or Delete on
the right to manage published datasets.

● My Downloads: View your downloaded datasets. Click the
drop-down arrow to view the dataset information,
including the dataset ID, download mode, and destination
region.

My Workflows Displays the workflows you have published and subscribed
to.
● Published Workflows: View your published workflows,

such as the number of views, favorites, and subscriptions.
Click Release, Discontinue, or Delete on the right to
manage published workflows.

● My Subscriptions: View the workflows you have
subscribed to. Click Cancel Subscription or Retrieve
Subscription on the right to manage subscribed
workflows.

My Information View your information, including the account, profile photo,
nickname, email, and description.
● Click Edit to edit the nickname and description.
● Click Change to change the profile photo.

10.4 Subscription & Use

Modelarts
Usermanual 10 AI Hub

2024-04-30 681

10.4.1 Searching for and Adding an Asset to Favorites
In AI Hub, various AI assets such as algorithms, models, datasets, and workflows
are shared. To quickly search for assets, AI Gallery provides multiple quick search
methods and the function of adding assets to favorites.

Searching for an Asset
On the asset page, use the following search methods to quickly find the assets you
want:

Figure 10-1 Searching for an asset

Table 10-2 Quick search

No. Type Search Mode Supported AI Assets

1 Official
assets

Click Official. All official assets are
displayed and can be used for free.

Algorithms

2 Featured
assets

Click Featured. All featured assets
are displayed.

Algorithms, datasets,
and workflows

3 Assets by
category

Click All categories, select a
category, and click OK.

Algorithms, datasets,
and workflows

4 Assets by
ranking

Click Ranking to change a ranking
mode.

Algorithms, datasets,
and workflows

Adding a Free Asset to Favorites
If you find a free asset that you are interested in, you can add it to My Favorites
for quick search.

1. Click an asset. The asset details page is displayed.

2. In the upper right corner of the details page, click to add the
asset to favorites.
After the asset is added to favorites, you can quickly view it on the My
Favorites tab page of the module the asset belongs to.

3. (Optional) To remove it from favorites, click again.

Modelarts
Usermanual 10 AI Hub

2024-04-30 682

10.4.2 Subscribing to an Algorithm
In AI Hub, you can search for and subscribe to free algorithms that meet service
requirements, and use them to create training jobs.

Procedure
1. Log in to AI Hub.
2. Choose Asset Market > Algorithms. The Algorithm page is displayed,

showing all shared algorithms.
3. Search for your required algorithm. For details, see Searching for an Asset.
4. Click the target algorithm to go to the details page.

– On the details page, you can view the information of the algorithm,
including its description, restrictions, and versions.

– Before using an algorithm, view the constraints for the target version on
the Version tab page, and then prepare data and resources based on the
constraints.

– For an algorithm with open source code, you can preview or download
the code on the details page.
On the Code tab page, click Download on the right to download the
complete code to the local PC. Alternatively, click the file name in the list
below to preview the code.
The following file types support code
preview: .txt, .py, .h, .xml, .html, .c, .properties, .yml, .cmake, .sh, .css, .js, .c
pp, .json, .md, .sql, .bat, and .conf.

Figure 10-2 Downloading or previewing code

5. On the details page, click Subscribe.
– If there are constraints on the algorithm, the Constraints page will be

displayed. Confirm the information and click Continue.
– If there are no constraints on the algorithm, the subscription is successful.

Modelarts
Usermanual 10 AI Hub

2024-04-30 683

After the algorithm is subscribed to, Subscribe on the details page is
displayed as Subscribed. The subscribed asset is also displayed in
Management Center > My Algorithms > My Subscriptions.

Using an Algorithm
1. Subscribed algorithms can be used on the ModelArts management console,

for example, to create a training job.

Method 1: Access the ModelArts management console from the
algorithm details page.

a. On the algorithm details page, click Access Console.

b. In the Select Service Region dialog box, select the service region where
ModelArts is located and click OK. The Subscription page in Algorithm
Management of the ModelArts management console is displayed.

Figure 10-3 My subscriptions

Method 2: Access the ModelArts management console from AI Hub.

a. In AI Hub, choose Management Center > My Algorithms. The My
Algorithms page is displayed.

b. Click the My Subscriptions tab.

c. Select the target algorithm from the list and click ModelArts on the right
of Application Console.

d. In the Select Service Region dialog box, select the service region where
ModelArts is located and click OK. The Subscription page in Algorithm
Management of the ModelArts management console is displayed.

Modelarts
Usermanual 10 AI Hub

2024-04-30 684

Figure 10-4 My subscriptions

2. On the Subscription page in Algorithm Management, click the downward
arrow on the left of the algorithm to unfold the algorithm details.

Canceling Subscription or Retrieving a Subscribed Algorithm
Cancel the subscription of an algorithm if it not required. After the subscription is
canceled, the algorithm will not be available on the Subscription page in
Algorithm Management of the ModelArts management console. To use an
unsubscribed algorithm, retrieve the subscription, and the algorithm will be
available on the Subscription page again on the ModelArts management console.

1. In AI Hub, choose Management Center > My Algorithms. The My
Algorithms page is displayed.

2. Click the My Subscriptions tab.
– Cancel Subscription: This option is available only for subscribed assets.

Click Cancel Subscription on the right of the target asset. In the dialog
box that is displayed, confirm the information and click OK.

– Retrieve Subscription: This option is available only for subscriptions that
have been canceled.
Click Retrieve Subscription on the right of the target asset.

Modelarts
Usermanual 10 AI Hub

2024-04-30 685

Figure 10-5 Canceling or retrieving a subscription

10.4.3 Subscribing to a Model
In AI Hub, search for and subscribe to ModelArts models. Subscribed models can
be used for deployment on ModelArts.

Procedure
1. Log in to AI Hub.
2. Go to the model page, which displays all shared models.
3. Search for a model by referring to Searching for and Adding an Asset to

Favorites.
4. Click the target model to go to the details page.

On the details page, you can view the information of the model.
5. Click Subscribe.

After the model is subscribed to, Subscribe on the details page is displayed as
Subscribed. The subscribed asset is also displayed in Management Center >
My Models > My Subscriptions.

Using a Model
Subscribed models can be deployed or installed on ModelArts.

1. Push the subscribed model to the application console.
Method 1: Access the ModelArts management console from the model
details page.
On the model details page, click Access Console. The My Subscriptions page
in AI Application Management > AI Applications of the ModelArts
management console is displayed.
If the status of the model version is Ready, the model can be used.

Modelarts
Usermanual 10 AI Hub

2024-04-30 686

Figure 10-6 Pushing a model

Method 2: Access the ModelArts management console from AI Hub.

a. On the AI Hub page, choose Management Center > My Models in the
upper right corner.

b. Click the My Subscriptions tab.
c. Select the target model from the list, click ModelArts on the right of

Console. The My Subscriptions page in AI Application Management >
AI Applications of the ModelArts management console is displayed.

Figure 10-7 Console

If the status of the model version is Ready, the model can be used.
2. Use the subscribed model on the console.

On the My Subscriptions page in AI Application Management > AI
Applications, click the downward arrow next to the target model name. Then,
choose Deploy > Real-time services or Batch Services in the version list. For
details, see Deploying as a Real-Time Service.

Canceling Subscription or Retrieving a Subscribed Model

Cancel the subscription of a model if it not required. After the subscription is
canceled, the model will not be available on the My Subscriptions page in AI
Application Management > AI Applications of the ModelArts management
console. To use an unsubscribed model, retrieve the subscription, and the model
will be available on the My Subscriptions page in AI Application Management >
AI Applications again on the ModelArts management console.

1. On the AI Hub page, choose Management Center > My Models in the upper
right corner.

2. Click the My Subscriptions tab.

Modelarts
Usermanual 10 AI Hub

2024-04-30 687

– Cancel Subscription: This option is available only for subscribed assets.
Click Cancel Subscription on the right of the target asset. In the dialog
box that is displayed, confirm the information and click OK.

– Retrieve Subscription: This option is available only for subscriptions that
have been canceled.
Click Retrieve Subscription on the right of the target asset.

10.4.4 Downloading Datasets
You can search for and download datasets meeting your service requirements in AI
Hub.

Downloading Datasets
1. Log in to AI Hub.
2. Choose Data to enter the data page, which displays all shared datasets.
3. For details about how to search for a dataset, see Searching for and Adding

an Asset to Favorites.
4. Click the target dataset to go to the details page.

On the details page, view the dataset information.
5. Click Download. The parameters to be configured vary based on the method

of downloading a dataset.
– Downloading a dataset to OBS

▪ Download Through: Select OBS.

▪ Target Region: Select a region to which a dataset is to be
downloaded.

▪ Target Location: Select an OBS path. If a file or folder with the same
name already exists in the bucket, it will be overwritten by the newly
downloaded file or folder.

Figure 10-8 Parameters for downloading a dataset to OBS

– Downloading a dataset to ModelArts

Modelarts
Usermanual 10 AI Hub

2024-04-30 688

▪ Download Through: Select ModelArts dataset.

▪ Target Region: Select a region to which a dataset is to be
downloaded.

▪ Data Type: Select the type of the file to be processed.

▪ Output Dataset Path: OBS path where your labeled data is stored.
The path cannot be the same as the file path in the OBS data source
or subdirectories of the file path.

▪ Input Dataset Path: OBS path to which AI Hub datasets are
downloaded. This path is used as the data storage path of the
dataset. Ensure that output dataset path is different from the input
dataset path.

▪ Name: A dataset name in the format of "data-xxxx" is automatically
generated by default. The dataset will be synchronized to the
ModelArts dataset list.

▪ Description: describes the dataset.

Figure 10-9 Parameters for downloading a dataset to ModelArts

6. Click OK. Then, you will be redirected to Data > My Data > My Downloads.
You can view the file size in the dataset list.

Using a Downloaded Dataset
1. In AI Hub, choose Management Center > My Data. The My Data page is

displayed.

Modelarts
Usermanual 10 AI Hub

2024-04-30 689

2. Click My Downloads to view all downloaded datasets.
3. Expand the target dataset to view its details.

– If the dataset is downloaded to OBS, obtain the target location and
import data to the dataset by performing operations described in
Importing Data from an OBS Path. Then, use the dataset on ModelArts.

Figure 10-10 Obtaining the target location of a dataset

– If the dataset is downloaded to ModelArts, click the target dataset to go
to the dataset details page on the ModelArts management console.

Figure 10-11 Obtaining the target dataset

10.4.5 Subscribing to a Workflow
In AI Hub, search for and subscribe to workflows. After a subscribed workflow is
imported to ModelArts through AI Hub, the workflow can be used on the
ModelArts management console.

Procedure
1. Log in to AI Hub.
2. Switch to the workflow page, on which all shared workflows are displayed.
3. Search for your desired workflow. For details, see Searching for and Adding

an Asset to Favorites.
4. Click the target workflow to go to the details page.

On the details page, you can view the information of the workflow.

Modelarts
Usermanual 10 AI Hub

2024-04-30 690

5. Click Subscribe.
After the workflow is subscribed to, Subscribe on the details page is displayed
as Subscribed. The subscribed asset is also displayed in Management Center
> My Workflows > My Subscriptions.

Using a Workflow
Subscribed workflows can be imported to and used on the ModelArts
management console.

1. Import a subscribed workflow to the ModelArts management console.
Method 1: Access the ModelArts management console from the workflow
details page.
On the workflow details page, click Run. In the dialog box that is displayed,
select the asset version, service region, and workspace of the workflow, and
click Import to go to the workflow details page on the ModelArts
management console.

Figure 10-12 Importing a workflow

Modelarts
Usermanual 10 AI Hub

2024-04-30 691

Figure 10-13 Workflow details page on the ModelArts management console

Method 2: Access the ModelArts management console from AI Hub.

a. In AI Hub, choose Management Center > My Workflows. The My
Workflows page is displayed.

b. Click My Subscriptions. The workflows you have subscribed to are
displayed.

c. Select the workflow to be imported from the list and click Workflow next
to Application Console.

Figure 10-14 Application Console

d. In the dialog box that is displayed, select the asset version, service region,
and workspace of the workflow, and click Import to go to the workflow
details page on the ModelArts management console.

Modelarts
Usermanual 10 AI Hub

2024-04-30 692

2. On the ModelArts management console, use the workflow imported from AI
Hub.

In the navigation pane of the ModelArts management console, choose
Workflow. In the workflow list, locate the workflow imported from AI Hub
and click Configure in the Operation column to access the workflow.

Canceling or Retrieving the Subscription of a Workflow

Cancel the subscription of a workflow if it not required. To use an unsubscribed
workflow, click Retrieve Subscription to restore the canceled subscription.

10.5 Publish & Share

10.5.1 Publishing an Algorithm
In AI Hub, you can share your algorithms with others.

Prerequisites
● You have registered with AI Hub.

● You have created an algorithm in ModelArts Algorithm Management. For
details about how to create an algorithm, see Creating an Algorithm.

NO TE

When creating an algorithm, ensure that the names of files and folders in the OBS
bucket where the algorithm code is stored are unique. Otherwise, the algorithm may
fail to be published. If the algorithm is published, the code fails to be opened.

Modelarts
Usermanual 10 AI Hub

2024-04-30 693

Publishing an Algorithm
1. On the AI Hub home page, choose Asset Market > Algorithms. The

Algorithm page is displayed.
2. Click Publish. The Algorithm Management > My Algorithms page of the

ModelArts management console is displayed.
3. Click the target algorithm. The algorithm details page is displayed.
4. Click Publish in the upper right corner of the algorithm details page. The

Publish Asset Version page is displayed.
5. Set the parameters and click Publish.

– Publishing a new version

i. Click Create Asset on the right of Item Name. In the dialog box that
is displayed, enter an asset name and description, and click OK.

NO TE

By default, the asset is published as a private asset. If you want to add it to
the whitelist or publicize it, go to AI Hub for settings.

ii. Enter the asset version and version description.
iii. Click Publish.

– Updating an existing version

i. Select an existing asset name from the Item Name drop-down list
box.

ii. Enter a new version for Offering Version. You can click View Asset
Version on the right to view the historical version information.

iii. Enter the version description.
iv. Click Publish.

6. Go to AI Hub to view or edit the asset details.

Editing Asset Details
After an asset is published, you can modify the title, cover, and description of the
asset on the details page to attract attentions.

Modifying the cover and subtitle

1. On the details page of the published asset, click Edit on the right, upload a
new cover, and edit the title and subtitle.

2. After the editing is complete, click Save.

Figure 10-15 Modifying the cover and subtitle

Modifying categories

Modelarts
Usermanual 10 AI Hub

2024-04-30 694

1. Click on the right of Category. In the displayed edit box, select categories
from the drop-down list box.

2. Click the check mark on the right of the edit box.
The saved categories will be used as filter criteria on the asset search page.

Figure 10-16 Adding categories

Editing the description

1. Click Edit on the right and enter the asset description in the text box,
including but not limited to the background, introduction, and usage method.
You can edit content in Markdown mode.

2. After the editing is complete, click Save.

Editing restrictions

You can modify the access policy and maximum duration of your published assets.

1. Click the Restrictions tab and click Edit in the upper right corner.
– Select the access policy from the drop-down list box on the right of

Visible To.

▪ Public: indicates that all users who use AI Hub can view and use this
asset.

▪ Specific users: indicates that only specified users can view and use
this asset.

▪ Just me: indicates that only the current account can view and use
this asset.

Modelarts
Usermanual 10 AI Hub

2024-04-30 695

NO TE

Only permissions higher than the one set when you published your asset are
allowed. Therefore, if a public algorithm is created, Visible To cannot be
modified.

– Maximum Duration can be disabled or enabled. When this function is
enabled, set the duration of the asset and whether to renew the
subscription after the asset expires.

2. Click Save.

Figure 10-17 Editing restrictions

Editing versions

1. Click the Version tab and click Edit in the upper right corner.

2. On this page, modify the version description or click Discontinue in the
Operation column of the target version to discontinue it. You can only
discontinue a released asset that has two or more versions.

3. Click Add Version on the right of the Version area to go to the Algorithm
Management > My Algorithms page of the ModelArts management console.
Publish a new version of the target algorithm by referring to Publishing an
Algorithm.

4. After the editing is complete, click Save in the upper right corner.

Figure 10-18 Editing versions

Editing the paper

1. On the Paper tab, click Edit in the upper right corner, and enter the paper
name and URL in the text box. You can click the URL to view the paper
details.

2. After the modification is complete, click Save.

Editing code

1. On the Code tab, click Edit in the upper right corner to determine whether to
open the code.

Modelarts
Usermanual 10 AI Hub

2024-04-30 696

NO TE

If you discontinue an algorithm whose code is not open, the subscribers can continue
using the algorithm before the subscription expires. After the algorithm is released
again with its code open, the algorithm that has been discontinued is not displayed on
the home page. You can choose Management Center > My Algorithms > My
Subscriptions and click the algorithm name to preview the code.

2. If the code is open, set the license type.

You can click the exclamation mark (!) next to a license type to view license
details.

3. After the modification is complete, click Save.

Figure 10-19 Editing the code

Discontinuing an Algorithm

To discontinue a shared asset from AI Hub, perform the following operations:

1. In AI Hub, choose Management Center > My Algorithms. The My
Algorithms page is displayed.

2. On the My Algorithms > Published Algorithms page, click Discontinue on
the right of the target asset. In the dialog box that is displayed, confirm the
asset information and click OK.

NO TE

After an asset is discontinued, users who have subscribed to the asset can continue
using it within the duration, but other users cannot view or subscribe to it.

Figure 10-20 Discontinuing an asset

After the asset is discontinued, Discontinue in the Operation column
changes to Release. You can click Release to share a discontinued asset to AI
Hub.

10.5.2 Publishing a Model
In AI Hub, you can share your models developed on ModelArts with others.

Modelarts
Usermanual 10 AI Hub

2024-04-30 697

Prerequisites
● You have created a model in ModelArts AI Application Management. For

details, see AI Application Management. Both models imported from
container images and trained models can be published to AI Hub.

Procedure
1. On the AI Hub home page, go to the model page.

2. Click Publish. On the displayed page, enter information.

– Figure 10-21 shows parameters for creating an asset.

i. Set Publish Mode to Create Asset.

ii. Enter an item title which is displayed in AI Hub.

iii. Source defaults to ModelArts.

iv. Select a ModelArts region for using this asset.

v. Select an AI application from ModelArts AI Application Management.

Both models imported from container images and trained models
can be published to AI Hub.

vi. Enter the offering version in the x.x.x format.

vii. Configure Visible To.

Options:

Public: indicates that all users who use AI Hub can view and use this
asset.

Specific users: indicates that only specified users can view and use
this asset.

Only to me: indicates that only the current account can view and
use this asset.

viii. Configure Duration Limit.

This function is disabled by default, that is, subscribers can use the
asset without duration limit. When this function is enabled, set the
duration limit of the asset and whether to renew the subscription
after the asset expires.

ix. Click Publish.

– Figure 10-22 shows parameters for adding an asset version.

i. Set Publish Mode to Add asset version.

ii. Select an existing asset name from the Item Title drop-down list
box. You can search for asset names.

iii. Select a ModelArts region for using this asset.

iv. Select an AI application from ModelArts AI Application Management.

Both models imported from container images and trained models
can be published to AI Hub.

v. Enter a new version number in the Offering Version text box.

vi. Click Publish.

Modelarts
Usermanual 10 AI Hub

2024-04-30 698

Figure 10-21 Create Asset

Figure 10-22 Add asset version

3. View the asset details page.

Editing Asset Details
After an asset is published, you can modify the title, cover, and description of the
asset on the details page to attract attentions.

Modifying the cover and subtitle

1. On the details page of the published asset, click Edit on the right, upload a
new cover, and edit the title and subtitle.

2. After the editing is complete, click Save.

Modelarts
Usermanual 10 AI Hub

2024-04-30 699

Figure 10-23 Modifying the cover and subtitle

Selecting categories

1. Click on the right of Category. In the displayed edit box, select categories
from the drop-down list box.

2. Click the check mark on the right of the edit box.
The saved categories will be used as filter criteria on the asset search page.

Figure 10-24 Selecting categories

Editing the description

1. Click Edit on the right and enter the asset description in the text box,
including but not limited to the background, introduction, and usage method.
You can edit content in Markdown mode.

2. After the editing is complete, click Save.

Editing restrictions

You can modify the access policy and duration limit of your published assets.

1. Click the Restrictions tab and click Edit in the upper right corner.

Modelarts
Usermanual 10 AI Hub

2024-04-30 700

– Select the access policy from the drop-down list box on the right of
Visible To.

▪ Public: indicates that all users who use AI Hub can view and use this
asset.

▪ Specific users: indicates that only specified users can view and use
this asset.

▪ Just me: indicates that only the current account can view and use
this asset.

NO TE

Only permissions higher than the one set when you published your asset are
allowed. Therefore, if a public algorithm or model is created, Visible To cannot
be modified.

– You can manually enable Duration Limit. When this function is enabled,
set the duration limit of the asset and whether to renew the subscription
after the asset expires.

2. Click Save.

Figure 10-25 Editing restrictions

Editing versions

1. Click the Version tab and click Edit in the upper right corner.
2. On this page, modify the version description or click Discontinue in the

Operation column of the target version to discontinue it. You can only
discontinue a released asset that has two or more versions.

3. Click Add Version on the right of the Version area. Add an asset version in
Publish in AI Hub by referring to parameters for adding an asset version.

4. After the editing is complete, click Save in the upper right corner.

Figure 10-26 Editing versions

Discontinuing a Model
To discontinue a shared asset from AI Hub, perform the following operations:

1. On the AI Hub page, choose Management Center > My Models.
2. On the My Models > My Publishes page, click Discontinue on the right of

the target asset. In the dialog box that is displayed, confirm the asset
information and click OK.

Modelarts
Usermanual 10 AI Hub

2024-04-30 701

NO TE

After an asset is discontinued, users who have subscribed to the asset can continue
using it within the duration, but other users cannot view or subscribe to it.

Figure 10-27 Discontinuing an asset

After the asset is discontinued, Discontinue in the Operation column
changes to Release. You can click Release to share a discontinued asset to AI
Hub.

10.5.3 Publishing Data
In AI Hub, you can share your datasets with others.

Prerequisites
● You have registered with AI Hub.

● A dataset is available in ModelArts dataset list or OBS. For details about how
to create or upload a dataset, see Creating a Dataset.

Publishing a Dataset
1. Go to the Datasets page on the AI Hub home page.

2. Click Publish. On the displayed page, enter information.

– If you publish a ModelArts dataset, configure parameters by referring to
Table 10-3.

Table 10-3 Parameters for publishing a ModelArts dataset

Parameter Description

Category Select data.

Item Title Asset name displayed in AI Hub

Source Select ModelArts.
A dataset supports a maximum of 20,000 files,
and the total size cannot exceed 30 GB.

ModelArts Region Select the region where the dataset is located.

Select Data Select the target dataset in the current region
from the drop-down list box.
Only image datasets of image classification or
object detection type and datasets in free
format can be selected.

Modelarts
Usermanual 10 AI Hub

2024-04-30 702

Parameter Description

Version Select the version you want to publish for the
target dataset.

Data Type Select at least one data type label.
Options: Image, Audio, Video, Text, Table, and
Other

License Type Select a proper license type based on the service
requirements and dataset type.

Click next to a license type to view the
license details.

Visible To Set the access policy for the dataset. Available
options:
● Public: indicates that all users who use AI

Hub can view and use this asset.
● Specific users: indicates that only specified

users can view and use this asset.
● Only to me: indicates that only the current

account can view and use this asset.

– If you publish a dataset in OBS, configure parameters by referring to

Table 10-4.

Table 10-4 Parameters for publishing an OBS dataset

Parameter Description

Category data is used by default.

Item Title Asset name displayed in AI Hub

Source Select OBS.
A dataset supports a maximum of 20,000 files,
and the total size cannot exceed 30 GB.

OBS Region Select the storage region of the OBS bucket
where the data is stored.

Storage Path Select the OBS path of the dataset you want to
publish.

Data Type Select at least one data type label.
Options: Image, Audio, Video, Text, Table, and
Other

Modelarts
Usermanual 10 AI Hub

2024-04-30 703

Parameter Description

License Type Select a proper license type based on the service
requirements and dataset type.

Click next to a license type to view the
license details.

Visible To Set the access policy for the dataset. Available
options:
● Public: indicates that all users who use AI

Hub can view and use this asset.
● Specific users: indicates that only specified

users can view and use this asset.
● Only to me: indicates that only the current

account can view and use this asset.

3. Click Publish. The dataset details page is displayed.

Editing Asset Details

After a dataset is published, you can modify the dataset information on the details
page.

Modifying the cover and subtitle

1. On the details page of the published asset, click Edit on the right, upload a
new cover, and edit the title and subtitle.

2. After the editing is complete, click Save.

Figure 10-28 Modifying the cover and subtitle

Editing the license type

1. On the details page of the published asset, click Edit on the right.
2. Select the license you want to update from the drop-down list on the right of

License Type, and then click Save.
You can click the exclamation mark (!) next to a license type to view license
details.

Figure 10-29 Editing the license type

Modelarts
Usermanual 10 AI Hub

2024-04-30 704

Selecting categories

1. Click on the right of Category. The edit box is displayed.
2. Select categories for the asset from the drop-down list box and click the check

mark on the right of the edit box.
Other users can search for your assets by category.

Figure 10-30 Selecting categories

Editing the description

1. Click Edit on the right and enter the asset description in the text box,
including but not limited to the background, introduction, and usage method.
You can edit content in Markdown mode.

2. After the editing is complete, click Save.

Editing versions

1. Click the Version tab and click Edit in the upper right corner.

2. Click in the Description column, add version description, and click .
The dataset version description is used to distinguish the dataset from other
ones.

Editing restrictions

1. Click the Restrictions tab and click Edit in the upper right corner.
2. Select the access policy from the drop-down list box on the right of Visible

To.
– Public: indicates that all users who use AI Hub can view and use this

asset.
– Specific users: indicates that only specified users can view and use this

asset.
– Just me: indicates that only the current account can view and use this

asset.
3. Click Save.

Modelarts
Usermanual 10 AI Hub

2024-04-30 705

Figure 10-31 Editing restrictions

Republishing a Dataset
If a dataset failed to be published, you can publish it again.

1. In AI Hub, choose Management Center > My Data. The My Data page is
displayed.

2. On the My Publishes tab page, view the datasets that failed to be published.

Figure 10-32 Viewing datasets that failed to be published

3. Modify the source data based on the error message and click Retry on the
right of the target dataset to publish the dataset again.

Deleting a Published Dataset
To delete a dataset published in AI Hub, perform the following steps:

1. In AI Hub, choose Management Center > My Data. The My Data page is
displayed.

2. On the My Publishes tab page, click Delete on the right of the target
dataset. In the displayed dialog box, confirm the deletion.

NO TE

Because datasets are downloaded to OBS for use, deleting published datasets has no
impact on their users.

Modelarts
Usermanual 10 AI Hub

2024-04-30 706

11 Custom Images

11.1 Image Management
Overview

During the development and runtime of AI services, complex environment
dependencies need to be debugged for containerization. In the best practices of AI
development in ModelArts, container images are used to provide fixed runtime
environments. In this way, dependencies can be managed and the runtime
environments can be easily switched. The container resources provided by
ModelArts enable quick and efficient AI development and model experiment
iteration.

The preset images provided by ModelArts by default have the following features:

● Out-of-the-box and scenario-specific: Typical dependent environments for AI
development are preset in these images to provide optimal software, OS, and
network configurations. They have been fully tested on hardware to ensure
optimal compatibility and performance.

● Configuration customizable: Preset images are stored in the SWR repository
for you to customize and register them as your own images.

● Secure and reliable: Access policies, user permissions control, vulnerability
scanning for development software, and OS are configured based on best
practices for security hardening to ensure the security of images.

If you have special requirements on the deep learning engine and development
library, you can use ModelArts custom images to customize runtime engines.

Based on the container technology, you can customize container images and run
them on ModelArts. Custom images support CLI parameters and environment
variables in free text format, featuring high flexibility for a wide range of compute
engines.

Application Scenarios of Preset Images
ModelArts provides a group of preset images. You can use a preset image to
create a notebook instance. After installing and configuring dependencies on the

Modelarts
Usermanual 11 Custom Images

2024-04-30 707

instance, create a custom image. Then, you can directly use the image in
ModelArts for training jobs without any adaptation. You can also use preset
images to submit training jobs and create AI applications.

We recommend the preset image version based on your development
requirements and stability of the version. If your development can be carried out
using versions preset in ModelArts, for example, MindSpore 1.X, use the preset
images. They have been fully verified and have many commonly-used installation
packages, relieving you from configuring the environment.

Application Scenarios of Custom Images
● Using custom images on notebook instances

If the preset images of notebook instances cannot meet requirements, you
can create a custom image by installing and configuring the software and
other data required by the environment in a preset image. Then, use the
custom image to create new notebook instances.

● Using a custom image to create training jobs
If you have developed a model or training script locally but the AI engine you
used is not supported by ModelArts, create a custom image and upload it to
SWR. Then, use this image to create a training job on ModelArts and use the
resources provided by ModelArts to train models.

● Using a custom image to create AI applications
If you have developed a model using an AI engine that is not supported by
ModelArts, to use this model to create AI applications, do as follows: Create a
custom image, import the image to ModelArts, and use it to create AI
applications. The AI applications created in this way can be centrally managed
and deployed as services.

NO TE

The rules for creating a custom image vary according to the application scenario. The
details are as follows:

● General rule: SWR images can be shared with others only when the image type is
Private. This rule applies to development environments, training jobs, and AI
applications.

● Development environment: Other users can register and use SWR images on the
ModelArts image management page only when the SWR image type is Public.

● Training job: To create a training job using a Public SWR image, enter the organization
or the image name, and the corresponding version name in the Image text box, for
example, you can enter test-images/tensorflow2_1_1:1.1.1 in the Image text box to
use a public image whose address is xxx.com/test-image/tensorflow2_1_1:1.1.1.

Custom Image Services

When you use a custom image, the following services may be involved:

● SWR
Software Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized applications. You can upload, download, and
manage container images through the SWR console, SWR APIs, or community
CLI.

Modelarts
Usermanual 11 Custom Images

2024-04-30 708

Your custom images must be uploaded to SWR. The custom images used by
ModelArts for training or creating AI applications are obtained from the SWR
service management list.

Figure 11-1 Obtaining images

● OBS

Object Storage Service (OBS) is a cloud storage service optimized for storing
massive amounts of data. It provides unlimited, secure, and highly reliable
storage capabilities at a relatively low cost.

ModelArts exchanges data with OBS. You can store data in OBS.

● ECS

An Elastic Cloud Server (ECS) is a basic computing unit that consists of vCPUs,
memory, OS, and Elastic Volume Service (EVS) disks. After an ECS is created,
you can use it similarly to how you would use your local PC or physical server.

You can create a custom image on premises or on an ECS.

NO TE

When you use a custom image, ModelArts may need to access dependent services, such as
SWR and OBS. The custom image can be used only after the access is authorized. It is a
good practice to use an agency for authorization. After the agency is configured, the
permissions to access dependent services are delegated to ModelArts so that ModelArts can
use the dependent services and perform operations on resources on your behalf. For details,
see Configuring Access Authorization (Global Configuration).

11.2 Introduction to Preset Images (Mainstream
Images)

11.2.1 Preset Images

Preset Images of the Arm + Ascend Architecture

Table 11-1 MindSpore

Preset Image Applicable Scope

mindspore_2.0.0-cann_6.3.0-py_3.7-
euler_2.8.3

Notebook, training, and inference
deployment

mindspore1.8.0-cann5.1.2-py3.7-
euler2.8.3

Notebook

Modelarts
Usermanual 11 Custom Images

2024-04-30 709

Preset Image Applicable Scope

mindspore1.7.0-cann5.1.0-py3.7-
euler2.8.3

Notebook

Table 11-2 TensorFlow

Preset Image Applicable Scope

tensorflow_1.15.0-cann_6.3.0-py_3.7-
euler_2.8.3

Notebook, training, and inference
deployment

tensorflow1.15.0-cann5.1.2-py3.7-
euler2.8.3

Notebook

tensorflow1.15-cann5.1.0-py3.7-
euler2.8.3

Notebook

Table 11-3 PyTorch

Preset Image Applicable Scope

pytorch_1.11.0-cann_6.3.0-py_3.7-
euler_2.8.3

Notebook, training, and inference
deployment

Modelarts
Usermanual 11 Custom Images

2024-04-30 710

11.2.2 Preset MindSpore Images on Arm

Image 1: mindspore_2.2.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Table 11-4 mindspore_2.2.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

AI
Engin
e

URL Dependency

minds
pore
2.2.0 +
minds
pore-
lite
2.2.0 +
Ascend
CANN
Toolkit
7.0.RC
1

swr.<region>.myhuaweicloud.co
m/atelier/
mindspore_2_2_ascend:mindspor
e_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a83

PyPI package YUM package

mindspore 2.2.0
ipykernel 6.7.0
ipython 8.17.2
jupyter-client 7.4.9
ma-cau 1.1.7
ma-cau-adapter
1.1.3
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.20
moxing-framework
2.2.3.2c7f2141
numpy 1.22.0
pandas 1.2.5
pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.3.3
mindinsight 2.2.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 711

Image 2: mindspore_2.1.0-cann_6.3.2-py_3.7-euler_2.10.7-aarch64-snt9b

Table 11-5 Introduction to mindspore_2.1.0-cann_6.3.2-py_3.7-euler_2.10.7-
aarch64-snt9b images

AI
Engin
e

URL Dependency

minds
pore
2.1.0 +
minds
pore-
lite
2.1.0 +
Ascend
CANN
Toolkit
6.3.RC
2

swr.{Region ID}.{Site domain
name}/atelier/
mindspore_2_0_ascend:mindspo
re_2.1.0-cann_6.3.2-py_3.7-
euler_2.10.7-aarch64-
snt9b-20231009152946-
e7b7e70

PyPI package YUM package

mindspore 2.1.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client 7.4.9
ma-cau 1.1.6
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts 1.4.20
moxing-framework
2.2.3.2c7f2141
numpy 1.21.6
pandas 1.3.5
pillow 9.5.0
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.7.3
scikit-learn 1.0.2
tornado 6.2
mindinsight 2.1.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 712

Image 3: mindspore1.8.0-cann5.1.2-py3.7-euler2.8.3

Table 11-6 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

mind
spore
1.8.0

Yes
cann5.1.
2

swr.{Region ID}.{Region
domain name}./atelier/
mindspore_1_8_ascend:mind
spore_1.8.0-cann_5.1.2-
py_3.7-euler_2.8.3-aarch64-
d910-20221009094203-402
5e09

PyPI package YUM
package

mindspore-
ascend 1.8.0
mindinsight
1.8.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.18
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.21.2
pandas 1.1.3
pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn
0.24.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 713

Image 4: mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3

Table 11-7 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

Mind
Spore
1.7.0

Yes
(CANN
5.1)

swr.{Region ID}.{Region
domain name}./atelier/
mindspore_1_7_0:mindspore
_1.7.0-cann_5.1.0-py_3.7-
euler_2.8.3-aarch64-
d910-20220906
For example:
swr.cn-
central-231.xckpjs.com/
atelier/
mindspore_1_7_0:mindspore
_1.7.0-cann_5.1.0-py_3.7-
euler_2.8.3-aarch64-
d910-20220906
swr.cn-
southwest-228.cdzs.cn/
atelier/
mindspore_1_7_0:mindspore
_1.7.0-cann_5.1.0-py_3.7-
euler_2.8.3-aarch64-
d910-20220906

PyPI package YUM
package

mindspore-
ascend 1.7.0
mindinsight
1.7.0
ipykernel 5.3.4
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.2
ma-cau-adapter
1.1.2
ma-cli 1.1.3
matplotlib 3.5.1
modelarts 1.4.7
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.21.2
pandas 1.1.3
pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn
0.24.0
tensorboard
1.15.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 714

Image 5: mindspore_2.2.10-cann_8.0.rc1-py_3.9-hce_2.0.2312-aarch64-snt9c

Table 11-8 Introduction to mindspore_2.2.10-cann_8.0.rc1-py_3.9-hce_2.0.2312-
aarch64-snt9c images

AI
Engin
e

URL Dependency

minds
pore
2.2.10
+
minds
pore-
lite
2.2.10
+
Ascend
CANN
Toolkit
8.0.rc1

swr.<{Region ID}.{Site domain
name }/atelier/
mindspore_2_2_ascend:mindspo
re_2.2.10-cann_8.0.rc1-py_3.9-
hce_2.0.2312-aarch64-
snt9c-20240301174404-
d5e7cea

PyPI package YUM package

ipykernel 6.7.0
ipython 8.18.1
jupyter-client 7.4.9
ma-cau 1.1.7
ma-cau-adapter
1.1.3
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.20
moxing-framework
2.2.3.2c7f2141
numpy 1.22.0
pandas 1.3.5
pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.4

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 715

11.2.3 Preset TensorFlow Images on Arm

Image 1: tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3

Table 11-9 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

tenso
rflow
_1.15.
0

Yes
cann6.3.
0

swr.{Region ID}.{Region
domain name}./atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15.0-cann_6.3.0-
py_3.7-euler_2.8.3-aarch64-
d910-20230425164623-343
00db

PyPI package YUM
package

tensorflow
1.15.0
tensorboard
1.15.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.9
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.18
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.5
pandas 0.24.2
pillow 9.5.0
pip 21.0.1
psutil 5.7.0
PyYAML 5.3.1
scipy 1.3.3
scikit-learn
0.20.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 716

Image 2: tensorflow1.15-cann5.1.0-py3.7-euler2.8.3

Table 11-10 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

Tenso
rFlow
1.15

Yes
(CANN
5.1)

swr.{Region ID}.{Region
domain name}./atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15-cann_5.1.0-
py_3.7-euler_2.8.3-aarch64-
d910-20220906
For example:

swr.cn-
central-231.xckpjs.com/
atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15-cann_5.1.0-
py_3.7-euler_2.8.3-aarch64-
d910-20220906
swr.cn-
southwest-228.cdzs.cn/
atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15-cann_5.1.0-
py_3.7-euler_2.8.3-aarch64-
d910-20220906

PyPI package YUM
package

tensorflow
1.15.0
tensorboard
1.15.0
ipykernel 5.3.4
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.2
ma-cau-adapter
1.1.2
ma-cli 1.1.3
matplotlib 3.5.1
modelarts 1.4.7
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.5
pandas 0.24.2
pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.3.3
scikit-learn
0.20.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 717

Image 3: tensorflow1.15.0-cann5.1.2-py3.7-euler2.8.3

Table 11-11 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

tenso
rflow
1.15.
0

Yes
cann5.1.
2

swr.{Region ID}.{Region
domain name}./atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15.0-cann_5.1.2-
py_3.7-euler_2.8.3-aarch64-
d910-20221009094203-402
5e09

PyPI package YUM
package

tensorflow
1.15.0
tensorboard
1.15.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.3.4
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.18
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.5
pandas 0.24.2
pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.7.3
scikit-learn
0.20.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 718

11.2.4 Preset PyTorch Images on Arm

Image 1: pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3

Table 11-12 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

pytor
ch_1.
11.0

Yes
cann_6.3
.0

swr.{Region ID}.{Region
domain name}./atelier/
pytorch_1_11_ascend:pytorc
h_1.11.0-cann_6.3.0-py_3.7-
euler_2.8.3-aarch64-
d910-20230425164623-343
00db

PyPI package YUM
package

torch 1.11.0
torch-npu
1.11.0.dev20230
417
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.9
ma-cau 1.1.3
ma-cau-adapter
1.1.3
ma-cli 1.2.2
matplotlib 3.5.1
modelarts
1.4.18
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.21.2
pandas 0.24.2
pillow 9.5.0
pip 21.0.1
psutil 5.7.0
PyYAML 5.3.1
scipy 1.3.3
scikit-learn
0.20.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Modelarts
Usermanual 11 Custom Images

2024-04-30 719

11.3 Using Custom Images in Notebook Instances

11.3.1 Registering an Image in ModelArts
After a custom image is created, register it on the ModelArts Image Management
page before using it in notebook.

NO TE

Only the sub-users (IAM users) of the account can register and use the SWR images if the
image type is Private.

Other users can register and use SWR images only when the image type is Public.

1. Log in to the ModelArts management console and choose Image
Management. Then, click Register.

2. Configure parameters and click Register.

– SWR Source: Select a built image as the image source. You can copy the

complete SWR address or click to select the target image for
registration.

– Architecture and Type: Configure them based on the actual framework
of the custom image.

3. View the registered image on the Image Management page.

Figure 11-2 Image list

Creating a Notebook Instance

Click the image name. On the image details page that appears, click Create
Notebook. The page for creating a notebook instance using this image is
displayed.

Figure 11-3 Image details page

Synchronizing an Image

After the image fault is rectified, go to the image details page. Click Sync in the
Operation column to refresh the image status.

Modelarts
Usermanual 11 Custom Images

2024-04-30 720

11.3.2 Creating a Custom Image
To create a custom image, perform the following steps:

● Method 1: Use a preset image of notebook instances to create a development
environment instance. Then, install and configure dependencies in the
environment. After the configuration, use the image saving function provided
by the development environment to save the running instance as a custom
container image. For details, see Saving a Notebook Instance as a Custom
Image.

● Method 2: Use ModelArts base images or third-party images to write a
Dockerfile on an ECS, and reconstruct the ModelArts base images or third-
party images with the file. This allows you to customize Docker images push
the images to SWR. For details, see Creating and Using a Custom Image in
Notebook.

11.3.3 Saving a Notebook Instance as a Custom Image

11.3.3.1 Saving a Notebook Environment Image
To save a notebook environment image, do as follows: Create a notebook instance
using a preset image, install custom software and dependencies on the base
image, and save the running instance as a container image.

In the saved image, the installed dependencies are retained. The data stored in
home/ma-user/work for persistent storage will not be stored. When you use VS
Code for remote development, the plug-ins installed on the Server are retained.

NO TE

Images stored in a notebook instance cannot be larger than 35 GB and there cannot be
more than 125 image layers. Otherwise, the image cannot be saved.
If error "The container size (xx) is greater than the threshold (25G)" is reported when an
image is saved, handle the error by referring to What Do I Do If Error "The container size
(xG) is greater than the threshold (25G)" Is Displayed When I Save an Image?.

Prerequisites
The notebook instance is in Running state.

Saving an Image
1. Log in to the ModelArts management console and choose DevEnviron >

Notebook in the navigation pane on the left to switch to notebook of the
new version.

2. In the notebook instance list, select the target notebook instance and choose
Save Image from the More drop-down list in the Operation column. The
Save Image dialog box is displayed.

3. In the Save Image dialog box, configure parameters. Click OK to save the
image.

Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.

Modelarts
Usermanual 11 Custom Images

2024-04-30 721

Users in an organization can share all images in the organization.
4. The image will be saved as a snapshot, and it will take about 5 minutes.

During this period of time, do not perform any operations on the instance.

Figure 11-4 Saving as a snapshot

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

5. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

6. Click the name of the image to view its details.

11.3.3.2 Using a Custom Image to Create a Notebook Instance

The images saved from a notebook instance can be viewed on the Image
Management page. You can use these images to create new notebook instances,
which inherit the software configurations of the original notebook instances.

You can use either of the following methods:

Method 1: On the Create Notebook page, click Private Image and select the
saved image.

Figure 11-5 Selecting a custom image to create a notebook instance

Method 2: On the Image Management page, click the target image to access its
details page. Then, click Create Notebook.

11.3.4 Creating and Using a Custom Image in Notebook

11.3.4.1 Application Scenarios and Process

If preset images cannot meet your service requirements, you can create container
images based on the preset images for development and training.

Modelarts
Usermanual 11 Custom Images

2024-04-30 722

Generally, you will need to reconstruct the ModelArts development environment,
for example, by installing, upgrading, or uninstalling some packages. However, the
root permission is required when certain packages are installed or upgraded. The
running notebook instance does not have the root permission. As a result, you
need to install the software that requires the root permission in the notebook
instance, which is currently unavailable in the preset development environment.

You need to write a Dockerfile based on a preset public image to customize your
image. Then, debug the image so that it can be used in ModelArts. At last, register
the image with ModelArts so that it can be used to create development
environments to meet your service requirements.

This example shows how to use ma-cli commands in ModelArts CLI to create and
register a custom image for AI development with a MindSpore base image. For
details, see ma-cli Image Building Command. The following figure shows the
whole process.

Figure 11-6 Creating an image

11.3.4.2 Step 1 Creating a Custom Image
This section shows you how to create an image by loading an image creation
template and writing a Dockerfile. Ensure that you have created the development
environment and opened a terminal on the Notebook page. For details about
Dockerfiles, see Dockerfile reference.

Step 1 Configure authentication information, specify a profile, and enter the account
information as prompted. For more information about authentication, see ma-cli
Authentication.
ma-cli configure --auth PWD -P xxx

Step 2 Run env|grep -i CURRENT_IMAGE_NAME to query the image used by the current
instance.

Step 3 Create an image.

1. Obtain the SWR address of the base image.
CURRENT_IMAGE_NAME=swr.cn-south-222.ai.pcl.cn/atelier/
mindspore_1_7_0:mindspore_1.7.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-
d910-20220906

Modelarts
Usermanual 11 Custom Images

2024-04-30 723

https://docs.docker.com/engine/reference/builder/

2. Load an image creation template.

Run the ma-cli image get-template command to query the image template.

Run the ma-cli image add-template command to load the image template
to the specified folder. The default path is where the current command is
located. For example, load the
upgrade_ascend_mindspore_1.8.1_and_cann_5.1.RC2 image creation
template.
ma-cli image add-template upgrade_ascend_mindspore_1.8.1_and_cann_5.1.RC2

3. Modify a Dockerfile.

Use the Dockerfile to upgrade the base image mindspore1.7.0-cann5.1.0-
py3.7-euler2.8.3 to adapt to CANN 5.1.RC2 and MindSpore 1.8.1 and create
an image for AI development.

After the image template is loaded, the Dockerfile will be automatically
loaded in .ma/upgrade_ascend_mindspore_1.8.1_and_cann_5.1.RC2. The
content is as follows and you can modify it based on your needs.
#The following uses Mindspore-1.7 as an example, which can be replaced with the image used by the
notebook instance.
FROM swr.cn-south-222.ai.pcl.cn/atelier/mindspore_1_7_0:mindspore_1.7.0-cann_5.1.0-py_3.7-
euler_2.8.3-aarch64-d910-20220715093657-9446c6a

ARG CANN=Ascend-cann-toolkit_5.1.RC2_linux-aarch64.run

Modify the notebook proxy based on the actual needs.
ENV HTTP_PROXY=http://proxy.modelarts.com:80 \
 http_proxy=http://proxy.modelarts.com:80 \
 HTTPS_PROXY=http://proxy.modelarts.com:80 \
 https_proxy=http://proxy.modelarts.com:80

USER root

Download CANN-5.1.RC2 and install CANN package, which is a dependency package for
mindspore-1.8.1.
For details about the mapping between Mindpore and CANN and the download address of CANN,
see the official website of Mindpore.
RUN wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%205.1.RC2/${CANN} -
P /tmp && \
 chmod +x /tmp/${CANN} && \
 sh -x /tmp/${CANN} --quiet --full && \
 rm -f /tmp/${CANN}

ENV PYTHONPATH=/usr/local/Ascend/tfplugin/latest/python/site-packages:/usr/local/Ascend/ascend-
toolkit/latest/python/site-packages:/usr/local/Ascend/ascend-toolkit/latest/opp/op_impl/built-in/
ai_core/tbe:/usr/local/seccomponent/lib

USER ma-user

Update mindspore version in "MindSpore" conda env by using pip.
RUN source /home/ma-user/anaconda3/bin/activate MindSpore && \
 pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/ascend/aarch64/
mindspore_ascend-1.8.1-cp37-cp37m-linux_aarch64.whl --upgrade && \
 echo "successfully install mindspore 1.8.1"

[Optional] Uncomment to set default conda env
#ENV DEFAULT_CONDA_ENV_NAME=/home/ma-user/anaconda3/envs/MindSpore

Modelarts
Usermanual 11 Custom Images

2024-04-30 724

4. Build an image.
Run the ma-cli image build command to build an image with the Dockerfile.
For more information, see Creating an Image in ModelArts Notebook.
ma-cli image build .ma/upgrade_ascend_mindspore_1.8.1_and_cann_5.1.RC2/Dockerfile -swr notebook-
test/my_image:0.0.1 -P XXX

The Dockerfile is stored in .ma/
upgrade_ascend_mindspore_1.8.1_and_cann_5.1.RC2/Dockerfile and the
new image is stored in notebook-test/my_image:0.0.1 in SWR. XXX indicates
the profile specified for authentication.

----End

11.3.4.3 Step 2 Registering a New Image
After an image is debugged, register it with ModelArts image management so
that the image can be used in ModelArts.

Use either of the following methods to register the image with ModelArts:

● Method 1: Run the ma-cli image register command to register an image.
Then, the information of the registered image is returned, including image ID
and name, as shown in the following figure. For more information, see
Registering SWR Images with ModelArts Image Management.
ma-cli image register --swr-path=swr.cn-south-222.ai.pcl.cn/cloud-test/mindspore_1_8:v1 -a AARCH64
-rs ASCEND -P XXX

-a indicates that the image supports the Arm architecture, -rs indicates that
the image supports the Ascend chip, and XXX indicates the profile specified
during authentication.

Figure 11-7 Registered image

● Method 2: Register the image on the ModelArts management console.

Modelarts
Usermanual 11 Custom Images

2024-04-30 725

Log in to the ModelArts management console. In the navigation pane on the
left, select Image Management. The Image Management page is displayed.

Click Register. Paste the complete SWR address, or click to select a
private image from SWR for registration, as shown in Figure 11-8.
Select the architecture and type based on the site requirements. The
architecture and type must be the same as those of the image source.

Figure 11-8 Selecting an image

11.3.4.4 Step 3 Using a New Image to Create a Development Environment

Procedure
1. After an image is registered, it is available for development environment

creation. You can log in to the ModelArts management console, choose
DevEnviron > Notebook, and select the image during creation.

Figure 11-9 Creating a development environment

2. Access the development environment.

Modelarts
Usermanual 11 Custom Images

2024-04-30 726

Figure 11-10 Accessing a development environment

3. Click the MindSpore icon to create an IPYNV file and import MindSpore to the
file. Then, the installed MindSpore 1.8.1 can be used.

Figure 11-11 Creating an IPYNB file

4. Open a new terminal and check the CANN version. The version is the same as
that installed in Dockerfile.

Figure 11-12 Checking the CANN version

Modelarts
Usermanual 11 Custom Images

2024-04-30 727

11.4 Using a Custom Image to Train Models (Model
Training)

11.4.1 Overview
The subscribed algorithms and preset images can be used in most training
scenarios. In certain scenarios, ModelArts allows you to create custom images to
train models.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts only after
they are uploaded to the Software Repository for Container (SWR).

You can use custom images for training on ModelArts in either of the following
ways:

● Using a preset image with customization
If you use a preset image to create a training job and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.

● Using a custom image
You can create an image based on the ModelArts image specifications, select
your own image and configure the code directory (optional) and boot
command to create a training job.

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run
abnormally.

Using a Preset Image with Customization
The only difference between this method and creating a training job totally based
on a preset image is that you must select an image. You can create a custom
image based on a preset image. For details about how to create a custom image
based on a preset framework, see Using a Base Image to Create a Training
Image.

Modelarts
Usermanual 11 Custom Images

2024-04-30 728

Figure 11-13 Creating an algorithm using a preset image with customization

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables.
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
– export MA_HOME=/home/ma-user; docker run --rm {image} $

{MA_HOME}/anaconda/bin/python -V
– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Using a Custom Image

Figure 11-14 Creating an algorithm using a custom image

Modelarts
Usermanual 11 Custom Images

2024-04-30 729

For details about how to use custom images supported by the new-version
training, see Using a Custom Image to Create a CPU- or GPU-based Training
Job.

If all used images are customized, do as follows to use a specified Conda
environment to start training:

Training jobs do not run in a shell. Therefore, you are not allowed to run the
conda activate command to activate a specified Conda environment. In this case,
use other methods to start training.

For example, Conda in your custom image is installed in the /home/ma-user/
anaconda3 directory, the Conda environment is python-3.7.10, and the training
script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a
specified Conda environment to start training in one of the following ways:

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the path environment variable.
Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.
Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

11.4.2 Example: Creating a Custom Image for Training

11.4.2.1 Example: Creating a Custom Image for Development and Training
(MindSpore + Ascend)

Modelarts
Usermanual 11 Custom Images

2024-04-30 730

11.4.2.1.1 Scenarios

This section describes how to create an Ascend container image from scratch and
use the image for training on ModelArts. The AI engine used in the image is
MindSpore, and the resources used for training are powered by Ascend in a
dedicated resource pool.

Constraints
● This example requires the CANN commercial edition. If you do not have

permission to download the CANN commercial edition, see other examples
for creating a custom image.

● Pay attention to the version mapping between MindSpore and CANN, and
between CANN and Ascend driver or firmware. Unmatched versions will lead
to a training failure.

Objective

Create a container image with the following configurations and use the image to
create an Ascend-powered training job on ModelArts:

● Ubuntu 18.04
● CANN 6.3.RC2 (commercial edition)
● Python 3.7.13
● MindSpore 2.1.1

NO TE

● CANN 6.3.RC2 and MindSpore 2.1.1 are used in the following examples.

● These examples show how to create an Ascend container image and run the image in a
dedicated resource pool with the required Ascend driver or firmware installed.

Procedure

Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Step 1 Creating an OBS Bucket and Folder
2. Step 2 Preparing Script Files and Uploading Them to OBS
3. Step 3 Creating a Custom Image
4. Step 4 Uploading the Image to SWR
5. Step 5 Creating and Debugging a Notebook Instance on ModelArts
6. Step 6 Creating a Training Job on ModelArts

11.4.2.1.2 Step 1 Creating an OBS Bucket and Folder

Procedure

Create a bucket and folders in OBS for storing the sample dataset and training
code. In this example, create a bucket named test-modelarts and folders listed in
Table 11-13.

Modelarts
Usermanual 11 Custom Images

2024-04-30 731

Table 11-13 Required OBS folders

Folder Description

obs://test-modelarts/ascend/demo-
code/

Store the Ascend training script.

obs://test-modelarts/ascend/demo-
code/run_ascend/

Store the startup scripts of the Ascend
training script.

obs://test-modelarts/ascend/log/ Store training log files.

11.4.2.1.3 Step 2 Preparing Script Files and Uploading Them to OBS

1. Prepare the training script mindspore-verification.py and Ascend startup
scripts (five in total) required in this example.
– For details about the training script, see Training Script.
– For details about the following Ascend startup scripts, see Ascend

Startup Scripts.

i. run_ascend.py
ii. common.py
iii. rank_table.py
iv. manager.py
v. fmk.py

NO TE

The mindspore-verification.py and run_ascend.py scripts are invoked by the Boot
Command parameter during training job creation. For details, see Boot Command.
The common.py, rank_table.py, manager.py, and fmk.py scripts are invoked when
the run_ascend.py script is running.

2. Upload the training script mindspore-verification.py to obs://test-
modelarts/ascend/demo-code/ in the OBS bucket.

3. Upload the five Ascend startup scripts to the obs://test-modelarts/ascend/
demo-code/run_ascend/ folder in the OBS bucket.

Training Script
mindspore-verification.py

import os
import numpy as np
from mindspore import Tensor
import mindspore.ops as ops
import mindspore.context as context

print('Ascend Envs')
print('------')
print('JOB_ID: ', os.environ['JOB_ID'])
print('RANK_TABLE_FILE: ', os.environ['RANK_TABLE_FILE'])
print('RANK_SIZE: ', os.environ['RANK_SIZE'])
print('ASCEND_DEVICE_ID: ', os.environ['ASCEND_DEVICE_ID'])
print('DEVICE_ID: ', os.environ['DEVICE_ID'])
print('RANK_ID: ', os.environ['RANK_ID'])

Modelarts
Usermanual 11 Custom Images

2024-04-30 732

print('------')

context.set_context(device_target="Ascend")
x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = Tensor(np.ones([1,3,3,4]).astype(np.float32))

print(ops.add(x, y))

Ascend Startup Scripts
● run_ascend.py

import sys
import os

from common import RunAscendLog
from common import RankTableEnv

from rank_table import RankTable, RankTableTemplate1, RankTableTemplate2

from manager import FMKManager

if __name__ == '__main__':
 log = RunAscendLog.setup_run_ascend_logger()

 if len(sys.argv) <= 1:
 log.error('there are not enough args')
 sys.exit(1)

 train_command = sys.argv[1:]
 log.info('training command')
 log.info(train_command)

 if os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1) is not None:
 # new format rank table file
 rank_table_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1)
 RankTable.wait_for_available(rank_table_path)
 rank_table = RankTableTemplate1(rank_table_path)
 else:
 # old format rank table file
 rank_table_path_origin = RankTableEnv.get_rank_table_template2_file_path()
 RankTable.wait_for_available(rank_table_path_origin)
 rank_table = RankTableTemplate2(rank_table_path_origin)

 if rank_table.get_device_num() >= 1:
 log.info('set rank table %s env to %s' % (RankTableEnv.RANK_TABLE_FILE,
rank_table.get_rank_table_path()))
 RankTableEnv.set_rank_table_env(rank_table.get_rank_table_path())
 else:
 log.info('device num < 1, unset rank table %s env' % RankTableEnv.RANK_TABLE_FILE)
 RankTableEnv.unset_rank_table_env()

 instance = rank_table.get_current_instance()
 server = rank_table.get_server(instance.server_id)
 current_instance = RankTable.convert_server_to_instance(server)

 fmk_manager = FMKManager(current_instance)
 fmk_manager.run(rank_table.get_device_num(), train_command)
 return_code = fmk_manager.monitor()

 fmk_manager.destroy()

 sys.exit(return_code)

● common.py
import logging
import os

logo = 'Training'

Modelarts
Usermanual 11 Custom Images

2024-04-30 733

Rank Table Constants
class RankTableEnv:
 RANK_TABLE_FILE = 'RANK_TABLE_FILE'

 RANK_TABLE_FILE_V1 = 'RANK_TABLE_FILE_V_1_0'

 HCCL_CONNECT_TIMEOUT = 'HCCL_CONNECT_TIMEOUT'

 # jobstart_hccl.json is provided by the volcano controller of Cloud-Container-Engine(CCE)
 HCCL_JSON_FILE_NAME = 'jobstart_hccl.json'

 RANK_TABLE_FILE_DEFAULT_VALUE = '/user/config/%s' % HCCL_JSON_FILE_NAME

 @staticmethod
 def get_rank_table_template1_file_dir():
 parent_dir = os.environ[ModelArts.MA_MOUNT_PATH_ENV]
 return os.path.join(parent_dir, 'rank_table')

 @staticmethod
 def get_rank_table_template2_file_path():
 rank_table_file_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE)
 if rank_table_file_path is None:
 return RankTableEnv.RANK_TABLE_FILE_DEFAULT_VALUE

 return os.path.join(os.path.normpath(rank_table_file_path),
RankTableEnv.HCCL_JSON_FILE_NAME)

 @staticmethod
 def set_rank_table_env(path):
 os.environ[RankTableEnv.RANK_TABLE_FILE] = path

 @staticmethod
 def unset_rank_table_env():
 del os.environ[RankTableEnv.RANK_TABLE_FILE]

class ModelArts:
 MA_MOUNT_PATH_ENV = 'MA_MOUNT_PATH'
 MA_CURRENT_INSTANCE_NAME_ENV = 'MA_CURRENT_INSTANCE_NAME'
 MA_VJ_NAME = 'MA_VJ_NAME'

 MA_CURRENT_HOST_IP = 'MA_CURRENT_HOST_IP'

 CACHE_DIR = '/cache'

 TMP_LOG_DIR = '/tmp/log/'

 FMK_WORKSPACE = 'workspace'

 @staticmethod
 def get_current_instance_name():
 return os.environ[ModelArts.MA_CURRENT_INSTANCE_NAME_ENV]

 @staticmethod
 def get_current_host_ip():
 return os.environ.get(ModelArts.MA_CURRENT_HOST_IP)

 @staticmethod
 def get_job_id():
 ma_vj_name = os.environ[ModelArts.MA_VJ_NAME]
 return ma_vj_name.replace('ma-job', 'modelarts-job', 1)

 @staticmethod
 def get_parent_working_dir():
 if ModelArts.MA_MOUNT_PATH_ENV in os.environ:
 return os.path.join(os.environ.get(ModelArts.MA_MOUNT_PATH_ENV),
ModelArts.FMK_WORKSPACE)

Modelarts
Usermanual 11 Custom Images

2024-04-30 734

 return ModelArts.CACHE_DIR

class RunAscendLog:

 @staticmethod
 def setup_run_ascend_logger():
 name = logo
 formatter = logging.Formatter(fmt='[run ascend] %(asctime)s - %(levelname)s - %(message)s')

 handler = logging.StreamHandler()
 handler.setFormatter(formatter)

 logger = logging.getLogger(name)
 logger.setLevel(logging.INFO)
 logger.addHandler(handler)
 logger.propagate = False
 return logger

 @staticmethod
 def get_run_ascend_logger():
 return logging.getLogger(logo)

● rank_table.py
import json
import time
import os

from common import ModelArts
from common import RunAscendLog
from common import RankTableEnv

log = RunAscendLog.get_run_ascend_logger()

class Device:
 def __init__(self, device_id, device_ip, rank_id):
 self.device_id = device_id
 self.device_ip = device_ip
 self.rank_id = rank_id

class Instance:
 def __init__(self, pod_name, server_id, devices):
 self.pod_name = pod_name
 self.server_id = server_id
 self.devices = self.parse_devices(devices)

 @staticmethod
 def parse_devices(devices):
 if devices is None:
 return []
 device_object_list = []
 for device in devices:
 device_object_list.append(Device(device['device_id'], device['device_ip'], ''))

 return device_object_list

 def set_devices(self, devices):
 self.devices = devices

class Group:
 def __init__(self, group_name, device_count, instance_count, instance_list):
 self.group_name = group_name
 self.device_count = int(device_count)
 self.instance_count = int(instance_count)
 self.instance_list = self.parse_instance_list(instance_list)

 @staticmethod

Modelarts
Usermanual 11 Custom Images

2024-04-30 735

 def parse_instance_list(instance_list):
 instance_object_list = []
 for instance in instance_list:
 instance_object_list.append(
 Instance(instance['pod_name'], instance['server_id'], instance['devices']))

 return instance_object_list

class RankTable:
 STATUS_FIELD = 'status'
 COMPLETED_STATUS = 'completed'

 def __init__(self):
 self.rank_table_path = ""
 self.rank_table = {}

 @staticmethod
 def read_from_file(file_path):
 with open(file_path) as json_file:
 return json.load(json_file)

 @staticmethod
 def wait_for_available(rank_table_file, period=1):
 log.info('Wait for Rank table file at %s ready' % rank_table_file)
 complete_flag = False
 while not complete_flag:
 with open(rank_table_file) as json_file:
 data = json.load(json_file)
 if data[RankTable.STATUS_FIELD] == RankTable.COMPLETED_STATUS:
 log.info('Rank table file is ready for read')
 log.info('\n' + json.dumps(data, indent=4))
 return True

 time.sleep(period)

 return False

 @staticmethod
 def convert_server_to_instance(server):
 device_list = []
 for device in server['device']:
 device_list.append(
 Device(device_id=device['device_id'], device_ip=device['device_ip'],
rank_id=device['rank_id']))

 ins = Instance(pod_name='', server_id=server['server_id'], devices=[])
 ins.set_devices(device_list)
 return ins

 def get_rank_table_path(self):
 return self.rank_table_path

 def get_server(self, server_id):
 for server in self.rank_table['server_list']:
 if server['server_id'] == server_id:
 log.info('Current server')
 log.info('\n' + json.dumps(server, indent=4))
 return server

 log.error('server [%s] is not found' % server_id)
 return None

class RankTableTemplate2(RankTable):

 def __init__(self, rank_table_template2_path):
 super().__init__()

Modelarts
Usermanual 11 Custom Images

2024-04-30 736

 json_data = self.read_from_file(file_path=rank_table_template2_path)

 self.status = json_data[RankTableTemplate2.STATUS_FIELD]
 if self.status != RankTableTemplate2.COMPLETED_STATUS:
 return

 # sorted instance list by the index of instance
 # assert there is only one group
 json_data["group_list"][0]["instance_list"] = sorted(json_data["group_list"][0]["instance_list"],
 key=RankTableTemplate2.get_index)

 self.group_count = int(json_data['group_count'])
 self.group_list = self.parse_group_list(json_data['group_list'])

 self.rank_table_path, self.rank_table = self.convert_template2_to_template1_format_file()

 @staticmethod
 def parse_group_list(group_list):
 group_object_list = []
 for group in group_list:
 group_object_list.append(
 Group(group['group_name'], group['device_count'], group['instance_count'],
group['instance_list']))

 return group_object_list

 @staticmethod
 def get_index(instance):
 # pod_name example: job94dc1dbf-job-bj4-yolov4-15
 pod_name = instance["pod_name"]
 return int(pod_name[pod_name.rfind("-") + 1:])

 def get_current_instance(self):
 """
 get instance by pod name
 specially, return the first instance when the pod name is None
 :return:
 """
 pod_name = ModelArts.get_current_instance_name()
 if pod_name is None:
 if len(self.group_list) > 0:
 if len(self.group_list[0].instance_list) > 0:
 return self.group_list[0].instance_list[0]

 return None

 for group in self.group_list:
 for instance in group.instance_list:
 if instance.pod_name == pod_name:
 return instance
 return None

 def convert_template2_to_template1_format_file(self):
 rank_table_template1_file = {
 'status': 'completed',
 'version': '1.0',
 'server_count': '0',
 'server_list': []
 }

 logic_index = 0
 server_map = {}
 # collect all devices in all groups
 for group in self.group_list:
 if group.device_count == 0:
 continue
 for instance in group.instance_list:
 if instance.server_id not in server_map:
 server_map[instance.server_id] = []

Modelarts
Usermanual 11 Custom Images

2024-04-30 737

 for device in instance.devices:
 template1_device = {
 'device_id': device.device_id,
 'device_ip': device.device_ip,
 'rank_id': str(logic_index)
 }
 logic_index += 1
 server_map[instance.server_id].append(template1_device)

 server_count = 0
 for server_id in server_map:
 rank_table_template1_file['server_list'].append({
 'server_id': server_id,
 'device': server_map[server_id]
 })
 server_count += 1

 rank_table_template1_file['server_count'] = str(server_count)

 log.info('Rank table file (Template1)')
 log.info('\n' + json.dumps(rank_table_template1_file, indent=4))

 if not os.path.exists(RankTableEnv.get_rank_table_template1_file_dir()):
 os.makedirs(RankTableEnv.get_rank_table_template1_file_dir())

 path = os.path.join(RankTableEnv.get_rank_table_template1_file_dir(),
RankTableEnv.HCCL_JSON_FILE_NAME)
 with open(path, 'w') as f:
 f.write(json.dumps(rank_table_template1_file))
 log.info('Rank table file (Template1) is generated at %s', path)

 return path, rank_table_template1_file

 def get_device_num(self):
 total_device_num = 0
 for group in self.group_list:
 total_device_num += group.device_count
 return total_device_num

class RankTableTemplate1(RankTable):
 def __init__(self, rank_table_template1_path):
 super().__init__()
 self.rank_table_path = rank_table_template1_path
 self.rank_table = self.read_from_file(file_path=rank_table_template1_path)

 def get_current_instance(self):
 current_server = None
 server_list = self.rank_table['server_list']
 if len(server_list) == 1:
 current_server = server_list[0]
 elif len(server_list) > 1:
 host_ip = ModelArts.get_current_host_ip()
 if host_ip is not None:
 for server in server_list:
 if server['server_id'] == host_ip:
 current_server = server
 break
 else:
 current_server = server_list[0]

 if current_server is None:
 log.error('server is not found')
 return None
 return self.convert_server_to_instance(current_server)

 def get_device_num(self):
 server_list = self.rank_table['server_list']

Modelarts
Usermanual 11 Custom Images

2024-04-30 738

 device_num = 0
 for server in server_list:
 device_num += len(server['device'])
 return device_num

● manager.py
import time
import os
import os.path
import signal

from common import RunAscendLog
from fmk import FMK

log = RunAscendLog.get_run_ascend_logger()

class FMKManager:
 # max destroy time: ~20 (15 + 5)
 # ~ 15 (1 + 2 + 4 + 8)
 MAX_TEST_PROC_CNT = 4

 def __init__(self, instance):
 self.instance = instance
 self.fmk = []
 self.fmk_processes = []
 self.get_sigterm = False
 self.max_test_proc_cnt = FMKManager.MAX_TEST_PROC_CNT

 # break the monitor and destroy processes when get terminate signal
 def term_handle(func):
 def receive_term(signum, stack):
 log.info('Received terminate signal %d, try to destroyed all processes' % signum)
 stack.f_locals['self'].get_sigterm = True

 def handle_func(self, *args, **kwargs):
 origin_handle = signal.getsignal(signal.SIGTERM)
 signal.signal(signal.SIGTERM, receive_term)
 res = func(self, *args, **kwargs)
 signal.signal(signal.SIGTERM, origin_handle)
 return res

 return handle_func

 def run(self, rank_size, command):
 for index, device in enumerate(self.instance.devices):
 fmk_instance = FMK(index, device)
 self.fmk.append(fmk_instance)

 self.fmk_processes.append(fmk_instance.run(rank_size, command))

 @term_handle
 def monitor(self, period=1):
 # busy waiting for all fmk processes exit by zero
 # or there is one process exit by non-zero

 fmk_cnt = len(self.fmk_processes)
 zero_ret_cnt = 0
 while zero_ret_cnt != fmk_cnt:
 zero_ret_cnt = 0
 for index in range(fmk_cnt):
 fmk = self.fmk[index]
 fmk_process = self.fmk_processes[index]
 if fmk_process.poll() is not None:
 if fmk_process.returncode != 0:
 log.error('proc-rank-%s-device-%s (pid: %d) has exited with non-zero code: %d'
 % (fmk.rank_id, fmk.device_id, fmk_process.pid, fmk_process.returncode))
 return fmk_process.returncode

Modelarts
Usermanual 11 Custom Images

2024-04-30 739

 zero_ret_cnt += 1
 if self.get_sigterm:
 break
 time.sleep(period)

 return 0

 def destroy(self, base_period=1):
 log.info('Begin destroy training processes')
 self.send_sigterm_to_fmk_process()
 self.wait_fmk_process_end(base_period)
 log.info('End destroy training processes')

 def send_sigterm_to_fmk_process(self):
 # send SIGTERM to fmk processes (and process group)
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is not None:
 log.info('proc-rank-%s-device-%s (pid: %d) has exited before receiving the term signal',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 del self.fmk_processes[r_index]
 del self.fmk[r_index]

 try:
 os.killpg(fmk_process.pid, signal.SIGTERM)
 except ProcessLookupError:
 pass

 def wait_fmk_process_end(self, base_period):
 test_cnt = 0
 period = base_period
 while len(self.fmk_processes) > 0 and test_cnt < self.max_test_proc_cnt:
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is not None:
 log.info('proc-rank-%s-device-%s (pid: %d) has exited',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 del self.fmk_processes[r_index]
 del self.fmk[r_index]
 if not self.fmk_processes:
 break

 time.sleep(period)
 period *= 2
 test_cnt += 1

 if len(self.fmk_processes) > 0:
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is None:
 log.warn('proc-rank-%s-device-%s (pid: %d) has not exited within the max waiting time,
'
 'send kill signal',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 os.killpg(fmk_process.pid, signal.SIGKILL)

● fmk.py
import os
import subprocess
import pathlib
from contextlib import contextmanager

from common import RunAscendLog
from common import RankTableEnv
from common import ModelArts

log = RunAscendLog.get_run_ascend_logger()

Modelarts
Usermanual 11 Custom Images

2024-04-30 740

class FMK:

 def __init__(self, index, device):
 self.job_id = ModelArts.get_job_id()
 self.rank_id = device.rank_id
 self.device_id = str(index)

 def gen_env_for_fmk(self, rank_size):
 current_envs = os.environ.copy()

 current_envs['JOB_ID'] = self.job_id

 current_envs['ASCEND_DEVICE_ID'] = self.device_id
 current_envs['DEVICE_ID'] = self.device_id

 current_envs['RANK_ID'] = self.rank_id
 current_envs['RANK_SIZE'] = str(rank_size)

 FMK.set_env_if_not_exist(current_envs, RankTableEnv.HCCL_CONNECT_TIMEOUT, str(1800))

 log_dir = FMK.get_log_dir()
 process_log_path = os.path.join(log_dir, self.job_id, 'ascend', 'process_log', 'rank_' + self.rank_id)
 FMK.set_env_if_not_exist(current_envs, 'ASCEND_PROCESS_LOG_PATH', process_log_path)
 pathlib.Path(current_envs['ASCEND_PROCESS_LOG_PATH']).mkdir(parents=True, exist_ok=True)

 return current_envs

 @contextmanager
 def switch_directory(self, directory):
 owd = os.getcwd()
 try:
 os.chdir(directory)
 yield directory
 finally:
 os.chdir(owd)

 def get_working_dir(self):
 fmk_workspace_prefix = ModelArts.get_parent_working_dir()
 return os.path.join(os.path.normpath(fmk_workspace_prefix), 'device%s' % self.device_id)

 @staticmethod
 def get_log_dir():
 parent_path = os.getenv(ModelArts.MA_MOUNT_PATH_ENV)
 if parent_path:
 log_path = os.path.join(parent_path, 'log')
 if os.path.exists(log_path):
 return log_path

 return ModelArts.TMP_LOG_DIR

 @staticmethod
 def set_env_if_not_exist(envs, env_name, env_value):
 if env_name in os.environ:
 log.info('env already exists. env_name: %s, env_value: %s ' % (env_name, env_value))
 return

 envs[env_name] = env_value

 def run(self, rank_size, command):
 envs = self.gen_env_for_fmk(rank_size)
 log.info('bootstrap proc-rank-%s-device-%s' % (self.rank_id, self.device_id))

 log_dir = FMK.get_log_dir()
 if not os.path.exists(log_dir):
 os.makedirs(log_dir)

 log_file = '%s-proc-rank-%s-device-%s.txt' % (self.job_id, self.rank_id, self.device_id)

Modelarts
Usermanual 11 Custom Images

2024-04-30 741

 log_file_path = os.path.join(log_dir, log_file)

 working_dir = self.get_working_dir()
 if not os.path.exists(working_dir):
 os.makedirs(working_dir)

 with self.switch_directory(working_dir):
 # os.setsid: change the process(forked) group id to itself
 training_proc = subprocess.Popen(command, env=envs, preexec_fn=os.setsid,
 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 log.info('proc-rank-%s-device-%s (pid: %d)', self.rank_id, self.device_id, training_proc.pid)

 # https://docs.python.org/3/library/subprocess.html#subprocess.Popen.wait
 subprocess.Popen(['tee', log_file_path], stdin=training_proc.stdout)

 return training_proc

11.4.2.1.4 Step 3 Creating a Custom Image

This section describes how to write a Dockerfile to create a custom image.

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● Ubuntu 18.04
● CANN 6.3.RC2 (commercial edition)
● Python 3.7.13
● MindSpore 2.1.1

NO TE

Pay attention to the version mapping between MindSpore and CANN, and between CANN
and Ascend driver or firmware. Unmatched versions will lead to a training failure.

The following example shows how to create an Ascend container image and run the image
in a dedicated resource pool with the required Ascend driver or firmware installed.

1. Obtain a Linux AArch64 server running Ubuntu 18.04. Either an ECS or your
local PC will do.

2. Install Docker.
The following uses Linux AArch64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents.
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.
Start Docker.
systemctl start docker

3. Obtain the Docker engine version.
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

Modelarts
Usermanual 11 Custom Images

2024-04-30 742

https://docs.docker.com/engine/install/binaries/#install-static-binaries

4. Create a folder named context.
mkdir -p context

5. Obtain the pip.conf file.
[global]
index-url = https://repo.xxx.com/repository/pypi/simple
trusted-host = repo.xxx.com
timeout = 120

6. Obtain the APT source file Ubuntu-Ports-bionic.list.
wget -O Ubuntu-Ports-bionic.list https://repo.xxx.com/repository/conf/Ubuntu-Ports-bionic.list

7. Download the CANN 6.3.RC2-linux aarch64 and mindspore-2.1.1-cp37-
cp37m-linux_aarch64.whl installation files.
– Download the Ascend-cann-nnae_6.3.RC2_linux-aarch64.run file by

referring to CANN 6.3.RC2.
– Download the mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl file.

NO TE

ModelArts supports only the commercial CANN edition, but not the community
edition.

8. Download the Miniconda3 installation file.
Download Miniconda3-py37-4.10.3 (Python 3.7.10) at https://
repo.anaconda.com/miniconda/Miniconda3-py37_4.10.3-Linux-aarch64.sh.

9. Store the pip source file, .run file, .whl file, and Miniconda3 installation file in
the context folder, which is as follows:
context
├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
├── pip.conf
└── Ubuntu-Ports-bionic.list

10. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.
FROM arm64v8/ubuntu:18.04 AS builder

The default user of the base container image is root.
USER root

Install OS dependencies obtained from Mirrors.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 6.3.RC2
 gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils
net-tools libblas-dev gfortran libblas3 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 # Grant the write permission of the parent directory of the CANN 6.3.RC2 installation directory to
ma-user.
 chmod o+w /usr/local

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Configure the default user and working directory of the container image.

Modelarts
Usermanual 11 Custom Images

2024-04-30 743

https://support.huawei.com/enterprise/en/ascend-computing/cann-pid-251168373/software/259676909?idAbsPath=fixnode01%7C23710424%7C251366513%7C22892968%7C251168373
https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl

USER ma-user
WORKDIR /home/ma-user

Use the PyPI configuration provided by Mirrors.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:100 pip.conf /home/ma-user/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY --chown=ma-user:100 Miniconda3-py37_4.10.3-Linux-aarch64.sh /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.10.3-Linux-aarch64.sh -b -p /home/ma-user/miniconda3

ENV PATH=$PATH:/home/ma-user/miniconda3/bin

Install the CANN 6.3.RC2 Python dependency package.
RUN pip install numpy~=1.14.3 decorator~=4.4.0 sympy~=1.4 cffi~=1.12.3 protobuf~=3.11.3 \
 attrs pyyaml pathlib2 scipy requests psutil absl-py

Install CANN 6.3.RC2 in /usr/local/Ascend.
COPY --chown=ma-user:100 Ascend-cann-nnae_6.3.RC2_linux-aarch64.run /tmp
RUN chmod +x /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run && \
 /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run --install --install-path=/usr/local/Ascend

Install MindSpore 2.1.1.
COPY --chown=ma-user:100 mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl /tmp
RUN chmod +x /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl && \
 pip install /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl

Create the container image.
FROM arm64v8/ubuntu:18.04

Install OS dependencies obtained from Mirrors.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 6.3.RC2
 gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils
net-tools libblas-dev gfortran libblas3 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the directories from the builder stage to the directories with the same name in the current
container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
COPY --chown=ma-user:100 --from=builder /home/ma-user/Ascend /home/ma-user/Ascend
COPY --chown=ma-user:100 --from=builder /home/ma-user/var /home/ma-user/var
COPY --chown=ma-user:100 --from=builder /usr/local/Ascend /usr/local/Ascend

Configure the preset environment variables of the container image.
Configure CANN environment variables.
Configure Ascend driver environment variables.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=$PATH:/usr/local/Ascend/nnae/latest/bin:/usr/local/Ascend/nnae/latest/compiler/
ccec_compiler/bin:/home/ma-user/miniconda3/bin \
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64:/usr/local/Ascend/driver/
lib64/common:/usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/nnae/latest/lib64:/usr/local/
Ascend/nnae/latest/lib64/plugin/opskernel:/usr/local/Ascend/nnae/latest/lib64/plugin/nnengine \
 PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/nnae/latest/python/site-packages:/usr/local/
Ascend/nnae/latest/opp/built-in/op_impl/ai_core/tbe \
 ASCEND_AICPU_PATH=/usr/local/Ascend/nnae/latest \

Modelarts
Usermanual 11 Custom Images

2024-04-30 744

 ASCEND_OPP_PATH=/usr/local/Ascend/nnae/latest/opp \
 ASCEND_HOME_PATH=/usr/local/Ascend/nnae/latest \
 PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.
11. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
├── Dockerfile
├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
├── pip.conf
└── Ubuntu-Ports-bionic.list

12. Run the following command in the directory where the Dockerfile is stored to
create a container image:
docker build . -t mindspore:2.1.1-cann6.3.RC2

The following log shows that the image has been created.
Successfully tagged mindspore:2.1.1-cann6.3.RC2

13. Upload the created image to SWR. For details, see Step 4 Uploading the
Image to SWR.

11.4.2.1.5 Step 4 Uploading the Image to SWR

Upload the created image to SWR so that it can be used to create training jobs on
ModelArts.

1. Log in to the SWR console and select the target region.

Figure 11-15 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Modelarts
Usermanual 11 Custom Images

2024-04-30 745

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Figure 11-16 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 11-17 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.
a. Tag the uploaded image.

Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag mindspore:2.1.1-cann6.3.RC2 swr.{region}.{domain}/deep-learning/
mindspore:2.1.1-cann6.3.RC2

b. Upload the image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region}.{domain}/deep-learning/mindspore:2.1.1-cann6.3.RC2

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom image.

NO TE

Obtain the region and domain on the management console or contact the system
administrator of the target region.
For example, if region is cn-southwest-228 and domain is cdzs.cn, the URL of the
image is as follows:
swr.cn-southwest-228.cdzs.cn/deep-learning/mindspore:2.1.1-cann6.3.RC2. Use the
actual site information.

Modelarts
Usermanual 11 Custom Images

2024-04-30 746

11.4.2.1.6 Step 5 Creating and Debugging a Notebook Instance on ModelArts

1. Register the image uploaded to SWR with ModelArts Image Management.
Log in to the ModelArts management console. In the navigation pane on the
left, choose Image Management. Click Register and register the image. The
registered image can be used to create notebook instances.

2. Use the custom image to create a notebook instance and debug it. After the
debugging is successful, save the image.

a. For details about how to create a notebook instance using a custom
image, see Using a Custom Image to Create a Notebook Instance.

b. For details about how to save a notebook image, see Saving a Notebook
Environment Image.

3. Create a training job on ModelArts.

11.4.2.1.7 Step 6 Creating a Training Job on ModelArts

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Training Management > Training Jobs. The training job list is
displayed by default.

2. On the Create Training Job page, configure parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image: swr.xxx.xxx.com/deep-learning/mindspore:2.1.1-cann6.3.RC2
– Code Directory: OBS path to startup scripts, for example, obs://test-

modelarts/ascend/demo-code/
– Boot Command: python ${MA_JOB_DIR}/demo-code/run_ascend/

run_ascend.py python ${MA_JOB_DIR}/demo-code/mindspore-
verification.py

– Resource Pool: Dedicated resource pools
– Resource Type: Ascend with the required driver and firmware version
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/ascend/log/
3. Confirm the configurations of the training job and click Submit.
4. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, logs are displayed.

Modelarts
Usermanual 11 Custom Images

2024-04-30 747

Figure 11-18 Runtime logs of a training job powered by Ascend resources in a
dedicated resource pool

11.4.3 Preparing a Training Image

11.4.3.1 Specifications for Custom Images for Training Jobs
When you use a locally developed model and training script to create a custom
image, ensure that the custom image complies with the specifications defined by
ModelArts.

Specifications
● Use Ubuntu 18.04 for custom images to in case versions are not compatible.
● Do not use a custom image larger than 15 GB. The size should not exceed

half of the container engine space of the resource pool. Otherwise, the start
time of the training job is affected.
The container engine space of ModelArts public resource pool is 50 GB. By
default, the container engine space of the dedicated resource pool is also 50
GB. You can customize the container engine space when creating a dedicated
resource pool.

● The uid of the default user of a custom image must be 1000.
● The GPU or Ascend driver cannot be installed in a custom image. When you

select GPU resources to run training jobs, ModelArts automatically places the
GPU driver in the /usr/local/nvidia directory in the training environment.
When you select Ascend resources to run training jobs, ModelArts
automatically places the Ascend driver in the /usr/local/Ascend/driver
directory.

● x86- or Arm-based custom images can run only with specifications
corresponding to their architecture.
– Run the following command to check the CPU architecture of a custom

image:
docker inspect {Custom image path} | grep Architecture

Modelarts
Usermanual 11 Custom Images

2024-04-30 748

The following is the command output for an Arm-based custom image:
"Architecture": "arm64"

– If the name of a specification contains Arm, this specification is an Arm-
based CPU architecture.

– If the name of a specification does not contain Arm, this specification is
an x86-based CPU architecture.

● ModelArts does not support the download of open source installation
packages. Install the dependency packages required by the training job in the
custom image.

11.4.3.2 Migrating an Image to ModelArts Training
To migrate an image to the training management, perform the following
operations:

1. Add the default user group ma-group (gid = 100) of the training
management for the image.

NO TE

If the user group whose gid is 100 already exists, the error message "groupadd: GID
'100' already exists" may be displayed. You can use the command cat /etc/group |
grep 100 to check whether the user group whose GID is 100 exists.
If the user group whose gid is 100 already exists, skip this step and delete the
command RUN groupadd ma-group -g 100 from the Dockerfile.

2. Add the default user ma-user (uid = 1000) of the training management for
the image.

NO TE

If the user whose uid is 1000 already exists, the error message "useradd: UID 1000 is
not unique" may be displayed. You can use the command cat /etc/passwd | grep
1000 to check whether the user whose UID is 1000 exists.
If the user whose uid is 1000 already exists, skip this step and delete the command
RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user from the
Dockerfile.

3. Modify the permissions on files in the image to allow ma-user whose uid is
1000 to read and write the files.

You can modify an image by referring to the following Dockerfile so that the
image complies with specifications for custom images of the new-version training
management.

FROM {An existing image}

USER root

If the user group whose GID is 100 already exists, delete the groupadd command.
RUN groupadd ma-group -g 100
If the user whose UID is 1000 already exists, delete the useradd command.

Modelarts
Usermanual 11 Custom Images

2024-04-30 749

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Modify the permissions on image files so that user ma-user whose UID is 1000 can read and write the
files.
RUN chown -R ma-user:100 {Path to the Python software package}

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

After editing the Dockerfile, run the following command to build a new image:

docker build -f Dockerfile . -t {New image}

Upload the new image to SWR. For details, see How Can I Log In to SWR and
Upload Images to It?

11.4.3.3 Using a Base Image to Create a Training Image
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Procedure
Perform the following operations to create an image using a training base image:

1. Install Docker. If the docker images command is executed, Docker has been
installed. In this case, skip this step.
The following uses Linux x86_64 as an example to describe how to obtain the
Docker installation package. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Create a folder named context.
mkdir -p context

3. Obtain the pip.conf file.
[global]
index-url = https://repo.xxx.com/repository/pypi/simple
trusted-host = repo.xxx.com
timeout = 120

4. Create a new image based on a training base image provided by ModelArts.
Save the edited Dockerfile in the context folder.
FROM {Path to the training base image provided by ModelArts}

Configure pip.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf

Configure the preset environment variables of the container image.
Add the Python interpreter path to the PATH environment variable.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=${ANACONDA_DIR}/envs/${ENV_NAME}/bin:$PATH \
 PYTHONUNBUFFERED=1

RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy

Modelarts
Usermanual 11 Custom Images

2024-04-30 750

5. Run the following command in the directory where the Dockerfile is stored to
create a container image, for example, training:v1:
docker build . -t training:v1

6. Upload the new image to SWR. For details, see How Can I Log In to SWR
and Upload Images to It?.

7. Use the custom image to create a training job on ModelArts. For details, see
Using a Custom Image to Create a CPU- or GPU-based Training Job.

11.4.4 Creating an Algorithm Using a Custom Image
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management.

Entries for Creating an Algorithm

You can create an algorithm using a custom image on ModelArts in either of the
following ways:

● Entry 1: On the ModelArts console, choose Algorithm Management > My
algorithms. Then, create an algorithm and use it in training jobs or publish it
to AI Hub.

● Entry 2: On the ModelArts console, choose Training Management > Training
Jobs, and click Create Training Job to create a custom algorithm and submit
a training job. For details, see Using a Custom Image to Create a CPU- or
GPU-based Training Job.

Parameters for creating an algorithm

Figure 11-19 Creating an algorithm using a custom image

Table 11-14 Parameters for creating an algorithm

Parameter Description

Boot Mode Select Custom images. This parameter is mandatory.

Modelarts
Usermanual 11 Custom Images

2024-04-30 751

Parameter Description

Image URL of an SWR image. This parameter is mandatory.
● Private images or shared images: Click Select on the right

to select an SWR image. Ensure that the image has been
uploaded to SWR. For details, see How Can I Log In to
SWR and Upload Images to It?.

● Public images: You can also manually enter the image path
in the format of "<Organization to which your image
belongs>/<Image name>" on SWR. Do not contain the
domain name (swr.<region>.xxx.com) in the path because
the system will automatically add the domain name to the
path. For example:
modelarts-job-dev-image/pytorch_1_8:train-pytorch_1.8.0-cuda_10.2-py_3.7-
euleros_2.10.1-x86_64-8.1.1

Code Directory OBS path for storing the training code. This parameter is
optional.
Take OBS path obs://obs-bucket/training-test/demo-code as
an example. The content in the OBS path will be automatically
downloaded to ${MA_JOB_DIR}/demo-code in the training
container, and demo-code (customizable) is the last-level
directory of the OBS path.

Boot
Command

Command for booting an image. This parameter is mandatory.
The boot command will be automatically executed after the
code directory is downloaded.
● If the training boot script is a .py file, train.py for example,

the boot command can be python ${MA_JOB_DIR}/demo-
code/train.py.

● If the training boot script is an .sh file, main.sh for example,
the boot command can be bash ${MA_JOB_DIR}/demo-
code/main.sh.

Semicolons (;) and ampersands (&&) can be used to combine
multiple boot commands, but line breaks are not supported.
demo-code (customizable) in the boot command is the last-
level directory of the OBS path.

Configuring Pipelines

A preset image-based algorithm obtains data from an OBS bucket or dataset for
model training. The training output is stored in an OBS bucket. The input and
output parameters in your algorithm code must be parsed to enable data
exchange between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Developing a Custom Script.

When you use a preset image to create an algorithm, configure the input and
output pipelines.

● Input configurations

Modelarts
Usermanual 11 Custom Images

2024-04-30 752

Table 11-15 Input configurations

Paramete
r

Description

Parameter
Name

Set the name based on the data input parameter in your
algorithm code. The code path parameter must be the same as
the training input parameter parsed in your algorithm code.
Otherwise, the algorithm code cannot obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descriptio
n

Customizable description of the input parameter,

Obtained
from

Source of the input parameter. You can select
Hyperparameters (default) or Environment variables.

Constraint
s

Whether data is obtained from a storage path or ModelArts
dataset.
If you select the ModelArts dataset as the data source, the
following constraints are added:
● Labeling Type: For details, see Creating a Labeling Job.
● Data Format, which can be Default, CarbonData, or both.

Default indicates the manifest format.
● Data Segmentation: available only for image classification,

object detection, text classification, and sound classification
datasets.
Possible values are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing a
Data Version.

Add Multiple data input sources are allowed.

● Output configurations

Table 11-16 Output configurations

Parameter Description

Parameter
Name

Set the name based on the data output parameter in your
algorithm code. The code path parameter must be the same
as the training output parameter parsed in your algorithm
code. Otherwise, the algorithm code cannot obtain the output
path.
For example, If you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customizable description of the output parameter,

Modelarts
Usermanual 11 Custom Images

2024-04-30 753

Parameter Description

Obtained
from

Source of the output parameter. You can select
Hyperparameters (default) or Environment variables.

Add Multiple data output paths are allowed.

Defining Hyperparameters

When you use a preset image to create an algorithm, ModelArts allows you to
customize hyperparameters so you can view or modify them anytime. After the
hyperparameters are defined, they are displayed in the startup command and
transferred to your boot file as CLI parameters.

1. Import hyperparameters.

You can click Add hyperparameter to manually add hyperparameters.

2. Edit hyperparameters.

For details, see Table 11-17.

Table 11-17 Hyperparameters

Parame
ter

Description

Name Hyperparameter name
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Type of the hyperparameter, which can be String, Integer, Float,
or Boolean

Default Default value of the hyperparameter, which is used for training
jobs by default

Constrai
nts

Click Restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on the

training job creation page when using this algorithm to create
a training job.

● If you select Yes, you cannot delete the hyperparameter on
the training job creation page when using this algorithm to
create a training job.

Descript
ion

Description of the hyperparameter
Only letters, digits, spaces, hyphens (-), underscores (_), commas
(,), and periods (.) are allowed.

Modelarts
Usermanual 11 Custom Images

2024-04-30 754

Adding Training Constraints
You can add training constraints of the algorithm based on your needs.

● Resource Type: Select the required resource types.
● Multicard Training: Choose whether to support multi-card training.
● Distributed Training: Choose whether to support distributed training.

Runtime Environment Preview

When creating an algorithm, click the arrow on in the lower
right corner of the page to know the path of the code directory, boot file, and
input and output data in the training container.

Follow-Up Procedure
After an algorithm is created, use it to create a training job. For details, see Using
a Custom Image to Create a CPU- or GPU-based Training Job.

11.4.5 Using a Custom Image to Create a CPU- or GPU-based
Training Job

Model training is an iterative optimization process. Through unified training
management, you can flexibly select algorithms, data, and hyperparameters to
obtain the optimal input configuration and model. After comparing metrics
between job versions, you can determine the most satisfactory training job.

Prerequisites
● The data to be trained has been uploaded to an OBS directory.
● At least one empty folder for storing the training output has been created in

OBS.
● A custom image has been created based on ModelArts specifications. For

details about the custom image specifications, see Specifications for Custom
Images for Training Jobs.

● The custom image has been uploaded to SWR. For details, see How Can I Log
In to SWR and Upload Images to It?.

Creating a Training Job
1. Log in to the ModelArts management console. In the left navigation pane,

choose Training Management > Training Jobs.
2. Click Create Training Job and set parameters.

Table 11-18 Creating a training job using a custom image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Modelarts
Usermanual 11 Custom Images

2024-04-30 755

Parameter Description

Boot Mode Select Custom image. This parameter is mandatory.

Image Container image path. This parameter is mandatory.
You can set the container image path in either of
the following ways:
● To select your image or an image shared by

others, click Select on the right and select a
container image for training. The required image
must be uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image
name:Version name". Do not contain the domain
name (swr.<region>.xxx.com) in the path because
the system will automatically add the domain
name to the path. For example, if the SWR
address of a public image is
swr.<region>.xxx.com/test-image/
tensorflow2_1_1:1.1.1, enter test-images/
tensorflow2_1_1:1.1.1.

Code Directory Select the OBS directory where the training code file
is stored. If the custom image does not contain
training code, you need to set this parameter. If the
custom image contains training code, you do not
need to set this parameter.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and
the folder depth cannot exceed 32.

● The training code file is automatically
downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container when the
training job is started. demo-code is the last-
level OBS directory for storing the code. For
example, if Code Directory is set to /test/code,
the training code file is downloaded to the $
{MA_JOB_DIR}/code directory of the training
container.

User ID User ID for running the container. The default value
1000 is recommended.
If the UID needs to be specified, its value must be
within the specified range. The UID ranges of
different resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

Modelarts
Usermanual 11 Custom Images

2024-04-30 756

Parameter Description

Boot Command Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command
is automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows.
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the
code is stored. Replace it with the actual one.

Local Code Directory Specify the local directory of a training container.
When a training starts, the system automatically
downloads the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the
cd command to execute the boot file in this
directory.

Modelarts
Usermanual 11 Custom Images

2024-04-30 757

Table 11-19 Parameters for creating a training job

Paramet
er

Sub-
Paramet
er

Description

Input Paramete
r

The algorithm code reads the training input data
based on the input parameter name.
Set this parameter to data_url, which is the same as
the parameter for parsing the input data in the
training code. You can set multiple training input
parameters. The name of each training input
parameter must be unique.
For example, if you use argparse in the training
code to parse data_url into the data input, set the
parameter name of the training input to data_url.
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description="train mnist",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Add parameters.
parser.add_argument('--train_url', type=str, help='the path model
saved')
parser.add_argument('--data_url', type=str, help='the training data')
Parse the parameters.
args, unknown = parser.parse_known_args()

Dataset Click Dataset and select the target dataset and its
version in the ModelArts dataset list.
When the training job is started, ModelArts
automatically downloads the data in the input path
to the training container.
NOTE

ModelArts data management is being upgraded and is
invisible to users who have not used data management. It
is recommended that new users store their training data in
OBS buckets.

Data
path

Click Data path and select the storage path to the
training input data from an OBS bucket.
When the training job is started, ModelArts
automatically downloads the data in the input path
to the training container.

How to
Obtain

The following uses training input data_path as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

● If you select Environment variables, use this
code to obtain the data:
import os
data_path = os.getenv("data_path", "")

Modelarts
Usermanual 11 Custom Images

2024-04-30 758

Paramet
er

Sub-
Paramet
er

Description

Output Paramete
r

The algorithm code reads the training output data
based on the output parameter name.
Set this parameter to train_url, which is the same
as the parameter for parsing the output data in the
training code. You can set multiple training output
parameters. The name of each training output
parameter must be unique.

Data
path

Click Data path and select the storage path to the
training output data from an OBS bucket. During
training, the system automatically synchronizes files
from the local code directory of the training
container to the data path.
NOTE

The data path can only be an OBS path. To prevent any
issues with data storage, choose an empty directory as the
data path.

How to
Obtain

The following uses the training output train_url as
an example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

● If you select Environment variables, use this
code to obtain the data:
import os
train_url = os.getenv("train_url", "")

Predownl
oad

Indicates whether to pre-download the files in the
output directory to a local directory.
● If you set Predownload to No, the system does

not download the files in the training output
data path to a local directory of the training
container when the training job is started.

● If you set Predownload to Yes, the system
automatically downloads the files in the training
output data path to a local directory of the
training container when the training job is
started. The larger the file size, the longer the
download time. To avoid excessive training time,
remove any unneeded files from the local code
directory of the training container as soon as
possible. To use resumable training and
incremental training, Download must be
selected.

Modelarts
Usermanual 11 Custom Images

2024-04-30 759

Paramet
er

Sub-
Paramet
er

Description

Hyperpar
ameters

- Used for training tuning. This parameter is optional.

Environm
ent
Variable

- Add environment variables based on service
requirements. For details about preset environment
variables in the training container, see Viewing
Environment Variables of a Training Container.

Auto
Restart

- Number of retries for a failed training job. If this
parameter is enabled, a failed training job will be
automatically re-delivered and run. On the training
job details page, you can view the number of retries
for a failed training job.
● This function is disabled by default.
● If you enable this function, set the number of

retries. The value ranges from 1 to 3 and cannot
be changed.

3. Select an instance flavor. The value range of the training parameters is

consistent with the constraints of existing custom images. Select a public
resource pool or dedicated resource pool based on your needs. For details
about the parameters, see Creating a Training Job.

4. Click Submit to create the training job.
It takes a period of time to create a training job.
To view the real-time status of a training job, go to the training job list and
click the name of the training job. On the training job details page that is
displayed, view the basic information of the training job. For details, see
Viewing Training Job Details.

11.4.6 Using a Custom Image to Create an Ascend-based
Training Job

If preset Ascend images cannot meet your requirements, you can build a custom
image and use it to create a training job. The main process of using a custom
image to create a CPU- or GPU-based training job is the same as that of using a
custom image to create an Ascend-based training job. Pay attention to the
following differences:

● Ascend HCCL RANK_TABLE_FILE
Ascend HCCL RANK_TABLE_FILE provides the cluster used by Ascend
distributed training jobs. It is used for distributed communication between
Ascend chips and can be parsed by the NVIDIA Collective Communication
Library (NCCL). There are two templates for the file format, template 1 and
template 2. ModelArts provides the template 2 format. For details about the
complete Ascend HCCL RANK_TABLE_FILE, see Resource Configuration
Files for the Ascend AI Processor.

Modelarts
Usermanual 11 Custom Images

2024-04-30 760

https://www.hiascend.com/document/detail/en/canncommercial/51RC1/modeldev/tfmigr/tfmigr_mprtg_0011.html
https://www.hiascend.com/document/detail/en/canncommercial/51RC1/modeldev/tfmigr/tfmigr_mprtg_0011.html

The Ascend HCCL RANK_TABLE_FILE file used in the ModelArts training
environment is jobstart_hccl.json. Table 11-20 lists the file parameters.
– Example of the jobstart_hccl.json file content in the ModelArts training

environment (template 2)
{
 "group_count": "1",
 "group_list": [{
 "device_count": "1",
 "group_name": "job-trainjob",
 "instance_count": "1",
 "instance_list": [{
 "devices": [{
 "device_id": "4",
 "device_ip": "192.1.10.254"
 }],
 "pod_name": "jobxxxxxxxx-job-trainjob-0",
 "server_id": "192.168.0.25"
 }]
 }],
 "status": "completed"
}

In jobstart_hccl.json, the status value may not be completed when the
training script is started. In this case, wait until the status value changes to
completed and read the remaining content of the file.
If you want to use the jobstart_hccl.json file in template 1 format, use the
training script to convert the jobstart_hccl.json file in template 2 format to
the jobstart_hccl.json file in template 1 format after the status value
changes to completed.
– Format of the jobstart_hccl.json file after format conversion (template

1)
{
 "server_count": "1",
 "server_list": [{
 "device": [{
 "device_id": "4",
 "device_ip": "192.1.10.254",
 "rank_id": "0"
 }],
 "server_id": "192.168.0.25"
 }],
 "status": "completed",
 "version": "1.0"
}

● RANK_TABLE_FILE

Table 11-20 Environment variables

Environment
Variable

Description

RANK_TABLE_FI
LE

Directory of Ascend HCCL RANK_TABLE_FILE, which is /
user/config.
Obtain the file using ${RANK_TABLE_FILE}/
jobstart_hccl.json.

Modelarts
Usermanual 11 Custom Images

2024-04-30 761

11.4.7 Troubleshooting Process

Symptom

A training job using a custom image failed.

Locating Method
1. Determine the image source.

– Check whether the base image of the custom image is from ModelArts.
Use a base image provided by ModelArts to create a custom image. For
details, see .

– If the image is from a third party, check with the creator of the custom
image for how to use this image.

2. Determine the size of the custom image.

Do not use a custom image larger than 15 GB. The size should not exceed
half of the container engine space of the resource pool. Otherwise, the start
time of the training job is affected.

The container engine space of ModelArts public resource pool is 50 GB. By
default, the container engine space of the dedicated resource pool is also 50
GB. You can customize the container engine space when creating a dedicated
resource pool.

3. Determine the error type.

– If an error message is displayed indicating that a file could not be found,
see .

– If an error message is displayed indicating that a package could not be
found, see .

– An error occurred in the Ascend startup script or initialization script.

Check whether the script is obtained from the official website and
whether the script is used strictly following the instructions provided in
official documents. For example, check whether the script name and path
are correct.

– The driver version is incompatible with the underlying driver.

Before upgrading the driver of a custom image, check whether the
upgraded version is supported by the underlying driver. .

– You are not allowed to access a file.

The possible cause is that the user of the custom image is different from
that of the job container. In this case, modify the Dockerfile.
RUN if id -u ma-user > /dev/null 2>&1 ; \
then echo 'The ModelArts user already exists.' ; \
else echo 'The ModelArts user does not exist.' && \
groupadd ma-group -g 1000 && \
useradd -d /home/ma-user -m -u 1000 -g 1000 -s /bin/bash ma-user ; fi && \
chmod 770 /home/ma-user && \
chmod 770 /root && \
usermod -a -G root ma-user

– For other issues, search for solutions in .

Modelarts
Usermanual 11 Custom Images

2024-04-30 762

Summary and Suggestions
Before using a custom image for training jobs, create the image by following the .
which also provides end-to-end examples for your reference.

11.5 Using a Custom Image to Create AI applications
for Inference Deployment

11.5.1 Custom Image Specifications for Creating AI
Applications

When building a custom image using a locally developed model, ensure that the
image complies with ModelArts specifications.

● No malicious code is allowed.
● The size of a custom image cannot exceed 30 GB.
● External APIs

Set the external service API for a custom image. The inference API must be
the same as the URL defined by apis in config.json. Then, the external service
API can be directly accessed when the image is started. The following is an
example of accessing an MNIST image. The image contains a model trained
using an MNIST dataset and can identify handwritten digits. listen_ip
indicates the container IP address. You can start a custom image to obtain the
container IP address from the container.
– Sample request

curl -X POST \ http://{Listening IP address}:8080/ \ -F images=@seven.jpg

Figure 11-20 Example of obtaining listen_ip

– Sample response
{"mnist_result": 7}

● (Optional) Health check API
If services must not be interrupted during a rolling upgrade, the health check
API must be configured in config.json for ModelArts. The health check API
returns the healthy state for a service when the service is running properly or
an error when the service becomes faulty.

NO TICE

The health check API must be configured for a hitless rolling upgrade.

Modelarts
Usermanual 11 Custom Images

2024-04-30 763

The following shows a sample health check API:

– URI
GET /health

– Sample request: curl -X GET \ http://{Listening IP address}:8080/health

– Sample response
{"health": "true"}

– Status code

Table 11-21 Status code

Status Code Message Description

200 OK Request sent

● Log file output

Configure standard output so that logs can be properly displayed.

● Image boot file

To deploy a batch service, set the boot file of an image to /home/run.sh and
use CMD to set the default boot path. The following is a sample Dockerfile:

CMD ["sh", "/home/run.sh"]

● Image dependencies

To deploy a batch service, install dependency packages such as Python, JRE/
JDK, and ZIP in the image.

● (Optional) Hitless rolling upgrade

To ensure that services are not interrupted during a rolling upgrade, set HTTP
keep-alive to 200. For example, Gunicorn does not support keep-alive by
default. To ensure a hitless rolling upgrade, install Gevent and configure --
keep-alive 200 -k gevent in the image. The parameter settings vary
depending on the service framework. Set the parameters as required.

● (Optional) Gracefully exiting a container

To ensure that services are not interrupted during a rolling upgrade, the
system must capture SIGTERM signals in the container and wait for 60s
before gracefully exiting the container. If the duration is less than 60s before
the graceful exiting, services may be interrupted during the rolling upgrade.
To ensure uninterrupted service running, the system exits the container after
the system receives SIGTERM signals and processes all received requests. The
whole duration is not longer than 90s. The following shows example run.sh:
#!/bin/bash
gunicorn_pid=""

handle_sigterm() {
 echo "Received SIGTERM, send SIGTERM to $gunicorn_pid"
 if [$gunicorn_pid != ""]; then
 sleep 60
 kill -15 $gunicorn_pid # Transfer SIGTERM signals to the Gunicorn process.
 wait $gunicorn_pid # Wait until the Gunicorn process stops.
 fi
}

trap handle_sigterm TERM

Modelarts
Usermanual 11 Custom Images

2024-04-30 764

11.5.2 Creating a Custom Image and Using It to Create an AI
Application

If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create AI applications. This section describes how to use a custom image to
create an AI application and deploy the application as a real-time service.

The process is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Custom Image Specifications for Creating AI Applications.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Using the Custom Image to Create an AI Application: Import the image to
ModelArts AI application management.

4. Deploying the AI Application as a Real-Time Service: Deploy the model as
a real-time service.

Building an Image Locally
This section uses a Linux x86_x64 host as an example. You can use an existing
local host to create a custom image.

1. After logging in to the host, install Docker. For details, see Docker official
documents. Alternatively, run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:
self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.xxx.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.xxx.com@g" /etc/apt/sources.list && \
 apt-get update && \
 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.xxx.com -i https://repo.xxx.com/repository/pypi/simple
Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

Modelarts
Usermanual 11 Custom Images

2024-04-30 765

https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker images to view the custom image you have created.

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

Figure 11-21 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is
successful.

Figure 11-22 Testing API functions

Modelarts
Usermanual 11 Custom Images

2024-04-30 766

3. Upload the custom image to SWR. For details, see How Can I Upload Images
to SWR?

4. View the uploaded image on the My Images > Private Images page of the
SWR console.

Figure 11-23 Uploaded images

Using the Custom Image to Create an AI Application
Import a meta model. For details, see Creating and Importing a Model Image.
Key parameters are as follows:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 11-24 Created private image

– Container API: Protocol and port number for starting a model. Ensure
that the protocol and port number are the same as those provided in the
custom image.

– Image Replication: indicates whether to copy the model image in the
container image to ModelArts. This parameter is optional.

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the AI application
will fail.

● APIs: APIs of a custom image. This parameter is optional. The model APIs
must comply with ModelArts specifications. For details, see Specifications for
Editing a Model Configuration File.
The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{

Modelarts
Usermanual 11 Custom Images

2024-04-30 767

 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the AI Application as a Real-Time Service
1. Deploy the AI application as a real-time service. For details, see Deploying as

a Real-Time Service.
2. View the details about the real-time service.

Figure 11-25 Usage Guides

3. Access the real-time service on the Prediction tab page.

Figure 11-26 Accessing a real-time service

Modelarts
Usermanual 11 Custom Images

2024-04-30 768

11.6 FAQs

11.6.1 How Can I Log In to SWR and Upload Images to It?
This section describes how to log in to SWR and upload images to it.

Step 1 Log In to SWR
1. Log in to the SWR console and select the target region.

Figure 11-27 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. deep-learning is used as an
example. Replace it in subsequent commands with the actual organization
name.

Figure 11-28 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Modelarts
Usermanual 11 Custom Images

2024-04-30 769

Figure 11-29 Login Command

4. Log in to the ECS as user root and enter the login command.

Figure 11-30 Login command executed on the ECS

Step 2 Upload Images to SWR

This section describes how to upload an image to SWR.

1. Log in to SWR and tag the image to be uploaded. Replace the organization
name deep-learning in the following command with the actual organization
name obtained in step 1.
sudo docker tag tf-1.13.2:latest swr.xxx.com/deep-learning/tf-1.13.2:latest

2. Run the following command to upload the image:
sudo docker push swr.xxx.com/deep-learning/tf-1.13.2:latest

Figure 11-31 Uploading an image

3. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Modelarts
Usermanual 11 Custom Images

2024-04-30 770

Figure 11-32 Uploaded custom image

swr.xxx.com/deep-learning/tf-1.13.2:latest is the SWR URL of the custom
image.

11.6.2 How Do I Configure Environment Variables for an
Image?

In a Dockerfile, use the ENV instruction to configure environment variables. For
details, see Dockerfile reference.

11.6.3 How Do I Use Docker to Start an Image Saved Using a
Notebook Instance?

An image saved using a notebook instance contains the Entrypoint parameter, as
shown in Entrypoint. The executable file or command specified in the Entrypoint
parameter overwrites the default boot command of the image. The command
input in the Entrypoint parameter is not preset in the image. When you run
docker run in the local environment to start the image, an error message is
displayed, indicating that the container creation task fails because the boot file or
directory is not found, as shown in Figure 11-34.

To avoid this error, configure the --entrypoint parameter to overwrite the
program specified in Entrypoint. Use the boot file or command specified by the --
entrypoint parameter to start the image. Example:
docker run -it -d --entrypoint /bin/bash image:tag

Figure 11-33 Entrypoint

Figure 11-34 Error reported when an image is being started

Modelarts
Usermanual 11 Custom Images

2024-04-30 771

https://docs.docker.com/engine/reference/builder/#env

11.6.4 How Do I Configure a Conda Source in a Notebook
Development Environment?

You can install the development dependencies in Notebook as you need. Package
management tools pip and Conda can be used to install regular dependencies.
The pip source has been configured and can be used for installation, while the
Conda source requires further configuration.

This section describes how to configure the Conda source on a notebook instance.

Configuring the Conda Source
The Conda software has been preset in images. For details, see https://
mirror.tuna.tsinghua.edu.cn/help/anaconda/.

Common Conda Commands
For details about all Conda commands, see Conda official documents. The
following table lists only common commands.

Table 11-22 Common Conda commands

Descripti
on

Command

Obtain
online
help.

conda --help
conda update --help # Obtain help for a command, for example, update.

View the
Conda
version.

conda -V

Update
Conda.

conda update conda # Update Conda.
conda update anaconda # Update Anaconda.

Manage
environm
ents.

conda env list # Show all virtual environments.
conda info -e # Show all virtual environments.
conda create -n myenv python=3.7 # Create an environment named myenv with Python
version 3.7.
conda activate myenv # Activate the myenv environment.
conda deactivate # Disable the current environment.
conda remove -n myenv --all # Delete the myenv environment.
conda create -n newname --clone oldname # Clone the old environment to the new
environment.

Modelarts
Usermanual 11 Custom Images

2024-04-30 772

https://mirror.tuna.tsinghua.edu.cn/help/anaconda/
https://mirror.tuna.tsinghua.edu.cn/help/anaconda/
https://conda.io/projects/conda/en/latest/commands.html

Descripti
on

Command

Manage
packages.

conda list # Check the packages that have been installed in the current environment.
conda list -n myenv # Specify the packages installed in the myenv environment.
conda search numpy # Obtain all information of the numpy package.
conda search numpy=1.12.0 --info # View the information of NumPy 1.12.0.
conda install numpy pandas # Concurrently install the NumPy and Pandas packages.
conda install numpy=1.12.0 # Install NumPy of a specified version.
The install, update, and remove commands use -n to specify an environment, and
the install and update commands use -c to specify a source address.
conda install -n myenv numpy # Install the numpy package in the myenv environment.
conda install -c https://conda.anaconda.org/anaconda numpy # Install NumPy using
https://conda.anaconda.org/anaconda.
conda update numpy pandas # Concurrently update the NumPy and Pandas packages.
conda remove numpy pandas # Concurrently uninstall the NumPy and Pandas
packages.
conda update –-all # Update all packages in the current environment.

Clear
Conda.

conda clean -p # Delete useless packages.
conda clean -t # Delete compressed packages.
conda clean -y --all # Delete all installation packages and clear caches.

Saving as an Image
After installing the external libraries, save the environment using the image saving
function provided by ModelArts notebook of the new version. You can save a
running notebook instance as a custom image with one click for future use. After
the dependency packages are installed on a notebook instance, it is a good
practice to save the instance as an image to prevent the dependency packages
from being lost. For details, see Saving a Notebook Environment Image.

11.6.5 What Are Supported Software Versions for a Custom
Image?

If your custom image uses software libraries such as NCCL, CUDA, and OFED,
ensure that the software libraries meet the following version requirements:

● NCCL 2.7.8 or later
● OFED MLNX_OFED_LINUX-5.4-3.1.0.0 or later
● The CUDA version needs to be adapted to the GPU driver version of the

dedicated resource pool. To obtain the GPU driver version, go to the dedicated
resource pool details page.

Modelarts
Usermanual 11 Custom Images

2024-04-30 773

12 Permissions Management

12.1 Basic Concepts
ModelArts allows you to configure fine-grained permissions for refined
management of resources and permissions. This is commonly used by large
enterprises, but it is complex for individual users. It is recommended that
individual users configure permissions for using ModelArts by referring to
Assigning Permissions to Individual Users for Using ModelArts.

NO TE

If you meet any of the following conditions, read this document.
● You are an enterprise user, and

● There are multiple departments in your enterprise, and you need to control users'
permissions so that users in different departments can access only their dedicated
resources and functions.

● There are multiple roles (such as administrators, algorithm developers, and
application O&M personnel) in your enterprise. You need them to use only specific
functions.

● There are logically multiple environments (such as the development environment,
pre-production environment, and production environment) and are isolated from
each other. You need to control users' permissions on different environments.

● You need to control permissions of specific IAM user or user group.
● You are an individual user, and you have created multiple IAM users. You need to assign

different ModelArts permissions to different IAM users.
● You need to understand the concepts and operations of ModelArts permissions

management.

ModelArts uses Identity and Access Management (IAM) for most permissions
management functions. Before reading below, learn about Basic Concepts. This
helps you better understand this document.

To implement fine-grained permissions management, ModelArts provides
permission control, agency authorization, and workspace. The following describes
the details.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 774

ModelArts Permissions and Agencies

Figure 12-1 Permissions management

Exposed ModelArts functions are controlled through IAM permissions. For
example, if you as an IAM user need to create a training job on ModelArts, you
must have the modelarts:trainJob:create permission. For details about how to
assign permissions to a user (you need to add the user to a user group and then
assign permissions to the user group), see Permissions Management.

ModelArts must access other services for AI computing. For example, ModelArts
must access OBS to read your data for training. For security purposes, ModelArts
must be authorized to access other cloud services. This is agency authorization.

The following summarizes permissions management:

● Your access to any cloud service is controlled through IAM. You must have the
permissions of the cloud service. (The required service permissions vary
depending on the functions you use.)

● To use ModelArts functions, you need to grant permissions through IAM.
● ModelArts must be authorized by you to access other cloud services for AI

computing.

ModelArts Permissions Management
By default, new IAM users do not have any permissions assigned. You need to add
the user to a user group and grant the user group with policies, so that the users
in the group can inherit the permissions. After authorization, users can perform
operations on ModelArts based on permissions.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 775

CA UTION

ModelArts is a project-level service deployed and accessed in specific physical
regions. When you authorize an agency, you can set the scope for the permissions
you select to all resources, enterprises projects, or region-specific projects. If you
specify region-specific projects, the selected permissions will be applied to
resources in these projects.

When assigning permissions to a user group, IAM does not directly assign specific
permissions to the user group. Instead, IAM needs to add the permissions to a
policy and then assign the policy to the user group. To facilitate user permissions
management, each cloud service provides some preset policies for you to directly
use. If the preset policies cannot meet your requirements of fine-grained
permissions management, you can customize policies.

Table 12-1 lists all the preset system-defined policies supported by ModelArts.

Table 12-1 System-defined policies supported by ModelArts

Policy Description Type

ModelArts
FullAccess

Administrator permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts.

System-defined
policy

ModelArts
CommonOperations

Common user permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts, but cannot manage
dedicated resource pools.

System-defined
policy

ModelArts
Dependency Access

Permissions on dependent services
for ModelArts

System-defined
policy

Generally, ModelArts FullAccess is assigned only to administrators. If fine-grained
management is not required, assigning ModelArts CommonOperations to all users
will meet the development requirements of most small teams. If you want to
customize policies for fine-grained permissions management, see IAM.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 776

NO TE

When you assign ModelArts permissions to a user, the system does not automatically assign
the permissions of other services to the user. This ensures security and prevents unexpected
unauthorized operations. In this case, however, you must separately assign permissions of
different services to users so that they can perform some ModelArts operations.
For example, if an IAM user needs to use OBS data for training and the ModelArts training
permission has been configured for the IAM user, the IAM user still needs to be assigned
with the OBS read, write, and list permissions. The OBS list permission allows you to select
the training data path on ModelArts. The read permission is used to preview data and read
data for training. The write permission is used to save training results and logs.
● For individual users or small organizations, it is a good practice to configure the Tenant

Administrator policy that applies to global services for IAM users. In this way, IAM users
can obtain all user permissions except IAM. However, this may cause security issues. (For
an individual user, its default IAM user belongs to the admin user group and has the
Tenant Administrator permission.)

● If you want to restrict user operations, configure the minimum permissions of OBS for
ModelArts users. For details about fine-grained permissions management of other cloud
services, see the corresponding cloud service documents.

ModelArts Agency Authorization
ModelArts must be authorized by users to access other cloud services for AI
computing. In the IAM permission system, such authorization is performed
through agencies.

To simplify agency authorization, ModelArts supports automatic agency
authorization configuration. You only need to configure an agency for yourself or
specified users on the Global Configuration page of the ModelArts console.

NO TE

● Only users with the IAM agency management permission can perform this operation.
Generally, members in the IAM admin user group have this permission.

● ModelArts agency authorization is region-specific, which means that you must perform
agency authorization in each region you use.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 777

Figure 12-2 Settings

On the Global Configuration page of the ModelArts console, after you click Add
Authorization, you can configure an agency for a specific user or all users.
Generally, an agency named modelarts_agency_<Username>_Random ID is
created by default. In the Permissions area, you can select the preset permission
configuration or select the required policies. If both options cannot meet your
requirements, you can create an agency on the IAM management page (you need
to delegate ModelArts to access your resources), and then use an existing agency
instead of adding an agency on the Add Authorization page.

ModelArts associates multiple users with one agency. This means that if two users
need to configure the same agency, you do not need to create an agency for each
user. Instead, you only need to configure the same agency for the two users.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 778

Figure 12-3 Mapping between users and agencies

NO TE

Each user can use ModelArts only after being associated with an agency. However, even if
the permissions assigned to the agency are insufficient, no error is reported when the API is
called. An error occurs only when the system uses unauthorized functions. For example, you
enable message notification when creating a training job. Message notification requires
SMN authorization. However, an error occurs only when messages need to be sent for the
training job. The system ignores some errors, and other errors may cause job failures. When
you implement permission minimization, ensure that you will still have sufficient
permissions for the required operations on ModelArts.

Strict Authorization
In strict authorization mode, explicit authorization by the account administrator is
required for IAM users to access ModelArts. The administrator can add the
required ModelArts permissions to common users through authorization policies.

In non-strict authorization mode, IAM users can use ModelArts without explicit
authorization. The administrator needs to configure the deny policy for IAM users
to prevent them from using some ModelArts functions.

The administrator can change the authorization mode on the Global
Configuration page.

NO TICE

The strict authorization mode is recommended. In this mode, IAM users must be
authorized to use ModelArts functions. In this way, the permission scope of IAM
users can be accurately controlled, minimizing permissions granted to IAM users.

Managing Resource Access Using Workspaces
Workspace enables enterprise customers to split their resources into multiple
spaces that are logically isolated and to manage access to different spaces. As an
enterprise user, you can submit the request for enabling the workspace function to
your technical support manager.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 779

After workspace is enabled, a default workspace is created. All resources you have
created are in this workspace. A workspace is like a ModelArts twin. You can
switch between workspaces in the upper left corner of the ModelArts console. Jobs
in different workspaces do not affect each other.

When creating a workspace, you must bind it to an enterprise project. Multiple
workspaces can be bound to the same enterprise project, but one workspace
cannot be bound to multiple enterprise projects. You can use workspaces for
refined restrictions on resource access and permissions of different users. The
restrictions are as follows:

● Users must be authorized to access specific workspaces (this must be
configured on the pages for creating and managing workspaces). This means
that access to AI assets such as datasets and algorithms can be managed
using workspaces.

● In the preceding permission authorization operations, if you set the scope to
enterprise projects, the authorization takes effect only for workspaces bound
to the selected projects.

NO TE

● Restrictions on workspaces and permission authorization take effect at the same time.
That is, a user must have both the permission to access the workspace and the
permission to create training jobs (the permission applies to this workspace) so that the
user can submit training jobs in this workspace.

● If you have enabled an enterprise project but have not enabled a workspace, all
operations are performed in the default enterprise project. Ensure that the permissions
on the required operations apply to the default enterprise project.

● The preceding restrictions do not apply to users who have not enabled any enterprise
project.

Summary
Key features of ModelArts permissions management:

● If you are an individual user, you do not need to consider fine-grained
permissions management. Your account has all permissions to use ModelArts
by default.

● All functions of ModelArts are controlled by IAM. You can use IAM
authorization to implement fine-grained permissions management for specific
users.

● All users (including individual users) can use specific functions only after
agency authorization on ModelArts (Settings > Add Authorization).
Otherwise, unexpected errors may occur.

● If you have enabled the enterprise project function, you can also enable
ModelArts workspace and use both basic authorization and workspace for
refined permissions management.

12.2 Permission Management Mechanisms

Modelarts
Usermanual 12 Permissions Management

2024-04-30 780

12.2.1 IAM
This section describes the IAM permission configurations for all ModelArts
functions.

IAM Permissions
If you need to assign different permissions to employees in your enterprise to
access your ModelArts resources, Identity and Access Management (IAM) is a
good choice for fine-grained permissions management. IAM provides identity
authentication, permissions management, and access control, helping you securely
access cloud resources. If your account can meet your requirements and you do
not need an IAM account to manage user permissions, skip this chapter.

IAM is a free service. You only pay for the resources in your account.

With IAM, you can control access to specific cloud resources. For example, if the
software developers in your enterprise need to own permissions to use ModelArts,
yet you do not want them to own high-risk operation permissions such as deleting
ModelArts, you can grant permissions using IAM to limit their permission on
ModelArts.

For details about IAM, see What is IAM?.

Role/Policy-based Authorization
ModelArts supports role/policy-based authorization. By default, new IAM users do
not have any permissions. You need to add a user to one or more groups, and
assign permissions policies or roles to these groups. Users inherit permissions of
the groups to which they are added. This process is called authorization. The users
then inherit permissions from the groups and can perform specified operations on
cloud services.

ModelArts is a project-level service deployed for specific regions. When you set
Scope to Region-specific projects and select the specified projects in the specified
regions , the users only have permissions for APIG resources in the selected
projects. If you set Scope to All resources, the users have permissions for APIG
resources in all region-specific projects. When accessing ModelArts, the users need
to switch to a region where they have been authorized to use cloud services.

Table 12-2 lists all system-defined policies supported by ModelArts. If preset
ModelArts permissions cannot meet your requirements, create a custom policy by
referring to Policy Fields in JSON Format.

Table 12-2 System-defined policies supported by ModelArts

Policy Description Type

ModelArts
FullAccess

All permissions for ModelArts
administrators

System-defined
policy

ModelArts
CommonOperations

All operation permissions for
ModelArts common users, which
does not include managing dedicated
resource pools.

System-defined
policy

Modelarts
Usermanual 12 Permissions Management

2024-04-30 781

https://support.alphaedge.tmone.com.my/en-us/usermanual/iam/iam_01_0026.html

Policy Description Type

ModelArts
Dependency Access

Permissions on dependent services
for ModelArts

System-defined
policy

ModelArts depends on other cloud services. To check or view the cloud services,
configure the corresponding permissions on the ModelArts console, as shown in
the following table.

Table 12-3 Roles or policies that are required for performing operations on the
ModelArts console

Console
Function

Dependency Role/Policy Required

Data
management

Object Storage
Service (OBS)

OBS Administrator

Data Lake Insight
(DLI)

DLI FullAccess

MapReduce Service
(MRS)

MRS Administrator

GaussDB(DWS) DWS Administrator

Cloud Trace Service
(CTS)

CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Development
environment

OBS OBS Administrator

Cloud Secret
Management Service
(CSMS)

CSMS ReadOnlyAccess

CTS CTS Administrator

Elastic Cloud Server
(ECS)

ECS FullAccess

Software Repository
for Container (SWR)

SWR Administrator

Scalable File Service
(SFS)

SFS Turbo FullAccess

Application
Operations
Management (AOM)

AOM FullAccess

Modelarts
Usermanual 12 Permissions Management

2024-04-30 782

Console
Function

Dependency Role/Policy Required

Key Management
Service (KMS)

KMS CMKFullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Training
management

OBS OBS Administrator

Simple Message
Notification (SMN)

SMN Administrator

CTS CTS Administrator

SFS Turbo SFS Turbo ReadOnlyAccess

SWR SWR Administrator

AOM AOM FullAccess

KMS KMS CMKFullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Workflow OBS OBS Administrator

CTS CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

ExeML OBS OBS Administrator

CTS CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

AI application
management

OBS OBS Administrator

Enterprise Project
Management Service
(EPS)

EPS FullAccess

CTS CTS Administrator

SWR SWR Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Service
deployment

OBS OBS Administrator

Cloud Eye Service
(CES)

CES ReadOnlyAccess

Modelarts
Usermanual 12 Permissions Management

2024-04-30 783

Console
Function

Dependency Role/Policy Required

SMN SMN Administrator

EPS EPS FullAccess

CTS CTS Administrator

Log Tank Service
(LTS)

LTS FullAccess

Virtual Private Cloud
(VPC)

VPC FullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

AI Gallery OBS OBS Administrator

CTS CTS Administrator

SWR SWR Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Dedicated
resource pool

CTS CTS Administrator

Cloud Container
Engine (CCE)

CCE Administrator

Bare Metal Server
(BMS)

BMS FullAccess

Image Management
Service (IMS)

IMS FullAccess

Data Encryption
Workshop (DEW)

DEW KeypairReadOnlyAccess

VPC VPC FullAccess

ECS ECS FullAccess

SFS SFS Turbo FullAccess

OBS OBS Administrator

AOM AOM FullAccess

ModelArts ModelArts FullAccess

Billing Center BSS Administrator

Modelarts
Usermanual 12 Permissions Management

2024-04-30 784

If system-defined policies cannot meet your requirements, you can create a
custom policy. For details about the actions supported by custom policies, see
ModelArts Resource Permissions.

You can create custom policies in either of the following ways:

● Visual editor: Select cloud services, actions, resources, and request conditions
without the need to know policy syntax.

● JSON: Create a JSON policy or edit an existing one.

For details, see . The following lists examples of common ModelArts custom
policies.

● Example 1: Grant permission to manage images.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:image:register",
 "modelarts:image:listGroup"
]
 }
]
}

● Example 2: Grant permission to deny creating, updating, and deleting a
dedicated resource pool.
A policy with only "Deny" permissions must be used together with other
policies. If the permissions granted to an IAM user contain both "Allow" and
"Deny", the "Deny" permissions take precedence over the "Allow" permissions.
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "modelarts:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "swr:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "smn:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "modelarts:pool:create",
 "modelarts:pool:update",
 "modelarts:pool:delete"
],
 "Effect": "Deny"
 }
]
}

● Example 3: Create a custom policy containing multiple actions.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 785

A custom policy can contain actions of multiple services that are of the global
or project-level type. The following is an example policy containing actions of
multiple services:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:service:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lts:logs:list"
]
 }
]
}

Policy Fields in JSON Format

Policy Structure

A policy consists of a version and one or more statements (indicating different
actions).

Figure 12-4 Policy structure

Policy Parameters

The following describes policy parameters. You can create custom policies by
specifying the parameters.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 786

Table 12-4 Policy parameters

Parameter Description Value

Version Policy version 1.1: indicates policy-based access
control.

Statement:
authorizatio
n statement
of a policy

Effect Whether to
allow or deny
the
operations
defined in
the action

● Allow: indicates the operation is
allowed.

● Deny: indicates the operation is not
allowed.
NOTE

If the policy used to grant user
permissions contains both Allow and
Deny for the same action, Deny takes
precedence.

Action Operation to
be performed
on the
service

Format: "Service name:Resource
type:Action". Wildcard characters (*)
are supported, indicating all options.
Example:
modelarts:notebook:list: indicates the
permission to view a notebook
instance list. modelarts indicates the
service name, notebook indicates the
resource type, and list indicates the
operation.
View all actions of a service in its API
Reference.

Conditio
n

Condition for
a policy to
take effect,
including
condition
keys and
operators

Format: "Condition operator:{Condition
key:[Value 1,Value 2]}"
If you set multiple conditions, the
policy takes effect only when all the
conditions are met.
Example:
StringEndWithIfExists":
{"g:UserName":["specialCharacter"]}:
The statement is valid for users whose
names end with specialCharacter.

Resourc
e

Resources on
which a
policy takes
effect

Format: Service
name:<Region>:<Account ID>:Resource
type:Resource path. Asterisks (*) are
supported for resource type, indicating
all resources.
NOTE

ModelArts authorization does not allow
you to specify a resource path.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 787

ModelArts Resource Types

Administrators can specify the scope based on ModelArts resource types. The
following table lists the resource types supported by ModelArts:

Table 12-5 Resource types supported by ModelArts role/policy-based
authorization

Resource Type Description

notebook Notebook instances in DevEnviron

exemlProject ExeML projects

exemlProjectInf ExeML-powered real-time inference
service

exemlProjectTrain ExeML-powered training jobs

exemlProjectVersion ExeML project version

workflow Workflow

pool Dedicated resource pool

network Networking of a dedicated resource
pool

trainJob Training job

trainJobLog Runtime logs of a training job

trainJobInnerModel Preset model

trainJobVersion Version of a training job (supported by
old-version training jobs that will be
discontinued soon)

trainConfig Configuration of a training job
(supported by old-version training jobs
that will be discontinued soon)

tensorboard Visualization job of training results
(supported by old-version training jobs
that will be discontinued soon)

model Models

service Real-time service

nodeservice Edge service

workspace Workspace

dataset Dataset

dataAnnotation Dataset labels

aiAlgorithm Algorithm for training jobs

Modelarts
Usermanual 12 Permissions Management

2024-04-30 788

Resource Type Description

image Image

devserver Elastic BMS

ModelArts Resource Permissions

For details, see "Permissions Policies and Supported Actions" in ModelArts API
Reference.

12.2.2 Agencies and Dependencies

Function Dependency

Function Dependency Policies

When using ModelArts to develop algorithms or manage training jobs, you are
required to use other Cloud services. For example, before submitting a training job,
select an OBS path for storing the dataset and logs, respectively. Therefore, when
configuring fine-grained authorization policies for a user, the administrator must
configure dependent permissions so that the user can use required functions.

NO TE

If you use ModelArts as the root user (default IAM user with the same name as the
account), the root user has all permissions by default.

Table 12-6 Basic configuration

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Global
configura
tion

IAM iam:users:listUs
ers

Obtain a user list. This action is
required by the administrator only.

Basic
function

IAM iam:tokens:ass
ume

(Mandatory) Use an agency to
obtain temporary authentication
credentials.

Table 12-7 Managing workspaces

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Workspac
e

IAM iam:users:listUs
ers

Authorize an IAM user to use a
workspace.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 789

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

ModelArts modelarts:*:*de
lete*

Clear resources in a workspace
when deleting it.

Table 12-8 Managing notebook instances

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Lifecycle
managemen
t of
developmen
t
environment
instances

ModelA
rts

modelarts:notebook:cr
eate
modelarts:notebook:li
st
modelarts:notebook:g
et
modelarts:notebook:u
pdate
modelarts:notebook:d
elete
modelarts:notebook:st
art
modelarts:notebook:st
op
modelarts:notebook:u
pdateStopPolicy
modelarts:image:delet
e
modelarts:image:list
modelarts:image:creat
e
modelarts:image:get
modelarts:pool:list
modelarts:tag:list
modelarts:network:ge
t
aom:metric:get
aom:metric:list
aom:alarm:list

Start, stop, create, delete, and
update an instance.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 790

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Dynamically
mounting
storage

ModelA
rts

modelarts:notebook:li
stMountedStorages
modelarts:notebook:
mountStorage
modelarts:notebook:g
etMountedStorage
modelarts:notebook:u
mountStorage

Dynamically mount storage.

OBS obs:bucket:ListAllMyB
uckets
obs:bucket:ListBucket

Image
managemen
t

ModelA
rts

modelarts:image:regis
ter
modelarts:image:listG
roup

Register and view an image
on the Image Management
page.

Saving an
image

SWR SWR Admin The SWR Admin policy
contains the maximum scope
of SWR permissions, which
can be used to:
● Save a running

development environment
instance as an image.

● Create a notebook instance
using a custom image.

Using the
SSH
function

ECS ecs:serverKeypairs:list
ecs:serverKeypairs:get
ecs:serverKeypairs:del
ete
ecs:serverKeypairs:cre
ate

Configure a login key for a
notebook instance.

Mounting
an SFS
Turbo file
system

SFS
Turbo

SFS Turbo FullAccess Read and write an SFS
directory as an IAM user.
Mount an SFS file system that
is not created by you to a
notebook instance using a
dedicated resource pool.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 791

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Viewing all
Instances

ModelA
rts

modelarts:notebook:li
stAllNotebooks

View development
environment instances of all
users on the ModelArts
management console. This
action is required by the
development environment
instance administrator.

IAM iam:users:listUsers

Local VS
Code plug-
in or
PyCharm
Toolkit

ModelA
rts

modelarts:notebook:li
stAllNotebooks
modelarts:trainJob:cre
ate
modelarts:trainJob:list
modelarts:trainJob:up
date
modelarts:trainJobVer
sion:delete
modelarts:trainJob:get
modelarts:trainJob:log
Export
modelarts:workspace:
getQuotas (This
policy is required if
the workspace
function is enabled.)

Access a notebook instance
from local VS Code and
submit training jobs.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 792

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

OBS obs:bucket:ListAllMyb
uckets
obs:bucket:HeadBucke
t
obs:bucket:ListBucket
obs:bucket:GetBucket
Location
obs:object:GetObject
obs:object:GetObjectV
ersion
obs:object:PutObject
obs:object:DeleteObje
ct
obs:object:DeleteObje
ctVersion
obs:object:ListMultipa
rtUploadParts
obs:object:AbortMulti
partUpload
obs:object:GetObjectA
cl
obs:object:GetObjectV
ersionAcl
obs:bucket:PutBucket
Acl
obs:object:PutObjectA
cl
obs:object:ModifyObje
ctMetaData

IAM iam:projects:listProject
s

Obtain an IAM project list
through local PyCharm for
access configurations.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 793

Table 12-9 Managing training jobs

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

Training
manageme
nt

ModelArts modelarts:trainJob:*
modelarts:trainJobLog:*
modelarts:aiAlgorithm:*
modelarts:image:list

Create a training
job and view
training logs.

modelarts:workspace:getQuot
as

Obtain a
workspace quota.
This policy is
required if the
workspace
function is
enabled.

modelarts:tag:list Use Tag
Management
Service (TMS) in a
training job.

IAM iam:credentials:listCredentials
iam:agencies:listAgencies

Use the configured
agency
authorization.

SFS Turbo sfsturbo:shares:getShare
sfsturbo:shares:getAllShares

Use SFS Turbo in a
training job.

SWR swr:repository:listTags
swr:repository:getRepository
swr:repository:listRepositories

Use a custom
image to create a
training job.

SMN smn:topic:publish
smn:topic:list

Notify training job
status changes
through SMN.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 794

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
obs:bucket:HeadBucket
obs:bucket:ListBucket
obs:bucket:GetBucketLocation
obs:object:GetObject
obs:object:GetObjectVersion
obs:object:PutObject
obs:object:DeleteObject
obs:object:DeleteObjectVer-
sion
obs:object:ListMultipartUpload
Parts
obs:object:AbortMultipartUp-
load
obs:object:GetObjectAcl
obs:object:GetObjectVersio-
nAcl
obs:bucket:PutBucketAcl
obs:object:PutObjectAcl
obs:object:ModifyObjectMeta-
Data

Run a training job
using a dataset in
an OBS bucket.

Table 12-10 Using workflows

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Using a
dataset

ModelArts modelarts:dataset:getDataset
modelarts:dataset:createDataset
modelarts:dataset:createDatasetV
ersion
modelarts:dataset:createImportTa
sk
modelarts:dataset:updateDataset
modelarts:processTask:createProc
essTask
modelarts:processTask:getProcess
Task
modelarts:dataset:listDatasets

Use ModelArts
datasets in a
workflow.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 795

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

ModelArts modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:model:delete
modelarts:model:update

Manage
ModelArts AI
applications in a
workflow.

Deploying
a service

ModelArts modelarts:service:get
modelarts:service:create
modelarts:service:update
modelarts:service:delete
modelarts:service:getLogs

Manage
ModelArts real-
time services in a
workflow.

Training
jobs

ModelArts modelarts:trainJob:get
modelarts:trainJob:create
modelarts:trainJob:list
modelarts:trainJobVersion:list
modelarts:trainJobVersion:create
modelarts:trainJob:delete
modelarts:trainJobVersion:delete
modelarts:trainJobVersion:stop

Manage
ModelArts
training jobs in a
workflow.

Workspace ModelArts modelarts:workspace:get
modelarts:workspace:getQuotas

Use ModelArts
workspaces in a
workflow.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 796

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
data

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Use OBS data in a
workflow.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 797

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Executing
a workflow

IAM iam:users:listUsers (Obtaining
users)
iam:agencies:getAgency
(Obtaining details about a
specified agency)
iam:tokens:assume (Obtaining an
agency token)

Call other
ModelArts
services when the
workflow is
running.

Integrating
DLI

DLI dli:jobs:get (Obtaining job
details)
dli:jobs:list_all (Viewing a job list)
dli:jobs:create (Creating a job)

Integrate DLI into
a workflow.

Integrating
MRS

MRS mrs:job:get (Obtaining job
details)
mrs:job:submit (Creating and
executing a job)
mrs:job:list (Viewing a job list)
mrs:job:stop (Stopping a job)
mrs:job:batchDelete (Batch
deleting jobs)
mrs:file:list (Viewing a file list)

Integrate MRS
into a workflow.

Table 12-11 Managing AI applications

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

SWR swr:repository:deleteRepository
swr:repository:deleteTag
swr:repository:getRepository
swr:repository:listTags

Import a model
from a custom
image.
Use a custom
engine when
importing a
model from OBS.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 798

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Import a model
from a template.
Specify an OBS
path for model
conversion.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 799

Table 12-12 Managing service deployment

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Real-time
services

LTS lts:logs:list (Obtaining the log
list)

Show LTS logs.

OBS obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)

Mount external
volumes to a
container when
services are
running.

Batch
services

OBS obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:bucket:CreateBucket
(Creating a bucket)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)

Create batch
services and
perform batch
inference.

Edge
services

CES ces:metricData:list: (Obtaining
metric data)

View monitoring
metrics.

IEF ief:deployment:delete (Deleting a
deployment)

Manage edge
services.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 800

Table 12-13 Managing datasets

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
datasets
and labels

OBS obs:bucket:ListBucket (Listing
objects in a bucket)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing a
multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:GetBucketAcl
(Obtaining a bucket ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)
obs:bucket:PutBucketCORS
(Configuring or deleting CORS
rules of a bucket)
obs:bucket:GetBucketCORS
(Obtaining the CORS rules of a
bucket)
obs:object:PutObjectAcl
(Configuring an object ACL)

Manage datasets
in OBS.
Label OBS data.
Create a data
management job.

Managing
table
datasets

DLI dli:database:displayAllDatabases
dli:database:displayAllTables
dli:table:describe_table

Manage DLI data
in a dataset.

Managing
table
datasets

DWS dws:openAPICluster:list
dws:openAPICluster:getDetail

Manage DWS
data in a dataset.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 801

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
table
datasets

MRS mrs:job:submit
mrs:job:list
mrs:cluster:list
mrs:cluster:get

Manage MRS
data in a dataset.

Auto
labeling

ModelArts modelarts:service:list
modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:trainJobInnerModel:list
modelarts:workspace:get
modelarts:workspace:list

Enable auto
labeling.

Team
labeling

IAM iam:projects:listProjects
(Obtaining tenant projects)
iam:users:listUsers (Obtaining
users)
iam:agencies:createAgency
(Creating an agency)
iam:quotas:listQuotasForProject
(Obtaining the quotas of a
project)

Manage labeling
teams.

Table 12-14 Managing resources

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

Managing
resource
pools

BSS bss:coupon:view
bss:order:view
bss:balance:view
bss:discount:view
bss:renewal:view
bss:bill:view
bss:contract:update
bss:order:pay
bss:unsubscribe:update
bss:renewal:update
bss:order:update

Create, renew,
and unsubscribe
from a resource
pool. Dependent
permissions must
be configured in
the IAM project
view.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 802

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

Network
managem
ent

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 803

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

SFS Turbo sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

Edge
resource
pool

IEF ief:node:list
ief:group:get
ief:application:list
ief:application:get
ief:node:listNodeCert
ief:node:get
ief:IEFInstance:get
ief:deployment:list
ief:group:listGroupInstanceState
ief:IEFInstance:list
ief:deployment:get
ief:group:list

Add, delete,
modify, and
search for edge
pools

Agency authorization
To simplify operations when you use ModelArts to run jobs, certain operations are
automatically performed on the ModelArts backend, for example, downloading
the datasets in an OBS bucket to a workspace before a training job is started and
dumping training job logs to the OBS bucket.

ModelArts does not save your token authentication credentials. Before performing
operations on your resources (such as OBS buckets) in a backend asynchronous
job, you are required to explicitly authorize ModelArts through an IAM agency.
ModelArts will use the agency to obtain a temporary authentication credential for
performing operations on your resources. For details, see Adding Authorization.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 804

Figure 12-5 Agency authorization

As shown in Figure 12-5, after authorization is configured on ModelArts,
ModelArts uses the temporary credential to access and operate your resources,
relieving you from some complex and time-consuming operations. The agency
credential will also be synchronized to your jobs (including notebook instances
and training jobs). You can use the agency credential to access your resources in
the jobs.

You can use either of the following methods to authorize ModelArts using an
agency:

One-click authorization

ModelArts provides one-click automatic authorization. You can quickly configure
agency authorization on the Global Configuration page of ModelArts. Then,
ModelArts will automatically create an agency for you and configure it in
ModelArts.

In this mode, the authorization scope is specified based on the preset system
policies of dependent services to ensure sufficient permissions for using services.
The created agency has almost all permissions of dependent services. If you want
to precisely control the scope of permissions granted to an agency, use the second
method.

Custom authorization

The administrator creates different agency authorization policies for different
users in IAM, and configures the created agency for ModelArts users. When
creating an agency for an IAM user, the administrator specifies the minimum
permissions for the agency based on the user's permissions to control the
resources that the user can access when they use ModelArts.

Risks in Unauthorized Operations

The agency authorization of a user is independent. Theoretically, the agency
authorization scope of a user can be beyond the authorization scope of the
authorization policy configured for the user group. Any improper configuration will
result in unauthorized operations.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 805

To prevent unauthorized operations, only a tenant administrator is allowed to
configure agencies for users in the ModelArts global configuration to ensure the
security of agency authorization.

Minimal Agency Authorization

When configuring agency authorization, an administrator must strictly control the
authorization scope.

ModelArts asynchronously and automatically performs operations such as job
preparation and clearing. The required agency authorization is within the basic
authorization scope. If you use only some functions of ModelArts, the
administrator can filter out the basic permissions that are not used according to
the agency authorization configuration. Conversely, if you need to obtain resource
permissions beyond the basic authorization scope in a job, the administrator can
add new permissions to the agency authorization configuration. In a word, the
agency authorization scope must be minimized and customized based on service
requirements.

Basic Agency Authorization Scope

To customize the permissions for an agency, select permissions based on your
service requirements.

Table 12-15 Basic agency authorization for a development environment

Applica
tion
Scenari
o

Depende
nt Service

Agency Authorization Description Conf
igur
atio
n
Sug
gest
ion

JupyterL
ab

OBS obs:object:DeleteObject
obs:object:GetObject
obs:object:GetObjectVersion
obs:bucket:CreateBucket
obs:bucket:ListBucket
obs:bucket:ListAllMyBuckets
obs:object:PutObject
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:PutBucketCORS

Use OBS to
upload and
download data in
JupyterLab
through
ModelArts
notebook.

Reco
mm
end
ed

Modelarts
Usermanual 12 Permissions Management

2024-04-30 806

Applica
tion
Scenari
o

Depende
nt Service

Agency Authorization Description Conf
igur
atio
n
Sug
gest
ion

Develop
ment
environ
ment
monitori
ng

AOM aom:alarm:put Call the AOM API
to obtain
monitoring data
and events of
notebook
instances and
display them in
ModelArts
notebook.

Reco
mm
end
ed

Table 12-16 Basic agency authorization for training jobs

Applicati
on
Scenario

Dependent
Service

Agency Authorization Description

Training
jobs

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Download data,
models, and code
before starting a
training job.
Upload logs and
models when a
training job is
running.

Table 12-17 Basic agency authorization for deploying services

Applicat
ion
Scenari
o

Dependen
t Service

Agency Authorization Description

Real-
time
services

LTS lts:groups:create
lts:groups:list
lts:topics:create
lts:topics:delete
lts:topics:list

Configure LTS for
reporting logs of
real-time services.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 807

Applicat
ion
Scenari
o

Dependen
t Service

Agency Authorization Description

Batch
services

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Run a batch
service.

Edge
services

IEF ief:deployment:list
ief:deployment:create
ief:deployment:update
ief:deployment:delete
ief:node:createNodeCert
ief:iefInstance:list
ief:node:list

Deploy an edge
service using IEF.

Table 12-18 Basic agency authorization for managing data

Applica
tion
Scenari
o

Dependen
t Service

Agency Authorization Description

Dataset
and
data
labeling

OBS obs:object:GetObject
obs:object:PutObject
obs:object:DeleteObject
obs:object:PutObjectAcl
obs:bucket:ListBucket
obs:bucket:HeadBucket
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:GetBucketPolicy
obs:bucket:PutBucketPolicy
obs:bucket:DeleteBucketPolicy
obs:bucket:PutBucketCORS
obs:bucket:GetBucketCORS

Manage datasets
in an OBS bucket.

Labelin
g data

ModelArts
inference

modelarts:service:get
modelarts:service:create
modelarts:service:update

Perform auto
labeling based on
ModelArts
inference.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 808

Table 12-19 Basic agency authorization for managing dedicated resource pools

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Network
managem
ent (New
version)

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

SFS
Turbo

sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 809

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Managing
resource
pools

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

12.2.3 Workspace
ModelArts allows you to create multiple workspaces to develop algorithms and
manage and deploy models for different service objectives. In this way, the
development outputs of different applications are allocated to different
workspaces for simplified management.

Workspace supports the following types of access control:

● PUBLIC: publicly accessible to tenants (including both tenant accounts and all
their user accounts)

● PRIVATE: accessible only to the creator and tenant accounts
● INTERNAL: accessible to the creator, tenant accounts, and specified IAM user

accounts. When Authorization Type is set to INTERNAL, specify one or more
accessible IAM user accounts.

A default workspace is allocated to each IAM project of each account. The access
control of the default workspace is PUBLIC.

Workspace access control allows the access of only certain users. This function can
be used in the following scenarios:

● Education: A teacher allocates an INTERNAL workspace to each student and
allows the workspaces to be accessed only by specified students. In this way,
students can separately perform experiments on ModelArts.

● Enterprises: An administrator creates a workspace for production tasks and
allows only O&M personnel to use the workspace, and creates a workspace
for routine debugging and allows only developers to use the workspace. In
this way, different enterprise roles can use resources only in a specified
workspace.

As an enterprise user, you can submit the request for enabling the workspace
function to your technical support.

12.3 Configuration Practices in Typical Scenarios

Modelarts
Usermanual 12 Permissions Management

2024-04-30 810

12.3.1 Assigning Permissions to Individual Users for Using
ModelArts

Certain ModelArts functions require access to Object Storage Service (OBS),
Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before
using ModelArts, your account must be authorized to access these services.
Otherwise, these functions will be unavailable.

Constraints
● Only a tenant account can perform agency authorization to authorize the

current account or all IAM users under the current account.
● Multiple IAM users or accounts can use the same agency.
● A maximum of 50 agencies can be created under an account.
● If you use ModelArts for the first time, add an agency. Generally, common

user permissions are sufficient for your requirements. You can configure
permissions for refined permissions management.

● If you have not been authorized, ModelArts will display a message indicating
that you have not been authorized when you access the Add Authorization
page. In this case, contact your administrator to add authorization.

Adding Authorization
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Settings. The Global Configuration page is displayed.
2. Click Add Authorization. On the Add Authorization page that is displayed,

configure the parameters.

Table 12-20 Parameters

Parameter Description

Authorized User Options: IAM user, Federated user, Agency, and All users
● IAM user: You can use a tenant account to create IAM users and assign

permissions for specific resources. Each IAM user has their own identity
credentials (password and access keys) and uses cloud resources based
on assigned permissions.

● Federated user: A federated user is also called a virtual enterprise user.
● Agency: You can create agencies in IAM.
● All users: If you select this option, the agency permissions will be

granted to all IAM users under the current account, including those
created in the future. For individual users, choose All users.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 811

Parameter Description

Authorized To This parameter is not displayed when Authorized User is set to All users.
● IAM user: Select an IAM user and configure an agency for the IAM

user.

Figure 12-6 Selecting an IAM user

● Federated user: Enter the username or user ID of the target federated
user.

Figure 12-7 Selecting a federated user

● Agency: Select an agency name. You can create an agency under
account A and grant the agency permissions to account B. When using
account B, you can switch the role in the upper right corner of the
console to account A and use the agency permissions of account A.

Figure 12-8 Switch Role

Agency ● Use existing: If there are agencies in the list, select an available one to
authorize the selected user. Click the drop-down arrow next to an
agency name to view its permission details.

● Add agency: If there is no available agency, create one. If you use
ModelArts for the first time, select Add agency.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 812

Parameter Description

Add agency >
Agency Name

The system automatically creates a changeable agency name.

Add agency >
Authorization
Method

● Role-based: A coarse-grained IAM authorization strategy to assign
permissions based on user responsibilities. Only a limited number of
service-level roles are available. When using roles to grant permissions,
assign other roles on which the permissions depend to take effect.
Roles are not ideal for fine-grained authorization and secure access
control.

● Policy-based: A fine-grained authorization tool that defines
permissions for operations on specific cloud resources under certain
conditions. This type of authorization is more flexible and ideal for
secure access control.

Add agency >
Permissions >
Common User

Common User provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage
training jobs. Select this option generally.
Click View permissions to view common user permissions.

Add agency >
Permissions >
Custom

If you need refined permissions management, select Custom to flexibly
assign permissions to the created agency. You can select permissions from
the permission list as required.

3. Click Create.

Viewing Authorized Permissions

You can view the configured authorizations on the Global Configuration page.
Click View Permissions in the Authorization Content column to view the
permission details.

Figure 12-9 View Permissions

Figure 12-10 Common user permissions

Modelarts
Usermanual 12 Permissions Management

2024-04-30 813

12.3.2 Separately Assigning Permissions to Administrators and
Developers

In small- and medium-sized teams, administrators need to globally control
ModelArts resources, and developers only need to focus on their own instances.
Generally, the te_admin permission of a developer account must be configured by
the tenant account. This section uses notebook as an example to describe how to
assign different permissions to administrators and developers through custom
policies.

Scenarios
To develop a project using notebook, administrators need full control permissions
for using ModelArts dedicated resource pools, and access and operation
permissions on all notebook instances.

To use development environments, developers only need operation permissions for
using their own instances and dependent services. They do not need to perform
operations on ModelArts dedicated resource pools or view notebook instances of
other users.

Figure 12-11 Account relationships

Configuring Permissions for an Administrator
Assign full control permissions to administrators for using ModelArts dedicated
resource pools and all notebook instances. The procedure is as follows:

Step 1 Use a tenant account to create an administrator user group
ModelArts_admin_group and add administrator accounts to
ModelArts_admin_group.

Step 2 Create a custom policy.

1. Log in to the management console using an administrator account, hover
over your username in the upper right corner, and click Identity and Access

Modelarts
Usermanual 12 Permissions Management

2024-04-30 814

Management from the drop-down list to switch to the IAM management
console.

2. Create custom policy 1 and assign IAM and OBS permissions to the user. In
the navigation pane of the IAM console, choose Permissions > Policies/Roles.
Click Create Custom Policy in the upper right corner. On the displayed page,
enter Policy1_IAM_OBS for Policy Name, select JSON for Policy View,
configure the policy content, and click OK.

Figure 12-12 Custom policy 1

The custom policy Policy1_IAM_OBS is as follows, which grants IAM and OBS
operation permissions to the user. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:users:listUsers",
 "iam:projects:listProjects",
 "obs:object:PutObject",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:bucket:HeadBucket",
 "obs:object:DeleteObject",
 "obs:bucket:CreateBucket",
 "obs:bucket:ListBucket"

Modelarts
Usermanual 12 Permissions Management

2024-04-30 815

]
 }
]
}

3. Repeat 2.2 to create custom policy 2 and grant the user the permissions to
perform operations on dependent services ECS, SWR, MRS, and SMN as well
as ModelArts. Set Policy Name to Policy2_AllowOperation and Policy View
to JSON, configure the policy content, and click OK.
The custom policy Policy2_AllowOperation is as follows, which grants the
user the permissions to perform operations on dependent services ECS, SWR,
MRS, and SMN as well as ModelArts. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:serverKeypairs:list",
 "ecs:serverKeypairs:get",
 "ecs:serverKeypairs:delete",
 "ecs:serverKeypairs:create",
 "swr:repository:getNamespace",
 "swr:repository:listNamespaces",
 "swr:repository:deleteTag",
 "swr:repository:getRepository",
 "swr:repository:listTags",
 "swr:instance:createTempCredential",
 "mrs:cluster:get",
 "modelarts:*:*"
]
 }
]
}

Step 3 Grant the policy created in 2 to the administrator group ModelArts_admin_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains ModelArts_admin_group, click
Authorize in the Operation column, and select Policy1_IAM_OBS and
Policy2_AllowOperation. Click Next.

Figure 12-13 Select Policy/Role

Modelarts
Usermanual 12 Permissions Management

2024-04-30 816

2. Specify the scope as All resources and click OK.

Figure 12-14 Select Scope

Step 4 Configure agent-based ModelArts access authorization for an administrator to
allow ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts console using a tenant account. In the navigation
pane, choose Settings. The Global Configuration page is displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select an administrator account for Authorized To, select
Add agency, and select Common User for Permissions. Permissions control is
not required for administrators, so use default setting Common User.

Figure 12-15 Configuring authorization for an administrator

3. Click Create.

Step 5 Test administrator permissions.

1. Log in to the ModelArts management console as the administrator. On the
login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 817

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the administrator.

----End

Configuring Permissions for a Developer
Use IAM for fine-grained control of developer permissions. The procedure is as
follows:

Step 1 Use a tenant account to create a developer user group user_group and add
developer accounts to user_group.

Step 2 Create a custom policy.

1. Log in to the management console using a tenant account, hover over your
username in the upper right corner, and click Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. Create custom policy 3 to prevent users from performing operations on
ModelArts dedicated resource pools and viewing notebook instances of other
users.
In the navigation pane of the IAM console, choose Permissions > Policies/
Roles. Click Create Custom Policy in the upper right corner. On the displayed
page, enter Policy3_DenyOperation for Policy Name, select JSON for Policy
View, configure the policy content, and click OK.
The custom policy Policy3_DenyOperation is as follows. You can copy and
paste the content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "deny",
 "Action": [
 "modelarts:pool:create",
 "modelarts:pool:update",
 "modelarts:pool:delete",
 "modelarts:notebook:listAllNotebooks"
]

 }
]
}

Step 3 Grant the custom policy to the developer user group user_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains user_group, click Authorize in the
Operation column, and select Policy1_IAM_OBS, Policy2_AllowOperation,
and Policy3_DenyOperation. Click Next.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 818

Figure 12-16 Select Policy/Role

2. Specify the scope as All resources and click OK.

Figure 12-17 Select Scope

Step 4 Configure agent-based ModelArts access authorization for a developer to allow
ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts console using a tenant account. In the navigation
pane, choose Settings. The Global Configuration page is displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select a developer account for Authorized To, add an
agency ma_agency_develop_user, set Permissions to Custom, and select
OBS Administrator. Developers only need OBS authorization to allow
developers to access OBS when using notebook.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 819

Figure 12-18 Configuring authorization for a developer

3. Click Create.
4. On the Global Configuration page, click Add Authorization again. On the

Add Authorization page that is displayed, configure an agency for other
developer users.
On the Add Authorization page, set Authorized User to IAM user, select a
developer account for Authorized To, and select the existing agency
ma_agency_develop_user created before.

Step 5 Test developer permissions.

1. Log in to the ModelArts management console as an IAM user in user_group.
On the login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the developer.

Figure 12-19 Insufficient permissions

----End

Modelarts
Usermanual 12 Permissions Management

2024-04-30 820

12.3.3 Viewing the Notebook Instances of All IAM Users
Under One Tenant Account

Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all IAM users in the
current IAM project.

NO TE

Users granted with these permissions can also access OBS and SWR of all users in the
current IAM project.

Assigning the Required Permissions
1. Log in to the ModelArts management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 12-20.
– Policy Name: Enter a custom policy name, for example, Viewing all

notebook instances.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:notebook:listAllNotebooks, and default resources.

Figure 12-20 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.
– Policy Name: Enter a custom policy name, for example, Viewing all

users of the current IAM project.
– Policy View: Select Visual editor.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 821

– Policy Content: Select Allow, Identity and Access Management,
iam:users:listUsers, and default resources.

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.

After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.

If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Starting Notebook Instances of Other IAM Users

If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6789 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for a Notebook Instance.

Erro message: ModelArts.6789: Failed to use SSH key pair KeyPair-xxx. Update the
key pair and try again later.

12.3.4 Logging In to a Training Container Using Cloud Shell

Application Scenario

You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

Constraints

Only dedicated resource pools support Cloud Shell. The training job must be in the
Running state.

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.

– Policy Name: Enter a custom policy name, for example, Using Cloud
Shell to access a running job.

– Policy View: Select Visual editor.

– Policy Content: Select Allow, ModelArts Service,
modelarts:trainJob:exec, and default resources.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 822

Figure 12-21 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.

After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.

If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.

2. On the ModelArts console, choose Training Management > Training Jobs
from the navigation pane.

3. In the training job list, click the name of the target job to go to the training
job details page.

4. On the training job details page, click the Cloud Shell tab and log in to the
training container.

Verify that the login is successful, as shown in the following figure.

Figure 12-22 Cloud Shell page

If the job is not running or the permission is insufficient, Cloud Shell cannot
be used. In this case, locate the fault as prompted.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 823

NO TE

An exception may occur when some users log in to the Cloud Shell page. Click Enter
to rectify the fault.

Figure 12-23 Abnormal path

12.3.5 Prohibiting a User from Using a Public Resource Pool
This section describes how to control the ModelArts permissions of a user so that
the user is not allowed to use a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

Context
Through permission control, ModelArts dedicated resource pool users can be
prohibited from using a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

To control the permissions, configure the following permission policy items:

● modelarts:notebook:create: allows you to create a notebook instance.
● modelarts:trainJob:create: allows you to create a training job.
● modelarts:service:create: allows you to create an inference service.

Procedure
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. In the navigation pane, choose Permissions > Policies/Roles. On the Policies/
Roles page, click Create Custom Policy in the upper right corner, configure
parameters, and click OK.
– Policy Name: Configure the policy name.
– Policy View: Select Visual editor or JSON.
– Policy Content: Select Deny. In Select service, search for ModelArts and

select it. In ReadWrite under Actions, search for
modelarts:trainJob:create, modelarts:notebook:create, and
modelarts:service:create and select them. All: Retain the default setting.
In Add request condition, click Add Request Condition. In the displayed
dialog box, set Condition Key to modelarts:poolType, Operator to
StringEquals, and Value to public.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 824

Figure 12-24 Create Custom Policy (visual editor)

Figure 12-25 Add Request Condition (visual editor)

The policy content in JSON view is as follows:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "modelarts:trainJob:create",
 "modelarts:notebook:create",
 "modelarts:service:create"
],
 "Condition": {
 "StringEquals": {
 "modelarts:poolType": [
 "public"
]
 }
 }
 }
]
}

3. In the navigation pane, choose User Groups. On the User Groups page,
locate the row containing the target user group and click Authorize in the
Operation column. On the Authorize User Group page, select the custom
policy created in 2 and click Next. Then, select the scope and click OK.

After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 825

If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

4. Add the policy to the user's agency authorization. This prevents the user from
breaking the permission scope through a token on the tenant plane.
In the navigation pane, choose Agencies. Locate the agency used by the user
group on ModelArts and click Modify in the Operation column. On the
Permissions tab page, click Authorize, select the created custom policy, and
click Next. Select the scope for authorization and click OK.

Figure 12-26 Modifying authorization

Verification

Log in to the ModelArts console as an IAM user, choose Training Management >
Training Jobs, and click Create Training Job. On the page for creating a training
job, only a dedicated resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose DevEnviron > Notebook,
and click Create. On the page for creating a notebook instance, only a dedicated
resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose Service Deployment >
Real-Time Services, and click Deploy. On the page for service deployment, only a
dedicated resource pool can be selected for Resource Pool.

12.4 FAQ

12.4.1 What Do I Do If a Message Indicating Insufficient
Permissions Is Displayed When I Use ModelArts?

If a message indicating insufficient permissions is displayed when you use
ModelArts, perform the operations described in this section to grant permissions
for related services as needed.

The permissions to use ModelArts depend on OBS authorization. Therefore,
ModelArts users require OBS system permissions as well.

● For details about how to grant a user full permissions for OBS and common
operations permissions for ModelArts, see Configuring Common Operations
Permissions.

Modelarts
Usermanual 12 Permissions Management

2024-04-30 826

● For details about how to manage user permissions on OBS and ModelArts in
a refined manner and configure custom policies, see Creating a Custom
Policy for ModelArts.

Configuring Common Operations Permissions
To use ModelArts basic functions, assign the ModelArts CommonOperations
permission on project-level services to users. Since ModelArts depends on OBS
permissions, assign the OBS Administrator permission on global services to users.

The procedure is as follows:

Step 1 Create a user group.

Log in to the IAM console and choose User Groups > Create User Group. Enter a
user group name, and click OK.

Step 2 Configure permissions for the user group.

In the user group list, locate the user group created in step 1, click Authorize, and
perform the following operations.

1. Assign the ModelArts CommonOperations permission on project-level
services to the user group and click OK.

NO TE

The permission takes effect only in assigned regions. Assign permissions in all regions
if the permission is required in all regions.

2. Assign the OBS Administrator permission on global services to the user
group and click OK.

Step 3 Create a user on the IAM console and add the user to the user group created in
step 1.

Step 4 In the authorized region, perform the following operations:
● Choose Service List > ModelArts. Choose Dedicated Resource Pools. On the

page that is displayed, select a resource pool type and click Create. You
should not be able to create a new resource pool.

● Choose any other service in Service List. (Assume that the current policy
contains only ModelArts CommonOperations.) If a message appears
indicating that you have insufficient permissions to access the service, the
ModelArts CommonOperations policy has already taken effect.

● Choose Service List > ModelArts. On the ModelArts console, choose Data
Management > Datasets > Create Dataset. You should be able to access the
corresponding OBS path.

----End

Creating a Custom Policy for ModelArts
In addition to the default system policies of ModelArts, you can create custom
policies, which can address OBS permissions as well.

You can create custom policies using either the visual editor or JSON views. This
section describes how to use a JSON view to create a custom policy to grant

Modelarts
Usermanual 12 Permissions Management

2024-04-30 827

permissions required to use development environments and the minimum
permissions required by ModelArts to access OBS.

NO TE

A custom policy can contain actions for multiple services that are accessible globally or only
for region-specific projects.
ModelArts is a project-level service, but OBS is a global service, so you need to create
separate policies for the two services and then apply these policies to the users.

1. Create a custom policy for minimizing permissions for OBS that ModelArts
depends on.
Log in to the IAM console, choose Permissions > Policies/Roles, and click
Create Custom Policy. Configure the parameters as follows:
– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies of

OBS.
2. Create a custom policy for the permissions to use ModelArts development

environments. Configure the parameters as follows:
– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies for

Using the ModelArts Development Environment. For the actions that
can be added for custom policies, see ModelArts API Reference >
"Permissions Policies and Supported Actions" > "Introduction".

3. After creating a user group on the IAM console, grant the custom policy
created in 1 to the user group.

4. Create a user on the IAM console and add the user to the user group created
in 3.

5. In the authorized region, perform the following operations:
– Choose Service List > ModelArts. On the ModelArts console, choose

Data Management > Datasets. If you cannot create a dataset, the
permissions (for using the development environment) granted only to
ModelArts users have taken effect.

– Choose Service List > ModelArts. On the ModelArts console, choose
DevEnviron > Notebook and click Create. If you can access the OBS
path specified in Storage, the OBS permissions have taken effect.

Example Custom Policies of OBS
The permissions to use ModelArts require OBS authorization. The following
example shows the minimum OBS required, including the permissions for OBS
buckets and objects. After being granted the minimum permissions for OBS, users
can access OBS from ModelArts without restrictions.

{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "obs:bucket:ListAllMybuckets",

Modelarts
Usermanual 12 Permissions Management

2024-04-30 828

 "obs:bucket:HeadBucket",
 "obs:bucket:ListBucket",
 "obs:bucket:GetBucketLocation",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:object:PutObject",
 "obs:object:DeleteObject",
 "obs:object:DeleteObjectVersion",
 "obs:object:ListMultipartUploadParts",
 "obs:object:AbortMultipartUpload",
 "obs:object:GetObjectAcl",
 "obs:object:GetObjectVersionAcl",
 "obs:bucket:PutBucketAcl",
 "obs:object:PutObjectAcl"
],
 "Effect": "Allow"
 }
]
}

Example Custom Policies for Using the ModelArts Development Environment
{
 "Version": "1.1",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:list",
 "modelarts:notebook:create" ,
 "modelarts:notebook:get" ,
 "modelarts:notebook:update" ,
 "modelarts:notebook:delete" ,
 "modelarts:notebook:action" ,
 "modelarts:notebook:access"
]
 }
]
}

Modelarts
Usermanual 12 Permissions Management

2024-04-30 829

13 Best Practices

13.1 Migrating a Locally Developed MindSpore Model
to the Cloud for Training

This section describes how to use PyCharm Toolkit to debug and train your local
MindSpore model code on ModelArts.

Before you start, complete the requirements described in Prerequisites. The
procedure in this case is as follows:

Step 1: Installing PyCharm Toolkit and Logging In to It

Step 2: Using PyCharm for Local Development and Debugging

Step 3: Using ModelArts Notebook for Development and Debugging

Step 4: Using PyCharm to Submit a Training Job to ModelArts

Step 5: Releasing Resources

Prerequisites
● PyCharm 2019.2 or later has been installed on a local server. Either the

community or professional edition will do. Download PyCharm Toolkit and
install it on the local server.
– PyCharm of only the professional edition can be used to access notebook

instances.
– PyCharm of both the community and professional editions can be used to

submit training jobs.
● Access keys (AK and SK) of the current account are available. To create access

keys, see Creating Access Keys (AK and SK).
● Access authorization has been configured for the current account. For details,

see Configuring Access Authorization.

Step 1: Installing PyCharm Toolkit and Logging In to It
1. Install PyCharm Toolkit.

Modelarts
Usermanual 13 Best Practices

2024-04-30 830

https://www.jetbrains.com/pycharm/download/other.html

In PyCharm, choose File > Settings > Plugins, search for ModelArts in
Marketplace, and click Install.

Figure 13-1 Installation using Marketplace

2. Log in to PyCharm Toolkit.

a. Open Edit Credential.
After the plug-in is installed, ModelArts is displayed on the IDE menu
bar. Click ModelArts and choose Edit Credential.

b. Contact the region operations company to obtain the YAML configuration
file and host information.
Add the host information to the hosts file on your local PC. The hosts file
is usually in C:\Windows\System32\drivers\etc.
In the Edit Credential dialog box, click Config to import the YAML
configuration file. After the file is imported, the message Import
successful is displayed, indicating that the region information is
configured.

c. Verify the login information.
Enter the created access keys (AK and SK) in the toolkit area and click
OK. If the following information is displayed, the login is successful.
To create access keys, see Creating Access Keys (AK and SK).

Figure 13-2 Login succeeded

Step 2: Using PyCharm for Local Development and Debugging
1. Download code to a local directory.

In this case, the image classification model ResNet50 is used as an example,
which is stored in ./models/official/cv/resnet/.
Use the Terminal on your local PC to download the code.
git clone https://gitee.com/mindspore/models.git -b v1.5.0

Modelarts
Usermanual 13 Best Practices

2024-04-30 831

Figure 13-3 Downloading code to a local directory

2. Configure the development environment on a local PC.
Install MindSpore on the Terminal of PyCharm.
pip install mindspore
Install the ResNet dependency on the Terminal of PyCharm.
pip install -r .\official\cv\resnet\requirements.txt

Figure 13-4 Installing the ResNet dependency

3. Prepare a dataset.
In this case, a dataset with five categories of flowers for recognition is used.
Download the dataset and decompress it to the project directory. Create a
dataset folder and save the decompressed dataset to the dataset folder.

Modelarts
Usermanual 13 Best Practices

2024-04-30 832

http://download.tensorflow.org/example_images/flower_photos.tgz

Figure 13-5 Preparing a dataset

4. Configure a PyCharm interpreter and input parameters.
Click Current File in the upper right corner and choose Edit Configuration.
The Run/Debug Configurations dialog box is displayed. In the dialog box,
click + and select Python.

Figure 13-6 Entrance to a PyCharm interpreter

Modelarts
Usermanual 13 Best Practices

2024-04-30 833

Select train.py for Script path, configure Parameters (shown in the following
command), select a Python interpreter, and click OK.
--net_name=resnet50 --dataset=imagenet2012 --data_path=../../../dataset/flower_photos/ --
class_num=5 --config_path=./config/resnet50_imagenet2012_config.yaml --epoch_size=1 --
device_target="CPU"

Figure 13-7 Configuring a PyCharm interpreter

NO TE

Configure Parameters according to the README file. device_target="CPU" indicates
that the system runs on CPUs, and device_target="Ascend" indicates that the system
runs on Ascend.

5. Develop and debug code locally.

Local CPUs typically feature average compute power and small memory,
which may lead to memory overflow. Therefore, change the value of
batch_size in config/resnet50_imagenet2012_config.yaml from 256 to 32
for fast training job execution.

Figure 13-8 Changing the batch_size value

Modelarts
Usermanual 13 Best Practices

2024-04-30 834

During AI development, the development of datasets and models are
irrelevant to hardware specifications and takes the longest time when being
compared with other phases. Therefore, develop and debug datasets and
models on local CPUs.

NO TE

In this case, the sample code supports training on CPUs. Therefore, the entire training
can be executed on CPUs. If your code supports training only on GPUs or Ascend, an
error may be reported. In this case, use a notebook instance for debugging code.

After setting a breakpoint, click the debugging icon to debug code step by
step and view variable values.

Figure 13-9 Debugging icon

Figure 13-10 Setting a breakpoint for step-by-step code debugging

Click the execution icon and check whether the training job is running
properly based on logs.

Figure 13-11 Execution icon

Modelarts
Usermanual 13 Best Practices

2024-04-30 835

Figure 13-12 Training logs

Step 3: Using ModelArts Notebook for Development and Debugging

The features of using ModelArts notebook for development and debugging are as
follows:

● Consistent in-cloud and on-premises environments
● One-click configuration
● Remote code debugging
● On-demand resource usage

NO TE

The functions described in this section are supported by PyCharm of only the professional
edition. If a PyCharm community edition is used, go to Step 4: Using PyCharm to Submit
a Training Job to ModelArts to create a training job.

1. Access a notebook instance.

a. Create or open an existing Ascend-powered notebook instance. To create
a notebook instance, see Creating a Notebook Instance. Notebook
specifications are as follows:

Image: mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3
Resource Type: Public resource pool
Type: Ascend
Flavor: Ascend: 1*Ascend910|CPU: 24vCPUs 96 GB
Storage: Default
Remote SSH: enabled
Key Pair: Select an existing key pair, or click Create on the right to create one.

2. Access the notebook instance using the toolkit.

a. On the IDE menu bar, choose ModelArts > Notebook > Remote Config.
On the page that is displayed, select the notebook instance to be
accessed.

Modelarts
Usermanual 13 Best Practices

2024-04-30 836

NO TE

If Connect To Remote is unavailable, create a notebook instance with remote
SSH enabled. For details, see Creating a Notebook Instance.
If the fault persists, check whether the PyCharm Toolkit version is the latest one.
If not, download the latest version.
Before downloading PyCharm Toolkit, clear the browser cache. If PyCharm Toolkit
of an earlier version has been downloaded, the browser cache may lead to the
failure in downloading a new version.

b. In KeyPair, select the key of the target notebook instance. Then, click
Apply to perform one-click remote notebook configuration. After a
period of time, a confirmation dialog box will be displayed, asking you to
restart the IDE. Click OK to restart the IDE. The configuration takes effect
after the restart.

Figure 13-13 Configuration for accessing notebook using PyCharm Toolkit

NO TE

● KeyPair: Select the locally stored key pair of the notebook instance for
authentication. The key pair created during the notebook instance creation is saved
in your browser's default downloads folder.

● PathMappings: Synchronization directory for the local IDE project and notebook,
which defaults to /home/ma-user/work/Project name and is adjustable.

3. Synchronize code and data to the notebook instance.

a. Synchronize code to the notebook instance.
Right-click the resnet folder and choose Deployment > Upload to from
the shortcut menu to upload code to the notebook instance.

Modelarts
Usermanual 13 Best Practices

2024-04-30 837

Figure 13-14 Configuring code synchronization

b. Synchronize data to the notebook instance.

▪ (Recommended) Method 1: Upload the dataset package to notebook
and decompress the package.
Right-click the dataset package and choose Deployment > Upload
to from the shortcut menu to upload the package to the notebook
instance. Run the following command to decompress the dataset
package in the notebook instance:
tar -zxvf work/models/dataset/flower_photos.tgz

Modelarts
Usermanual 13 Best Practices

2024-04-30 838

Figure 13-15 Uploading a dataset package to a notebook instance

▪ Method 2: Upload the data folder to the notebook instance.
Similar to uploading code to a notebook instance, directly upload the
data folder. (In this case, there are a large number of images in the
dataset. Uploading images using the IDE is time-consuming. Method
1 is recommended.)

Modelarts
Usermanual 13 Best Practices

2024-04-30 839

Figure 13-16 Uploading a data folder to a notebook instance

CA UTION

● If a dataset is in GB, it is a good practice to upload the dataset to OBS and
then to the target notebook instance through OBS. PyCharm is applicable
only to upload small files.

● Use a small dataset subset for debugging. This facilitates rapid data
synchronization and loading.

4. Configure the Python interpreter.
Modify Parameters and select a Python interpreter.
--net_name=resnet50 --dataset=imagenet2012 --data_path=../../../dataset/flower_photos/ --
class_num=5 --config_path=./config/resnet50_imagenet2012_config.yaml --epoch_size=1 --
device_target="Ascend"

Modelarts
Usermanual 13 Best Practices

2024-04-30 840

Figure 13-17 Configuring the Python interpreter

5. Install the notebook dependency.
Choose Tool > Start SSH Section to install the dependency software.
Access MindSpore.
source /home/ma-user/anaconda3/bin/activate MindSpore
Install the ResNet dependency.
pip install -r work/models/official/cv/resnet/requirements.txt

Figure 13-18 Installing the notebook dependency

6. Debug and run data.
After the interpreter is configured, PyCharm can directly use the Python
interpreter and hardware of the remote notebook instance. This allows you to
experience the real hardware environment locally and perform debugging and
verification throughout the entire process.

Modelarts
Usermanual 13 Best Practices

2024-04-30 841

CA UTION

In Ascend-powered cases, an error may occur.
ModuleNotFoundError: No module named 'te'

The cause is that PyCharm PYTHONPATH overwrites PYTHONPATH specified
in notebook environment variables. To resolve this issue, add the path to the
TE package to PyCharm PYTHONPATH.
Run the pip show te command to obtain the path to the TE package. For
example, if the path to the TE package is /usr/local/Ascend/nnae/5.0.3/
compiler/python/site-package, the PYTHONPATH value is
$PYTHONPATH:/usr/local/Ascend/nnae/5.0.3/compiler/python/site-
package.

Figure 13-19 Adding the path to the TE package to PyCharm PYTHONPATH

7. Save the development environment image.
After the notebook instance is debugged, the notebook instance contains all
dependent environments for training models. Save the debugged
development environment as an image. To do so, select the target notebook
instance and choose More > Save Image in the Operation column. The
notebook instance will be frozen during the image saving. It requires several
minutes to unfreeze the instance. (You only need to save a notebook instance
once.)

Modelarts
Usermanual 13 Best Practices

2024-04-30 842

Figure 13-20 Saving a development environment as an image

Saved images are available in Image Management on the ModelArts
management console. Obtain a complete image name in SWR Address on
the image details page.

Figure 13-21 Viewing a saved image

NO TE

After debugging code and saving an image, release the notebook instance if it not
required.

8. Access, stop, start, or disconnect a notebook instance.

– Access a notebook instance.

If a notebook instance is in the green triangle state, the instance is
running (but not connected to PyCharm). Click the instance name. The
instance state changes to a green tick, indicating that it has been
connected to PyCharm.

Figure 13-22 A running instance

– Stop a notebook instance.

If a notebook instance is in the green tick state, the instance has been
connected to PyCharm. Click the instance name. The instance state
changes to a yellow exclamation mark, indicating that the notebook
instance is stopped.

Modelarts
Usermanual 13 Best Practices

2024-04-30 843

Figure 13-23 An instance that is running and connected to PyCharm

– Start a notebook instance.
If a notebook instance is in the yellow exclamation mark state, the
instance is stopped. Click the instance name. The instance state changes
to a green tick, indicating that it has been started and connected to
PyCharm. (The default connection holding duration is 4 hours.)

Figure 13-24 A stopped instance

– Disconnect a notebook SSH connection from PyCharm Toolkit.
Choose File > Settings > Tool > SSH Configurations, click the instance
to be disconnected, select -, and click OK. Then, the notebook instance in
ModelArts > Notebook on the IDE menu bar is disconnected.

CA UTION

After this step is performed, the notebook instance will not be available
in PyCharm Toolkit, but it is still available on the management console.
To release notebook resources, log in to the ModelArts management
console and delete the notebook instance on the Notebook page.

Modelarts
Usermanual 13 Best Practices

2024-04-30 844

Figure 13-25 Disconnecting a notebook SSH connection from PyCharm
Toolkit

Step 4: Using PyCharm to Submit a Training Job to ModelArts
The ModelArts training platform provides massive compute power specifications
and training optimization. You can submit a training job in PyCharm based on the
locally debugged code and the saved development environment image.

1. Create an OBS bucket and upload data to the bucket.
Training jobs run on ModelArts. Therefore, upload the training data and code
to the in-cloud notebook instance. Upload downloaded training data to OBS
through OBS Browser+.
Create the data-flower bucket, upload the flower_photos folder with
training data to OBS through OBS Browser+, and create the train folder to
store training job data.

Modelarts
Usermanual 13 Best Practices

2024-04-30 845

Figure 13-26 Uploading data to OBS

2. Create a training job.

On the IDE menu bar, choose ModelArts > Training Job > New to create a
training job.

Figure 13-27 Creating a training job

The following table describes the parameters on the Create Training Job
page.

Table 13-1 Parameters

Parameter Description

JobName Name of a training job, which defaults to the job
creation time

AI Engine Training engine, including the engine type and version

Boot File Path Path to the code for booting local training

Code Directory Local code directory

Image
Path(optional)

(Optional) SWR address of a custom image (The
engine of the custom image is the same as that of the
preset training image.)

Data Obs Path OBS path to a dataset (The data must be uploaded to
OBS beforehand.)

Modelarts
Usermanual 13 Best Practices

2024-04-30 846

Parameter Description

Training Obs Path OBS path (must be reachable), which is used to store
the code, trained models, and logs

Running
Parameters

Parameters received by a training script

Specifications Compute specifications. Select NPU:1*Ascend
910CPU:24*vCPUs 96GB for this case.

Compute Node Number of nodes (1 for single-node training by
default)

PyCharm allows you to create a training job using either a preset image or a
custom image.
– Use a preset image to create a training job.

Configure the following training parameters in RunningParameters and
configure other parameters based on site requirements:
--net_name=resnet50 --dataset=imagenet2012 --enable_modelarts=True --class_num=5 --
config_path=/home/ma-user/modelarts/user-job-dir/resnet/config/
resnet50_imagenet2012_config.yaml --epoch_size=10 --device_target=Ascend

After configuring the parameters, click Apply and Run to create the
training job.

Figure 13-28 Using a preset image to create a training job

– Use a custom image to create a training job.
The difference between using a custom image and using a preset image
lies in Image Path. Set Image Path to the path to the custom image.

Modelarts
Usermanual 13 Best Practices

2024-04-30 847

After configuring the parameters, click Apply and Run to create the
training job.

NO TE

Ensure that the AI engine of the selected preset image is the same as that of the
custom image. In this way, the boot command of the preset image can be used
to start the custom image.

For example, if a custom image is based on MindSpore, select a preset image
with MindSpore.

Figure 13-29 Using a custom image to create a training job

3. View training logs.
After you click Apply and Run, training logs are displayed in the PyCharm
window in real time. You can also click the console link in Event Log to view
training logs on a web page.

Figure 13-30 Viewing training logs in PyCharm

4. Stop a training job.
To stop training, choose ModelArts > Training Job > Stop in PyCharm or click
Stop on the web page.

Modelarts
Usermanual 13 Best Practices

2024-04-30 848

Figure 13-31 Stopping a training job

Step 5: Releasing Resources
Release resources, such as the real-time service, training job, and OBS directories
after trial use.

● To stop a notebook instance, go to the Notebook page, and click Stop in the
Operation column of the instance.

● On the PyCharm menu bar, choose ModelArts > Stop Training Job to stop
the training job.

● Log in to OBS management console and delete the created OBS bucket.
Delete folders and files in the bucket one by one and then delete the bucket.

13.2 Creating an AI Application Using a Custom Engine
When you use a custom engine to create an AI application, you can select your
image stored in SWR as the engine and specify a file directory in OBS as the
model package. In this way, bring-your-own images can be used to meet your
dedicated requirements.

Before deploying such an AI application as a service, ModelArts downloads the
SWR image to the cluster and starts the image as a container as the user whose
UID is 1000 and GID is 100. Then, ModelArts downloads the OBS file to the /
home/mind/model directory in the container and runs the boot command preset
in the SWR image. The service available to port 8080 in the container is
automatically registered with APIG. You can access the service through the APIG
URL.

Specifications for Using a Custom Engine to Create an AI Application
To use a custom engine to create an AI application, ensure the SWR image, OBS
model package, and file size comply with the following requirements:

● SWR image specifications
– A common user named ma-user in group ma-group must be built in the

SWR image. Additionally, the UID and GID of the user must be 1000 and
100, respectively. The following is the dockerfile command for the built-in
user:
groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-
user

– Specify a command for starting the image. In the dockerfile, specify cmd.
The following shows an example:
CMD sh /home/mind/run.sh

Customize the startup entry file run.sh. The following is an example.

Modelarts
Usermanual 13 Best Practices

2024-04-30 849

#!/bin/bash

User-defined script content
...

run.sh calls app.py to start the server. For details about app.py, see "HTTPS Example".
python app.py

– The service must be HTTPS enabled, and it is available on port 8080. For
details, see the HTTPS example.

– (Optional) On port 8080, enable health check with URL /health. (The
health check URL must be /health.)

● OBS model package specifications
The name of the model package must be model. For details about model
package specifications, see Introduction to Model Package Specifications.

● File size specifications
When a public resource pool is used, the total size of the downloaded SWR
image (not the compressed image displayed on the SWR page) and the OBS
model package cannot exceed 30 GB.

HTTPS Example
Use Flask to start HTTPS. The following is an example of the web server code:

from flask import Flask, request
import json

app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

@app.route('/health', methods=['GET'])
def healthy():
 return "{\"status\": \"OK\"}"

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080, ssl_context='adhoc')

Debugging on a Local Computer
Perform the following operations on a local computer with Docker installed to
check whether a custom engine complies with specifications:

Modelarts
Usermanual 13 Best Practices

2024-04-30 850

1. Download the custom image, for example, custom_engine:v1 to the local
computer.

2. Copy the model package folder model to the local computer.
3. Run the following command in the same directory as the model package

folder to start the service:
docker run --user 1000:100 -p 8080:8080 -v model:/home/mind/model custom_engine:v1

NO TE

This command is used for simulation only because the directory mounted to -v is
assigned the root permission. In the cloud environment, after the model file is
downloaded from OBS to /home/mind/model, the file owner will be changed to ma-
user.

4. Start another terminal on the local computer and run the following command
to obtain the expected inference result:
curl https://127.0.0.1:8080/${Request path to the inference service}

Deployment Example
The following section describes how to use a custom engine to create an AI
application.

1. Create an AI application and viewing its details.
Log in to the ModelArts console, choose AI Application Management > AI
Applications, and click Create. On the page that is displayed, configure the
following parameters:
– Meta Model Source: OBS
– Meta Model: a model package selected from OBS
– AI Engine: Custom
– Engine Package: an SWR image

Retain the default settings for other parameters.
Click Create Now. In the AI application list that is displayed, check the AI
application status. When its status changes to Normal, the AI application has
been created.

Figure 13-32 Creating an AI application

Modelarts
Usermanual 13 Best Practices

2024-04-30 851

https://docs.docker.com/engine/reference/commandline/run/

Click the AI application name. On the page that is displayed, view details
about the AI application.

Figure 13-33 Viewing details about an AI application

2. Deploy the AI application as a service and view service details.
On the AI application details page, choose Deploy > Real-Time Services in
the upper right corner. On the Deploy page, select a proper compute node
specification, retain the default settings for other parameters, and click Next.
When the service status changes to Running, the service has been deployed.

Figure 13-34 Deploying a service

Click the service name. On the page that is displayed, view the service details.
Click the Logs tab to view the service logs.

Modelarts
Usermanual 13 Best Practices

2024-04-30 852

Figure 13-35 Logs

3. Use the service for prediction.
On the service details page, click the Prediction tab to use the service for
prediction.

Figure 13-36 Prediction

13.3 Using a Large Model to Create an AI Application
and Deploying a Real-Time Service

Context
Currently, a large model can have hundreds of billions or even trillions of
parameters, and its size becomes larger and larger. A large model with hundreds
of billions of parameters exceeds 200 GB, and poses new requirements for version
management and production deployment of the platform. For example, importing
AI applications requires dynamic adjustment of the tenant storage quota. Slow
model loading and startup requires a flexible timeout configuration in the
deployment. The service recovery time needs to be shortened in the event that the
model needs to be reloaded upon a restart caused by a load exception.

To address the preceding requirements, the ModelArts inference platform provides
a solution to AI application management and service deployment in large model
application scenarios.

Modelarts
Usermanual 13 Best Practices

2024-04-30 853

Constraints
● You need to apply for the size quota of an AI application and add the

whitelist cached using the local storage of the node.

● You need to use the custom engine Custom to configure dynamic loading.

● A dedicated resource pool is required to deploy the service.

● The disk space of the dedicated resource pool must be greater than 1 TB.

Procedure
1. Applying for Increasing the Size Quota of an AI Application and Using the

Local Storage of the Node to Cache the Whitelist

2. Uploading Model Data and Verifying the Consistency of Uploaded Objects

3. Creating a Dedicated Resource Pool

4. Creating an AI Application

5. Deploying a Real-Time Service

Applying for Increasing the Size Quota of an AI Application and Using the
Local Storage of the Node to Cache the Whitelist

During service deployment, the dynamically loaded model package is stored in the
temporary disk space by default. When the service is stopped, the loaded files are
deleted, and they need to be reloaded when the service is restarted. To avoid
repeated loading, the platform allows the model package to be loaded from the
local storage space of the node in the resource pool and keeps the loaded files
valid even when the service is stopped or restarted (using the hash value to ensure
data consistency).

To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. In this regard, you need to perform the
following operations:

● If the model size exceeds the default quota, submit a service ticket to increase
the size quota of a single AI application. The default size quota of an AI
application is 20 GB.

● Submit a service ticket to add the whitelist cached using the local storage of
the node.

Uploading Model Data and Verifying the Consistency of Uploaded Objects

To ensure data integrity during dynamic loading, you need to verify the
consistency of uploaded objects when uploading model data to OBS. obsutil, OBS
Browser+, and OBS SDKs support verification of data consistency during upload.
You can select a method that meets your requirements. For details, see "Verifying
Data Consistency During Upload" in Object Storage Service documentation.

For example, if you upload data via OBS Browser+, enable MD5 verification, as
shown in Figure 13-37. When dynamic loading is enabled and the local persistent
storage of the node is used, OBS Browser+ checks data consistency during data
upload.

Modelarts
Usermanual 13 Best Practices

2024-04-30 854

Figure 13-37 Configuring MD5 verification for OBS Browser+

Creating a Dedicated Resource Pool
To use the local persistent storage, you need to create a dedicated resource pool
whose disk space is greater than 1 TB. You can view the disk information on the
Specifications tab of the Basic Information page of the dedicated resource pool.
If a service fails to be deployed and the system displays a message indicating that
the disk space is insufficient, see What Do I Do If Resources Are Insufficient
When a Real-Time Service Is Deployed, Started, Upgraded, or Modified.

Figure 13-38 Viewing the disk information of the dedicated resource pool

Creating an AI Application
If you use a large model to create an AI application and import the model from
OBS, complete the following configurations:

1. Use a custom engine and enable dynamic loading.
To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. You can create a custom engine to meet
special requirements for image dependency packages and inference
frameworks in large model scenarios. For details about how to create a
custom engine, see Creating an AI Application Using a Custom Engine.
When you use a custom engine, dynamic loading is enabled by default. The
model package is separated from the image, and the model is dynamically
loaded to the service load during service deployment.

Modelarts
Usermanual 13 Best Practices

2024-04-30 855

2. Configure health check.
Health check is mandatory for the AI applications imported using a large
model to identify unavailable services that are displayed as started.

Figure 13-39 Using a custom engine, enabling dynamic loading, and
configuring health check

Deploying a Real-Time Service

When deploying the service, complete the following configurations:

1. Customize the deployment timeout interval.
Generally, the time for loading and starting a large model is longer than that
for a common model. Set Timeout to a proper value. Otherwise, the timeout
may elapse prior to the completion of the model startup, and the deployment
may fail.

2. Add an environment variable.
During service deployment, add the following environment variable to set the
service traffic load balancing policy to cluster affinity, preventing unready
service instances from affecting the prediction success rate:
MODELARTS_SERVICE_TRAFFIC_POLICY: cluster

Figure 13-40 Customizing the deployment timeout interval and adding an
environment variable

You are advised to deploy multiple instances to improve service reliability.

Modelarts
Usermanual 13 Best Practices

2024-04-30 856

13.4 Importing a Model from OBS to Create an AI
Application and Deploying a Real-Time Service

This section describes how to upload a model package to Object Storage Service
(OBS), import the model from OBS to create an AI application, deploy the AI
application as a real-time service, and perform prediction.

Before you start, complete the requirements described in Prerequisites. The
procedure in this case is as follows:

Step 1: Upload a Model Package to OBS

Step 2: Import the Model from OBS to Create an AI Application

Step 3: Deploy the AI Application as a Real-Time Service

Step 4: Perform Prediction

Prerequisites
Prepare the required files based on the model package specifications. The model
package must contain the model folder. The model folder stores the model file,
model configuration file, and model inference code file.

Step 1: Upload a Model Package to OBS
1. Log in to the OBS console.
2. Create a bucket and a directory for storing the model package. Click Upload

Object to upload the required model package to the OBS bucket directory.
For example, the structure of the MindSpore model package is as follows:
OBS bucket or directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── checkpoint_lenet_1-1_1875.ckpt (Mandatory) Model file in ckpt format trained using
MindSpore
| │ ├── config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├── customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.
| │ ├── tmp.om (Mandatory) An empty .om file that enables the model package to be imported

Figure 13-41 Uploading a model package

Modelarts
Usermanual 13 Best Practices

2024-04-30 857

Step 2: Import the Model from OBS to Create an AI Application
1. Log in to the ModelArts management console, choose AI Application

Management > AI Applications. On the My AI Applications tab page, click
Create.

2. Set Meta Model Source to OBS and select the model package uploaded in
Step 1: Upload a Model Package to OBS. AI engine, runtime environment,
and runtime dependency will be automatically configured. The following is an
example.

Figure 13-42 Importing a model from OBS

3. Click Create now after you finish the configuration to create the AI
application.

4. On the AI application list page, check the AI application status. After the
status changes to Normal, the AI application is created.

Step 3: Deploy the AI Application as a Real-Time Service
1. On the AI application list page, locate the AI application created in Step 2:

Import the Model from OBS to Create an AI Application and click the
down arrow on the left to show its AI application version list. Then, choose
Deploy > Real-Time Services in the Operation column.

Figure 13-43 Deploying a real-time service

2. Verify the AI application and version number on the real-time service
deployment page. They are configured automatically. Turn on auto stop to
make the service stop by itself at the time you choose. Configure other
parameters as required and then click Create now to deploy the real-time
service. The following is an example.

Modelarts
Usermanual 13 Best Practices

2024-04-30 858

Figure 13-44 AI Application and Configuration

3. Check the service status on the real-time service list page. If the status
changes to Running, the real-time service is deployed.

Step 4: Perform Prediction
1. Click the name of the real-time service deployed in Step 3: Deploy the AI

Application as a Real-Time Service.
2. Click the Prediction tab to perform prediction. The following is an example.

Figure 13-45 Prediction

Step 5: Clear Resources
Once the prediction finishes, delete any unused resources.

● To stop or delete a real-time service, go to the Real-Time Services page,
locate the row that contains the target service, and choose More > Stop or
Delete in the Operation column.

● Log in to OBS management console and delete the created OBS bucket.
Delete folders and files in the bucket one by one and then delete the bucket.

Modelarts
Usermanual 13 Best Practices

2024-04-30 859

14 Full-Process Development of
WebSocket Real-Time Services

Context

WebSocket is a network transmission protocol that supports full-duplex
communication over a single TCP connection. It is located at the application layer
in an OSI model. The WebSocket communication protocol was established by IETF
in 2011 as standard RFC 6455 and supplemented by RFC 7936. The WebSocket API
in the Web IDL is standardized by W3C.

WebSocket simplifies data exchange between the client and the server and allows
the server to proactively push data to the client. In the WebSocket API, if the
initial handshake between the client and the server is successful, a persistent
connection will be established between them and data can be transferred
bidirectionally.

Prerequisites
● You are experienced in developing Java and familiar with JAR packaging.
● You have basic knowledge and calling methods of WebSocket.
● You are familiar with the method of creating an image using Docker.

Constraints
● WebSocket supports only the deployment of real-time services.
● WebSocket supports only real-time services deployed using AI applications

imported from custom images.

Preparations

Before using WebSocket in ModelArts for inference, bring your own custom image.
The custom image must be able to provide complete WebSocket services in a
standalone environment, for example, completing WebSocket handshakes and
exchanging data between the client to the server. The model inference is
implemented in the custom image, including downloading the model, loading the
model, performing preprocessing, completing inference, and assembling the
response body.

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 860

Procedure

To develop a WebSocket real-time service, perform the following operations:

● Uploading the Image to SWR
● Creating an AI Application Using the Image
● Deploying the AI Application as a Real-Time Service
● Calling the WebSocket Real-Time Service

Uploading the Image to SWR

Upload the local image to SWR. For details, see How Can I Log In to SWR and
Upload Images to It?

Creating an AI Application Using the Image
1. Log in to the ModelArts management console, choose AI Application

Management > AI Applications, and click Create under My AI Applications.
The page for creating an AI application is displayed.

2. Configure the AI application.
– Meta Model Source: Select Container image.
– Container Image Path: Select the path specified in Uploading the

Image to SWR.
– Container API: Configure this parameter based on site requirements.
– Health Check: Retain default settings. If health check has been

configured in the image, configure the health check parameters based on
those configured in the image.

Figure 14-1 AI application parameters

3. Click Create now. In the AI application list that is displayed, check the AI
application status. When it changes to Normal, the AI application has been
created.

Deploying the AI Application as a Real-Time Service
1. Log in to the ModelArts management console, choose Service Deployment >

Real-Time Services, and click Deploy.
2. Configure the service.

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 861

– AI Application and Version: Select the AI application and version created
in Creating an AI Application Using the Image.

– WebSocket: Enable this function.

Figure 14-2 WebSocket

3. Click Next, confirm the configuration, and click Submit. In the real-time
service list you will be redirected to, check the service status. When it changes
to Running, the real-time service has been deployed.

Calling a WebSocket Real-Time Service
WebSocket itself does not require additional authentication. ModelArts WebSocket
is WebSocket Secure-compliant, regardless of whether WebSocket or WebSocket
Secure is enabled in the custom image. WebSocket Secure supports only one-way
authentication, from the client to the server.

You can use one of the following authentication methods provided by ModelArts:

● Access Authenticated Using a Token

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call WebSocket.

1. Establish a WebSocket connection.
2. Exchange data between the WebSocket client and the server.

Step 1 Establish a WebSocket connection.

1. Open Postman of a version later than 8.5, for example, 10.12.0. Click in
the upper left corner and choose File > New. In the displayed dialog box,
select WebSocket Request (beta version currently).

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 862

Figure 14-3 WebSocket Request

2. Configure parameters for the WebSocket connection.
Select Raw in the upper left corner. Do not select Socket.IO (a type of
WebSocket implementation, which requires that both the client and the server
run on Socket.IO). In the address box, enter the API Address obtained on the
Usage Guides tab on the service details page. If there is a finer-grained URL
in the custom image, add the URL to the end of the address. If queryString is
available, add this parameter in the params column. Add authentication
information into the header. The header varies depending on the
authentication mode, which is the same as that in the HTTPS-compliant
inference service. Click Connect in the upper right corner to establish a
WebSocket connection.

Figure 14-4 Obtaining the API address

NO TE

– If the information is correct, CONNECTED will be displayed in the lower right
corner.

– If establishing the connection failed and the status code is 401, check the
authentication.

– If a keyword such as WRONG_VERSION_NUMBER is displayed, check whether the
port configured in the custom image is the same as that configured in WebSocket
or WebSocket Secure.

The following shows an established WebSocket connection.

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 863

Figure 14-5 Connection established

NO TICE

Preferentially check the WebSocket service provided by the custom image. The
type of implementing WebSocket varies depending on the tool you used.
Possible issues are as follows: A WebSocket connection can be established but
cannot be maintained, or the connection is interrupted after one request and
needs to be reconnected. ModelArts only ensures that it will not affect the
WebSocket status in a custom image (the API address and authentication
mode may be changed on ModelArts).

Step 2 Exchange data between the WebSocket client and the server.

After the connection is established, WebSocket uses TCP for full-duplex
communication. The WebSocket client sends data to the server. The
implementation types vary depending on the client, and the lib package may also
be different for the same language. Different implementation types are not
considered here.

The format of the data sent by the client is not limited by the protocol. Postman
supports text, JSON, XML, HTML, and Binary data. Take text as an example. Enter
the text data in the text box and click Send on the right to send the request to the
server. If the text is oversized, Postman may be suspended.

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 864

Figure 14-6 Sending data

----End

Modelarts
Usermanual

14 Full-Process Development of WebSocket Real-
Time Services

2024-04-30 865

15 FAQs

15.1 General Issues

15.1.1 What Is ModelArts?
ModelArts is a one-stop AI development platform geared toward developers and
data scientists of all skill levels. It enables you to rapidly build, train, and deploy
models anywhere (from the cloud to the edge), and manage full-lifecycle AI
workflows. ModelArts accelerates AI development and fosters AI innovation with
key capabilities, including data preprocessing and auto labeling, distributed
training, automated model building, and one-click workflow executing.

The one-stop ModelArts platform covers all stages of AI development, including
data processing, AI application creation, and model training and deployment. The
underlying layer of ModelArts supports various heterogeneous computing
resources. You can flexibly select and use the resources without having to consider
the underlying technologies. In addition, ModelArts supports popular open-source
AI development frameworks such as TensorFlow. Developers can also use self-
developed algorithm frameworks to match their usage habits.

ModelArts aims to achieve simple, convenient AI development.

15.1.2 What Are the Relationships Between ModelArts and
Other Services?

OBS
ModelArts uses Object Storage Service (OBS) to securely and reliably store data
and models at low costs. For more details, see Object Storage Service Console
Operation Guide.

Modelarts
Usermanual 15 FAQs

2024-04-30 866

CCE
ModelArts uses Cloud Container Engine (CCE) to deploy models as real-time
services. CCE enables high concurrency and provides elastic scaling. For more
information about CCE, see Cloud Container Engine User Guide.

SWR
To use an AI framework that is not supported by ModelArts, use Software
Repository for Container (SWR) to customize an image and import the image to
ModelArts for training or inference. For details about SWR, see .

Cloud Eye
ModelArts uses Cloud Eye to monitor online services and model loads in real time
and send alarms and notifications automatically. For details about Cloud Eye, see
Cloud Eye User Guide.

CTS
ModelArts uses Cloud Trace Service (CTS) to record operations for later query,
audit, and backtrack operations. For details about CTS, see Cloud Trace Service
User Guide.

15.1.3 What Are the Differences Between ModelArts and DLS?
Deep Learning Service (DLS) is a one-stop deep learning platform based on the
high-performance computing capabilities. With various optimized neural network
models, DLS allows you to easily implement model training and evaluation with
the flexibility of on-demand scheduling.

However, DLS supports only the deep learning technologies, while ModelArts
integrates both the deep learning and machine learning technologies. In addition,
ModelArts is a one-stop AI development platform, which manages the AI
development lifecycle from data labeling, algorithm development, to model
training and deployment. To be specific, ModelArts contains and supports the
functions and features of DLS. Currently, DLS is terminated. The functions related
to deep learning can be directly used in ModelArts. If you are a DLS user, you can
also migrate the data in DLS to ModelArts.

15.1.4 Which Ascend Chips Are Supported?
Currently, Ascend 310 and Ascend 910 are supported.

● Model training: Ascend 910 can be used to train models. ModelArts provides
algorithms designed for model training with Ascend 910.

● Model inference: When a model is deployed as a real-time service on
ModelArts, you can use Ascend 310 resources for model inference.

Modelarts
Usermanual 15 FAQs

2024-04-30 867

15.1.5 How Do I Obtain an Access Key?

Obtaining an Access Key
1. Log in to the console, enter the My Credentials page, and choose Access

Keys > Create Access Key.
2. In the Create Access Key dialog box that is displayed, use the login password

for verification.
3. Click OK, open the credentials.csv file, and save the key file as prompted. The

access key file is saved in the default downloads folder of the browser. Then,
the access key (Access Key Id and Secret Access Key) is obtained.

15.1.6 How Do I Upload Data to OBS?
Before using ModelArts to develop AI models, data needs to be uploaded to an
OBS bucket. You can log in to the OBS console to create an OBS bucket, create a
folder in it, and upload data. For details about how to upload data, see Object
Storage Service User Guide.

15.1.7 What Do I Do If the System Displays a Message
Indicating that the AK/SK Pair Is Unavailable?

Issue Analysis
An AK and SK form a key pair required for accessing OBS. Each SK corresponds to
a specific AK, and each AK corresponds to a specific user. If the system displays a
message indicating that the AK/SK pair is unavailable, it is possible that the
account is in arrears or the AK/SK pair is incorrect.

Solution
1. Use the current account to log in to the OBS console and check whether the

current account can access OBS.
– If the account can access OBS, rectify the fault by referring to 2.

2. – If yes, .
– If not, replace the AK/SK with those created using the current account.

For details, see Access Keys.

15.1.8 What Do I Do If a Message Indicating Insufficient
Permissions Is Displayed When I Use ModelArts?

If a message indicating insufficient permissions is displayed when you use
ModelArts, perform the operations described in this section to grant permissions
for related services as needed.

The permissions to use ModelArts depend on OBS authorization. Therefore,
ModelArts users require OBS system permissions as well.

● For details about how to grant a user full permissions for OBS and common
operations permissions for ModelArts, see Configuring Common Operations
Permissions.

Modelarts
Usermanual 15 FAQs

2024-04-30 868

● For details about how to manage user permissions on OBS and ModelArts in
a refined manner and configure custom policies, see Creating a Custom
Policy for ModelArts.

Configuring Common Operations Permissions
To use ModelArts basic functions, assign the ModelArts CommonOperations
permission on project-level services to users. Since ModelArts depends on OBS
permissions, assign the OBS Administrator permission on global services to users.

The procedure is as follows:

Step 1 Create a user group.

Log in to the IAM console and choose User Groups > Create User Group. Enter a
user group name, and click OK.

Step 2 Configure permissions for the user group.

In the user group list, locate the user group created in step 1, click Authorize, and
perform the following operations.

1. Assign the ModelArts CommonOperations permission on project-level
services to the user group and click OK.

NO TE

The permission takes effect only in assigned regions. Assign permissions in all regions
if the permission is required in all regions.

2. Assign the OBS Administrator permission on global services to the user
group and click OK.

Step 3 Create a user on the IAM console and add the user to the user group created in
step 1.

Step 4 In the authorized region, perform the following operations:
● Choose Service List > ModelArts. Choose Dedicated Resource Pools. On the

page that is displayed, select a resource pool type and click Create. You
should not be able to create a new resource pool.

● Choose any other service in Service List. (Assume that the current policy
contains only ModelArts CommonOperations.) If a message appears
indicating that you have insufficient permissions to access the service, the
ModelArts CommonOperations policy has already taken effect.

● Choose Service List > ModelArts. On the ModelArts console, choose Data
Management > Datasets > Create Dataset. You should be able to access the
corresponding OBS path.

----End

Creating a Custom Policy for ModelArts
In addition to the default system policies of ModelArts, you can create custom
policies, which can address OBS permissions as well.

You can create custom policies using either the visual editor or JSON views. This
section describes how to use a JSON view to create a custom policy to grant

Modelarts
Usermanual 15 FAQs

2024-04-30 869

permissions required to use development environments and the minimum
permissions required by ModelArts to access OBS.

NO TE

A custom policy can contain actions for multiple services that are accessible globally or only
for region-specific projects.
ModelArts is a project-level service, but OBS is a global service, so you need to create
separate policies for the two services and then apply these policies to the users.

1. Create a custom policy for minimizing permissions for OBS that ModelArts
depends on.
Log in to the IAM console, choose Permissions > Policies/Roles, and click
Create Custom Policy. Configure the parameters as follows:
– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies of

OBS.
2. Create a custom policy for the permissions to use ModelArts development

environments. Configure the parameters as follows:
– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies for

Using the ModelArts Development Environment. For the actions that
can be added for custom policies, see ModelArts API Reference >
"Permissions Policies and Supported Actions" > "Introduction".

3. After creating a user group on the IAM console, grant the custom policy
created in 1 to the user group.

4. Create a user on the IAM console and add the user to the user group created
in 3.

5. In the authorized region, perform the following operations:
– Choose Service List > ModelArts. On the ModelArts console, choose

Data Management > Datasets. If you cannot create a dataset, the
permissions (for using the development environment) granted only to
ModelArts users have taken effect.

– Choose Service List > ModelArts. On the ModelArts console, choose
DevEnviron > Notebook and click Create. If you can access the OBS
path specified in Storage, the OBS permissions have taken effect.

Example Custom Policies of OBS
The permissions to use ModelArts require OBS authorization. The following
example shows the minimum OBS required, including the permissions for OBS
buckets and objects. After being granted the minimum permissions for OBS, users
can access OBS from ModelArts without restrictions.

{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "obs:bucket:ListAllMybuckets",

Modelarts
Usermanual 15 FAQs

2024-04-30 870

 "obs:bucket:HeadBucket",
 "obs:bucket:ListBucket",
 "obs:bucket:GetBucketLocation",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:object:PutObject",
 "obs:object:DeleteObject",
 "obs:object:DeleteObjectVersion",
 "obs:object:ListMultipartUploadParts",
 "obs:object:AbortMultipartUpload",
 "obs:object:GetObjectAcl",
 "obs:object:GetObjectVersionAcl",
 "obs:bucket:PutBucketAcl",
 "obs:object:PutObjectAcl"
],
 "Effect": "Allow"
 }
]
}

Example Custom Policies for Using the ModelArts Development Environment
{
 "Version": "1.1",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:list",
 "modelarts:notebook:create" ,
 "modelarts:notebook:get" ,
 "modelarts:notebook:update" ,
 "modelarts:notebook:delete" ,
 "modelarts:notebook:action" ,
 "modelarts:notebook:access"
]
 }
]
}

15.1.9 How Do I Use ModelArts to Train Models Based on
Structured Data?

For more advanced users, ModelArts provides the notebook creation function of
DevEnviron for code development. It allows the users to create training tasks with
large volumes of data in training jobs and use the engines such as Scikit_Learn,
XGBoost, or Spark_MLlib in the development and training processes.

15.1.10 How Do I View All Files Stored in OBS on ModelArts?
To view all files stored in OBS when using notebook instances or training jobs, use
either of the following methods:

● OBS console
Log in to OBS console using the current account, and search for the OBS
buckets, folders, and files.

● You can use an API to check whether a given directory exists. In an existing
notebook instance or after creating a new notebook instance, run the
following command to check whether the directory exists:
import moxing as mox
mox.file.list_directory('obs://bucket_name', recursive=True)

Modelarts
Usermanual 15 FAQs

2024-04-30 871

If there are a large number of files, wait until the final file path is displayed.

15.1.11 Where Are Datasets of ModelArts Stored in a
Container?

Datasets of ModelArts and data in specific data storage locations are stored in
OBS.

15.1.12 Which AI Frameworks Does ModelArts Support?
The AI frameworks and versions supported by ModelArts vary slightly based on
the development environment notebook, training jobs, and model inference (AI
application management and deployment). The following describes the AI
frameworks supported by each module.

Unified Image List

ModelArts provides unified images of Arm+Ascend specifications, including
MindSpore and PyTorch. You can use the images to develop environment, train
models, and deploy services. For details, see Unified Image List.

Table 15-1 MindSpore

Preset Image Supported
Processor

Applicable Scope

mindspore_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

mindspore_2.1.0-cann_6.3.2-py_3.7-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

mindspore_2.2.10-cann_8.0.rc1-
py_3.9-hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

Table 15-2 PyTorch

Preset Image Supported
Processor

Applicable Scope

pytorch_1.11.0-cann_6.3.2-py_3.7-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

pytorch_2.1.0-cann_8.0.rc1-py_3.9-
hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

pytorch_1.11.0-cann_8.0.rc1-py_3.9-
hce_2.0.2312-aarch64-snt9c

Ascend snt9c Notebook, training, and
inference deployment

Modelarts
Usermanual 15 FAQs

2024-04-30 872

Development Environment Notebook

The image and versions supported by development environment notebook
instances vary based on runtime environments.

Table 15-3 Images supported by notebook of the new version

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

pytorch_1.11.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

pytorch_2.1.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

mindspore_2.2.0-cann_7.0.1-
py_3.9-euler_2.10.7-aarch64-
snt9b

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

mindspore_2.1.0-cann_6.3.2-
py_3.7-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
MindSpore

Ascend Yes Yes

pytorch_1.11.0-cann_6.3.2-
py_3.7-euler_2.10.7-aarch64-
snt9b

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

Modelarts
Usermanual 15 FAQs

2024-04-30 873

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

mindspore1.7.0-cann5.1.0-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

mindstudio5.0.rc1-ascend-
cann5.1.rc1-euler2.8.3-
aarch64

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes No

mindspore1.8.0-cann5.1.2-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

tensorflow1.15-cann5.1.0-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
TensorFlow is
preset in the AI
engine.

Ascend Yes Yes

mindspore_2.0.0-cann_6.3.0-
py_3.7-euler_2.8.3

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
MindSpore

Ascend Yes Yes

pytorch_1.11.0-cann_6.3.0-
py_3.7-euler_2.8.3

Ascend- and Arm-
powered public
image for
algorithm
development and
training, with built-
in AI engine
PyTorch

Ascend Yes Yes

Modelarts
Usermanual 15 FAQs

2024-04-30 874

Image Description Suppor
ted
Chip

Remot
e SSH

Online
Jupyter
Lab

tensorflow1.15-
mindspore1.7.0-cann5.1.0-
euler2.8-aarch64

Ascend+Arm
algorithm
development and
training.
TensorFlow and
MindSpore are
preset in the AI
engine.

Ascend Yes Yes

tensorflow_1.15.0-
cann_6.3.0-py_3.7-
euler_2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

tensorflow1.15.0-cann5.1.2-
py3.7-euler2.8.3

Ascend+Arm
algorithm
development and
training.
MindSpore is
preset in the AI
engine.

Ascend Yes Yes

Table 15-4 Images supported by notebook of the old version

Runtime Environment Built-in AI Engine and
Version

Supported Chip

Ascend-Powered-Engine
1.0 (Python3)

MindSpore 1.2.0 Ascend

MindSpore 1.1.1 Ascend

TensorFlow 1.15.0 Ascend

Training Jobs
The following table lists the AI engines.

The built-in training engines are named in the following format:
<Training engine name_version>-[cpu | <cuda_version | cann_version >]-<py_version>-<OS name_version>-<
x86_64 | aarch64>

Modelarts
Usermanual 15 FAQs

2024-04-30 875

Table 15-5 AI engines supported by training jobs

Runtime
Environmen
t

System
Archite
cture

System
Version

AI Engine and Version Supported
CUDA or
Ascend
Version

Ascend-
Powered-
Engine

aarch6
4

Euler2.8 mindspore_2.0.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

PyTorch aarch6
4

Euler2.8 pytorch_1.11.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

TensorFlow aarch6
4

Euler2.8 tensorflow_1.15.0-
cann_6.3.0-py_3.7-
euler_2.8.3-aarch64

cann_6.3.0

NO TE

Supported AI engines vary depending on regions.

Supported AI Engines for ModelArts Inference
If you import a model from a template or OBS to create an AI application, the
following AI engines and versions are supported.

NO TE

● Runtime environments marked with recommended are unified runtime images, which
will be used as mainstream base inference images.

● Images of the old version will be discontinued. Use unified images.
● The base images to be removed are no longer maintained.
● Naming a unified runtime image: <AI engine name and version> - <Hardware and

version: CPU, CUDA, or CANN> - <Python version> - <OS version> - <CPU architecture>

Table 15-6 Supported AI engines and their runtime

Engine Runtime

TensorFlow tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

MindSpore mindspore_2.0.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

PyTorch pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

Modelarts
Usermanual 15 FAQs

2024-04-30 876

15.1.13 What Are the Functions of ModelArts Training and
Inference?

ModelArts training includes ExeML, training management, and dedicated resource
pools (for development/training).

ModelArts inference includes AI application management and deployment.

15.1.14 Can AI-assisted Identification of ModelArts Identify a
Specific Label?

After a model with multiple labels is trained and deployed as a real-time service,
all the labels are identified. If only one type of label needs to be identified, train a
model dedicated for identifying the label. To speed up the label identification,
select a high flavor for deploying the model.

15.1.15 Why Is the Job Still Queued When Resources Are
Sufficient?

● If a public resource pool is used, the resources may be used by other users.
Please wait or find solutions in Why Is a Training Job Always Queuing?.

● If a dedicated resource pool is used, perform the following operations:

a. Check whether other jobs (including inference jobs, training jobs, and
development environment jobs) are running in the dedicated resource
pool.
On the Dashboard page, you can go to the details page of the running
jobs or instances to check whether the dedicated resource pool is used.
You can stop them based on your needs to release resources.

b. Click the dedicated resource pool to go to the details page and view the
job list.
If other jobs are waiting in the queue, the new job must also join the
queue.

c. Check whether resources are fragmented.
For example, the cluster has two nodes, and there are four idle cards on
each node. However, your job requires eight cards on one node. In this
case, the idle resources cannot be allocated to your job.

15.2 Data Management (Old Version)

15.2.1 Are There Size Limits for Images to be Uploaded?
For data management, there are limits on the image size when you upload images
to the datasets whose labeling type is object detection or image classification. The
size of an image cannot exceed 8 MB, and only JPG, JPEG, PNG, and BMP formats
are supported.

Solutions:

Modelarts
Usermanual 15 FAQs

2024-04-30 877

● Import the images from OBS. Upload images to any OBS directory and import
the images from the OBS directory to an existing dataset.

● Use data source synchronization. Upload images to the input directory or its
subdirectory of a dataset, and click Synchronize Data Source on the dataset
details page to add new images. Note that synchronizing a data source will
delete the files deleted from OBS from the dataset. Exercise caution when
performing this operation.

● Create a dataset. Upload images to any OBS directory. You can directly use
the image directory as the input directory to create the dataset.

15.2.2 What Do I Do If Images in a Dataset Cannot Be
Displayed?

Symptom

Images in a created dataset cannot be displayed during labeling, and they cannot
be viewed by clicking them. Alternatively, the system displays a message
indicating that an error occurred in image loading.

Possible Cause
● The local network may be faulty. As a result, OBS cannot be accessed and

images cannot be loaded.

● You are not allowed to access the target OBS bucket.

● The OBS bucket or file may be encrypted.

● The OBS storage class does not allow the parallel file system to process
images. Therefore, the thumbnails cannot be displayed.

Solution
1. The following uses Google Chrome as an example. Press F12 to open the

browser console, locate the image, and copy the image URL.

Figure 15-1 Obtaining the image URL

Modelarts
Usermanual 15 FAQs

2024-04-30 878

2. Enter the URL in a new browser. The "Your Connection Is Not Private"
message is displayed. Click Advanced on the page and choose Proceed to
<link> (unsafe) to go to the target website.

3. After the image is successfully accessed, return to the ModelArts console to
access the dataset. The image is displayed.

15.2.3 How Do I Integrate Multiple Object Detection Datasets
into One Dataset?

Create a parent directory in an OBS bucket, in the directory add the same number
of folders as that of datasets, export one dataset to one folder, and use the parent
directory to create a dataset.

Log in to the ModelArts management console and choose Data Management >
Datasets. Click the target dataset to switch to its Dashboard page. Then, click
Export in the upper right corner of the page to export the dataset to a folder in
the OBS parent directory.

15.2.4 What Do I Do If Importing a Dataset Failed?
The possible cause is that the storage class of the target OBS bucket is incorrect.
In this case, select a bucket of the standard storage class to import data.

15.2.5 Can a Table Dataset Be Labeled?
Table datasets cannot be labeled. They are suitable for processing structured data
such as tables. Table files are in CSV format. You can preview up to 100 data
records in a table.

15.2.6 What Do I Do to Import Locally Labeled Data to
ModelArts?

ModelArts allows you to import data by importing datasets. Locally labeled data
can be imported from an OBS directory or the manifest file. After the import, you
can label the data again or modify the labels in ModelArts Data Management.

Modelarts
Usermanual 15 FAQs

2024-04-30 879

For details about how to import data from an OBS directory or manifest file, see .

15.2.7 Why Does Data Fail to Be Imported Using the Manifest
File?

Symptom

Failed to use the manifest file of the published dataset to import data again.

Possible Cause

Data has been changed in the OBS directory of the published dataset, for
example, images have been deleted. Therefore, the manifest file is inconsistent
with data in the OBS directory. As a result, an error occurs when the manifest file
is used to import data again.

Solution
● Method 1 (recommended): Publish a new version of the dataset again and

use the new manifest file to import data.
● Method 2: Modify the manifest file on your local PC, search for data changes

in the OBS directory, and modify the manifest file accordingly. Ensure that the
manifest file is consistent with data in the OBS directory, and then import
data using the new manifest file.

15.2.8 Where Are Labeling Results Stored?
The ModelArts console provides data visualization capabilities, which allows you
to view detailed data and labeling information on the console. To learn more
about the path for storing labeling results, see the following description.

Background

When creating a dataset in ModelArts, set both Input Dataset Path and Output
Dataset Path to OBS.

● Input Dataset Path: OBS path where the raw data is stored.
● Output Dataset Path: Under this path, directories are generated based on

the dataset version after data is labeled in ModelArts and datasets are
published. The manifest files (containing data and labeling information) used
in ModelArts are also stored in this path. For details about the files, see .

Procedure
1. Log in to the ModelArts console and choose Data Management > Datasets.
2. Select your desired dataset and click the triangle icon on the left of the

dataset name to expand the dataset details. You can obtain the OBS path set
for Output Dataset Path.

NO TE

Before obtaining labeling results, ensure that at least one dataset version is available.

Modelarts
Usermanual 15 FAQs

2024-04-30 880

Figure 15-2 Dataset details

3. Log in to the OBS console and locate the directory of the corresponding
dataset version from the OBS path obtained in 2 to obtain the labeling result
of the dataset.

Figure 15-3 Obtaining the labeling result

15.2.9 How Do I Download Labeling Results to a Local PC?
After being published, the labeling information and data in ModelArts datasets are
stored as manifest files in the OBS path set for Output Dataset Path.

To obtain the OBS path, do as follows:

1. Log in to the ModelArts management console and choose Data
Management > Datasets.

2. Locate the target dataset and click the triangle icon on the left of the dataset
name to expand the dataset details. You can obtain the OBS path set for
Output Dataset Path.

3. Log in to the OBS management console and locate the version directory from
the obtained OBS path to obtain the labeling result of the dataset.

To download the labeling results to a local PC, go to the OBS path where the
manifest files are stored and click Download.

Figure 15-4 Downloading labeling results

Modelarts
Usermanual 15 FAQs

2024-04-30 881

15.2.10 Why Cannot Team Members Receive Emails for a
Team Labeling Task?

The possible causes are as follows:

● All dataset data has been labeled. An email can be sent to team members
only if there is unlabeled data in the dataset when the team labeling task is
created.

● Team members receive emails for team labeling tasks. No email will be sent
when you create a labeling team or add members to a labeling team.

● Your email address has not been configured or has been incorrectly
configured. For details about how to configure an email address, see .

● Team members' email addresses are blocked.

15.2.11 Can Two Accounts Concurrently Label One Dataset?
Multiple accounts (annotators) are allowed to concurrently label one dataset.
However, if multiple annotators concurrently label one image, only the labeling of
the last annotator will be used as the labeling result. It is a good practice to label
one image by multiple annotators in turn and save the labeling result of each
annotator promptly.

15.2.12 Can I Delete an Annotator from a Labeling Team with
a Labeling Task Assigned? What Is the Impact on the Labeling
Result After Deletion? If the Annotator Cannot Be Deleted,
Can I Separate the Annotator's Labeling Result?

No annotator cannot be deleted from a labeling team with labeling tasks
assigned.

The labeling result of an annotator can be synchronized to the overall labeling
result only after the annotator's labeling is approved, and the labeling result
cannot be filtered.

15.2.13 How Do I Define a Hard Example in Data Labeling?
Which Samples Are Identified as Hard Examples?

Hard examples are samples that are difficult to identify. Only image classification
and object detection support hard examples.

15.2.14 Can I Add Multiple Labeling Boxes to an Object
Detection Dataset Image?

Yes.

For an object detection dataset, you can add multiple labeling boxes and labels to
an image during labeling. Note that the labeling boxes cannot extend beyond the
image boundary.

Modelarts
Usermanual 15 FAQs

2024-04-30 882

15.2.15 How Do I Merge Two Datasets?
Datasets cannot be merged.

However, you can perform the following operations to merge the data of two
datasets into one dataset.

For example, to merge datasets A and B, do the following:

1. Publish datasets A and B.
2. Obtain the manifest files of the two datasets from the OBS path set for

Output Dataset Path.
3. Create empty dataset C and select an empty OBS folder for Input Dataset

Path.
4. Import the manifest files of datasets A and B to dataset C.

After the import is complete, data in datasets A and B is merged into dataset
C. To use the merged dataset, publish dataset C.

15.2.16 Does Auto Labeling Support Polygons?
No. Polygons cannot be used in auto labeling. Only rectangles can be used in auto
labeling. If a sample is labeled using other bounding boxes, the sample will not be
trained.

15.2.17 What Do the Options for Accepting a Team Labeling
Task Mean?

● All passed: All items, including the rejected ones will pass the review.
● All rejects: All items, including the ones that have passed the review will be

rejected. In this case, the passed items must be labeled and reviewed again in
the next acceptance.

● All remaining items pass: The rejected items are still rejected, and the
remaining items will automatically pass the review.

● All remaining items rejects: The selected items that have passed the review
do not need to be labeled. All the selected items that have been rejected and
the items that have not been selected must be labeled again for acceptance.

15.2.18 Why Are Images Displayed in Different Angles Under
the Same Account?

There are rotation angles of certain images, and the rules of processing such
images vary depending on browsers. The following figures show compatibility with
browsers.

● L indicates the latest version. L3 indicates the latest three stable browser
versions when the product is released.

Modelarts
Usermanual 15 FAQs

2024-04-30 883

● If your browser is of an earlier version, the page display will be adversely
affected, and the system will prompt you to upgrade your browser.

● If your browser is not compatible with the management console, the system
will advise you to upgrade your browser or install a desired browser.

15.2.19 Do I Need to Train Data Again If New Data Is Added
After Auto Labeling Is Complete?

After auto labeling is complete, confirm the labeled data. If you add new data
before confirming the labeled data, all unlabeled data will be automatically
labeled again. If you add new data after confirming the labeled data, the data
must be trained again.

15.2.20 Why Does the System Display a Message Indicating
My Label Fails to Save on ModelArts?

Symptom

Take the Google Chrome browser as an example. When an image is labeled for
the first time, the system displays a message in the upper right corner, indicating
that the label fails to save. But when the same image is labeled the second time, a
message is displayed, indicating that the label is saved. This issue occurs
occasionally. When this issue occurs, the request status is
(failed)net::ERR_ADDRESS_IN_USE, which is obtained by pressing F12 on the
Google Chrome browser and clicking Network.

Possible Cause

The local network is faulty, for example, the network is unstable, or the network
configuration is incorrect.

Solution
1. Use a stable network and try again.
2. Initialize the network configuration. To do so, open Command Prompt as an

administrator and execute the netsh winsock reset command. Once the
initialization is complete, restart your computer and log in to the data
labeling platform again.

15.2.21 Can One Label By Identified Among Multiple Labels?
After a model is trained with multiple labels and deployed as a real-time service,
all the labels are identified. If only one type of label needs to be identified, train a
model dedicated for identifying the label. To speed up the label identification,
select a high flavor for deploying the model.

Modelarts
Usermanual 15 FAQs

2024-04-30 884

15.2.22 Why Are Newly Added Images Not Automatically
Labeled After Data Amplification Is Enabled?

After data amplification is enabled, images newly added in image classification
datasets cannot be automatically labeled, but those added in object detection
datasets can be.

15.2.23 Why Cannot Videos in a Video Dataset Be Displayed
or Played?

If the issue occurs, check the video format. Only MP4 videos can be displayed and
played.

15.2.24 Why All the Labeled Samples Stored in an OBS Bucket
Are Displayed as Unlabeled in ModelArts After the Data
Source Is Synchronized?

This issue occurs if automatic encryption is enabled in the OBS bucket. To resolve
this issue, create an OBS bucket and upload data to it, or disable bucket
encryption and upload data to it again.

15.2.25 How Do I Use Soft-NMS to Reduce Bounding Box
Overlapping?

YOLOv3 algorithms subscribed to in AI Gallery can use Soft-NMS to reduce
overlapped bounding boxes. No official information has been released to show
that YOLOv5 algorithms support this function. Use this function in custom
algorithms.

15.2.26 Why ModelArts Image Labels Are Lost?
The default labeling job is deleted. As a result, the labels are deleted.

15.2.27 How Do I Add Images to a Validation or Training
Dataset?

You are not allowed to manually add images to a training or validation dataset,
but can only set a training and validation ratio. Then, the system randomly
allocates the images to the training and validation datasets based on the ratio.

Setting a Training and Validation Ratio
When you publish a dataset, only the dataset of the image classification, object
detection, text classification, or sound classification type supports data splitting.

By default, data splitting is disabled. After this function is enabled, set a training
and validation ratio.

Enter a value ranging from 0 to 1 for the training set ratio. After the training set
ratio is set, the validation set ratio is determined. The sum of the training set ratio
and the validation set ratio is 1.

Modelarts
Usermanual 15 FAQs

2024-04-30 885

The training set ratio is the ratio of sample data used for model training. The
validation set ratio is the ratio of the sample data used for model validation. The
training and validation ratios affect the performance of training templates.

15.2.28 Can I Customize Labels for an Object Detection
Dataset?

Yes. You can add custom labels to the label set of an object detection dataset by
modifying the dataset.

Figure 15-5 Modify Dataset

15.2.29 What ModelArts Data Management Can Be Used for?
The functions provided ModelArts data management vary depending on the type
of the dataset.

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
re
Engin
eerin
g

Files Imag
e
classif
icatio
n

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Objec
t
detec
tion

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Modelarts
Usermanual 15 FAQs

2024-04-30 886

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
re
Engin
eerin
g

Imag
e
segm
entati
on

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

N/A

Soun
d
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
parag
raph
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Name
d
entity
recog
nition

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text
triplet

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Video
s

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Free
forma
t

Supp
orted

N/A Supp
orted

Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Table
s

Table
s

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Modelarts
Usermanual 15 FAQs

2024-04-30 887

15.2.30 Will My Old-Version Datasets Be Cleared After the Old
Version Is Discontinued? The existing datasets and the ones
newly created in the old version will be retained after the old
version is discontinued.

The new version is compatible with the old version. However, the datasets created
in the new version cannot be displayed in the dataset list of the old version.

15.2.31 Why Is My New Dataset Version Unavailable in
Versions?

The version list can be zoomed in or out. Zoom out the page before searching.

Click the name of the target dataset to go to the dataset overview page. Then,
zoom out the Versions page.

15.2.32 How Do I View the Size of a Dataset?
Only the number of samples in a dataset is collected in data management. There
is no entrance to view the dataset size.

15.2.33 How Do I View Labeling Details of a New Dataset?
1. Log in to the ModelArts management console and choose Data

Management > Datasets from the navigation pane on the left.
2. Locate the target dataset by name and click its name. The Dashboard tab

page is displayed.
3. On the Dashboard tab page, click View Details in the Labeling Information

area.

Modelarts
Usermanual 15 FAQs

2024-04-30 888

15.2.34 How Do I Export Labeled Data?
Only datasets of image classification, object detection, and image segmentation
types can be exported.

● For image classification datasets, only the label files in TXT format can be
exported.

● For object detection datasets, only XML label files in Pascal VOC format can
be exported.

● For image segmentation datasets, only XML label files in Pascal VOC format
and mask images can be exported.

For other types of datasets, use to publish the datasets.

15.2.35 Why Cannot I Find My Newly Created Dataset?
The datasets of the new version are not displayed on the dataset page of the old
version. To view the datasets of the new version, switch to the dataset page of the
new version.

15.2.36 What Do I Do If the Database Quota Is Incorrect?
The quota for the datasets of both the old and new versions is 100. On the
dataset page of the new version, all created datasets are displayed. However, the
dataset page of the old version does not display the new-version datasets. Go to
the dataset page of the new version to view the datasets.

Modelarts
Usermanual 15 FAQs

2024-04-30 889

15.2.37 How Do I Split a Dataset?
When you publish a dataset, only the dataset of the image classification, object
detection, text classification, or sound classification type supports data splitting.

By default, data splitting is disabled. After this function is enabled, set the training
and validation ratios.

Enter a value ranging from 0 to 1 for the training set ratio. After the training set
ratio is set, the validation set ratio is determined. The sum of the training set ratio
and the validation set ratio is 1.

The training set ratio is the ratio of sample data used for model training. The
validation set ratio is the ratio of the sample data used for model validation. The
training and validation ratios affect the performance of training templates.

15.2.38 How Do I Delete a Dataset Image?
1. Log in to the ModelArts management console. In the navigation pane, choose

Data Management > Label Data. The data labeling list is displayed. Click the
dataset from which you want to delete images. The labeling details page is
displayed.

2. On the All statuses, Unlabeled, or Labeled tab page, select the images to be

deleted or click Select Images on Current Page, and click to delete
them. In the displayed dialog box, select or deselect Delete the source files
from OBS as required. After confirmation, click Yes to delete the images.
If a tick is displayed in the upper left corner of an image, the image is

selected. If no image is selected on the page, is unavailable.

Figure 15-6 Deleting a dataset image

15.2.39 Why Is There No Sample in the ModelArts Dataset
Downloaded from AI Gallery and Then an OBS Bucket?

Check the format of the data downloaded from AI Gallery. For example,
compressed packages and Excel files will be ignored. The following table lists the
supported formats.

Modelarts
Usermanual 15 FAQs

2024-04-30 890

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
re
Engin
eerin
g

Files Imag
e
classif
icatio
n

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Objec
t
detec
tion

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Imag
e
segm
entati
on

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

N/A

Soun
d
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
parag
raph
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Name
d
entity
recog
nition

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text
triplet

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Modelarts
Usermanual 15 FAQs

2024-04-30 891

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
re
Engin
eerin
g

Video
s

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Free
forma
t

Supp
orted

N/A Supp
orted

Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Table
s

Table
s

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

15.3 Notebook (New Version)

15.3.1 Constraints

15.3.1.1 Is sudo Privilege Escalation Supported?

For security purposes, notebook instances do not support sudo privilege
escalation.

15.3.1.2 Does ModelArts Support apt-get?

Terminal in ModelArts DevEnviron does not support apt-get. You can use a
custom image to support it.

15.3.1.3 Is the Keras Engine Supported?

Notebook instances in DevEnviron support the Keras engine. The Keras engine is
not supported in job training and model deployment (inference).

Keras is an advanced neural network API written in Python. It is capable of
running on top of TensorFlow, CNTK, or Theano. Notebook instances in
DevEnviron support tf.keras.

How Do I View Keras Versions?
1. On the ModelArts management console, create a notebook instance with

image TensorFlow-1.13 or TensorFlow-1.15.

2. Access the notebook instance. In JupyterLab, run !pip list to view Keras
versions.

Modelarts
Usermanual 15 FAQs

2024-04-30 892

Figure 15-7 Viewing Keras versions

15.3.1.4 Does ModelArts Support the Caffe Engine?

The Python 2 environment of ModelArts supports Caffe, but the Python 3
environment does not support it.

15.3.1.5 Can I Install MoXing in a Local Environment?

No. MoXing can be used only on ModelArts.

15.3.1.6 Can Notebook Instances Be Remotely Logged In?

The notebook instances of the new version can be remotely logged in. To do so,
enable remote SSH when you create the notebook instances. Remotely log in to a
notebook instance from a local IDE through or .

15.3.2 Data Upload or Download

15.3.2.1 How Do I Upload a File from a Notebook Instance to OBS or
Download a File from OBS to a Notebook Instance?

In a notebook instance, you can call the ModelArts MoXing API or SDK to
exchange data with OBS for uploading a file to OBS or downloading a file from
OBS to the notebook instance.

Modelarts
Usermanual 15 FAQs

2024-04-30 893

Figure 15-8 Uploading or downloading a file

Method 1: Using MoXing to Upload and Download a File
Developed by the ModelArts team, MoXing is a distributed training acceleration
framework built on open-source deep learning engines such as TensorFlow and
PyTorch. MoXing makes model coding easier and more efficient.

MoXing provides a set of file object APIs for reading and writing OBS files.

Sample code:

import moxing as mox

Download the OBS folder sub_dir_0 from OBS to a notebook instance.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/home/ma-user/work/sub_dir_0')
Download the OBS file obs_file.txt from OBS to a notebook instance.
mox.file.copy('obs://bucket_name/obs_file.txt', '/home/ma-user/work/obs_file.txt')

Upload the OBS folder sub_dir_0 from a notebook instance to OBS.
mox.file.copy_parallel('/home/ma-user/work/sub_dir_0', 'obs://bucket_name/sub_dir_0')
Upload the OBS file obs_file.txt from a notebook instance to OBS.
mox.file.copy('/home/ma-user/work/obs_file.txt', 'obs://bucket_name/obs_file.txt')

Method 2: Using SDK to Upload and Download a File
Call the ModelArts SDK for downloading a file from OBS.

Sample code: Download file1.txt from OBS to /home/ma-user/work/ in the
notebook instance. All the bucket name, folder name, and file name are
customizable.

from modelarts.session import Session
session = Session()
session.obs.download_file(src_obs_file="obs://bucket-name/dir1/file1.txt", dst_local_dir="/home/ma-user/
work/")

Call the ModelArts SDK for downloading a folder from OBS.

Sample code: Download dir1 from OBS to /home/ma-user/work/ in the
notebook instance. The bucket name and folder name are customizable.

from modelarts.session import Session
session = Session()
session.obs.download_dir(src_obs_dir="obs://bucket-name/dir1/", dst_local_dir="/home/ma-user/work/")

Call the ModelArts SDK for uploading a file to OBS.

Modelarts
Usermanual 15 FAQs

2024-04-30 894

Sample code: Upload file1.txt in the notebook instance to OBS bucket obs://
bucket-name/dir1/. All the bucket name, folder name, and file name are
customizable.

from modelarts.session import Session
session = Session()
session.obs.upload_file(src_local_file='/home/ma-user/work/file1.txt', dst_obs_dir='obs://bucket-name/dir1/')

Call the ModelArts SDK for uploading a folder to OBS.

Sample code: Upload /work/ in the notebook instance to obs://bucket-name/
dir1/work/ of bucket-name. The bucket name and folder name are customizable.

from modelarts.session import Session
session = Session()
session.obs.upload_dir(src_local_dir='/home/ma-user/work/', dst_obs_dir='obs://bucket-name/dir1/')

15.3.2.2 How Do I Upload Local Files to a Notebook Instance?

For details about how to upload files to JupyterLab in notebook of the new
version, see Uploading Files to JupyterLab.

15.3.2.3 How Do I Import Large Files to a Notebook Instance?
● Large files (files larger than 100 MB)

Use OBS to upload large files. To do so, use OBS Browser to upload a local file
to an OBS bucket and use ModelArts SDK to download the file from OBS to a
notebook instance.

For details about how to use ModelArts SDK or MoXing to download files
from OBS, see How Do I Upload a File from a Notebook Instance to OBS
or Download a File from OBS to a Notebook Instance?

● Folders

Compress a folder into a package and upload the package in the same way as
uploading a large file. After the package is uploaded to a notebook instance,
decompress it on the Terminal page.
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream
search engines.

15.3.2.4 Where Will the Data Be Uploaded to?

If you use OBS to store the notebook instance, after you click upload, the data is
directly uploaded to the target OBS path, that is, the OBS path specified when the
notebook instance is created.

15.3.2.5 How Do I Download Files from a Notebook Instance to a Local
Computer?

For details about how to download files from JupyterLab in notebook of the new
version, see Downloading a File from JupyterLab to a Local Path.

Modelarts
Usermanual 15 FAQs

2024-04-30 895

15.3.2.6 How Do I Copy Data from Development Environment Notebook A to
Notebook B?

Data cannot be directly copied from notebook A to notebook B. To copy data, do
as follows:

1. Upload the data of notebook A to OBS.
2. Download data from OBS to notebook B.

For details about how to upload and download files, see How Do I Upload a File
from a Notebook Instance to OBS or Download a File from OBS to a
Notebook Instance?

15.3.2.7 What Can I Do If a File Fails to Be Uploaded to a Notebook
Instance?

Symptom
● The file upload process is fast but unsuccessful.
● When a file is uploaded to a notebook instance, the uploading is consistently

in progress on the GUI. When a file is uploaded through MoXing, an error
occurred. When an OBS file is uploaded, no bucket is displayed, and the
message "Obtaining data" is displayed.

● When you click to upload files on the JupyterLab page, "Failed to obtain
data" is displayed.

Figure 15-9 OBS file upload

When you check the notebook log (usually notebook-<date>.log in /
home/ma-user/log/), the error message List objects failed, obs_client resp:
{'status' : 403, 'reason' : 'Forbidden' , 'errorCode' : 'AccessDenied' is
displayed.

Possible Cause
The first symptom is because that the size of a file is limited when it is uploaded
through the intranet.

The possible causes of other symptoms are as follows:

Modelarts
Usermanual 15 FAQs

2024-04-30 896

● OBS access is not authorized.
● You do not have the permission to access the OBS bucket or file.
● The OBS bucket has been deleted.

Solution
● Check agency authorization.

Go to the Global Configuration page and check whether you have the OBS
access permission. If you do not, see "Configuring Access Authorization
(Global Configuration)".

● Check whether you have the permission to access the OBS bucket.
Go to the OBS console, access the target bucket, and check if there is an error
showing that you do not have the access permission.

● Go to the OBS console and check whether the OBS bucket exists.

15.3.2.8 Failed to View the Local Mount Point of a Dynamically Mounted
OBS Parallel File System in JupyterLab of a Notebook Instance

Symptom
When an OBS parallel file system is dynamically mounted to a notebook instance,
the local mount directory is /data/demo-yf/, which, however, is not displayed in
the navigation pane on the left of JupyterLab.

Figure 15-10 Local mount directory

Figure 15-11 JupyterLab of notebook

Possible Causes
The local mount directory is the demo-yf folder created in the ~/data directory of
the notebook container. However, the default path of the navigation pane on the
left of JupyterLab is the ~/work directory, which means that /data and /work are
of the same level. As a result, the directory cannot be displayed in JupyterLab.

Modelarts
Usermanual 15 FAQs

2024-04-30 897

After Terminal is opened, the default directory is ~work. Run the following
commands to go to the ~data directory and view the local mount directory:

(PyTorch-1.8) [ma-user work]$cd
(PyTorch-1.8) [ma-user ~]$cd /data
(PyTorch-1.8) [ma-user data]$ls

15.3.3 Data Storage

15.3.3.1 How Do I Rename an OBS File?
OBS files cannot be renamed on the OBS console. To rename an OBS file, call a
MoXing API in an existing or newly created notebook instance.

The following shows an example:

Rename obs_file.txt to obs_file_2.txt.
import moxing as mox
mox.file.rename('obs://bucket_name/obs_file.txt', 'obs://bucket_name/obs_file_2.txt')

15.3.3.2 Do Files in /cache Still Exist After a Notebook Instance is Stopped or
Restarted? How Do I Avoid a Restart?

Temporary files are stored in the /cache directory and will not be saved after the
notebook instance is stopped or restarted. Data stored in the /home/ma-user/
work directory will be retained after the notebook instance is stopped or
restarted.

To avoid a restart, do not execute heavy-load training jobs that consume large
amounts of resources in the development environment.

15.3.3.3 How Do I Use the pandas Library to Process Data in OBS Buckets?

Step 1 Download data from OBS to a notebook instance. For details, see Downloading a
File from JupyterLab to a Local Path.

Step 2 Process pandas data by following the instructions provided in pandas User Guide.

----End

15.3.4 Environment Configurations

15.3.4.1 How Do I Check the CUDA Version Used by a Notebook Instance?
Run the following command to view the CUDA version of the target notebook
instance:

ll /usr/local | grep cuda

The following shows an example.

Modelarts
Usermanual 15 FAQs

2024-04-30 898

https://pandas.pydata.org/docs/user_guide/index.html#user-guide

Figure 15-12 Checking the CUDA version in the current environment

In the preceding example, the CUDA version is 10.2.

15.3.4.2 How Do I Enable the Terminal Function in DevEnviron of ModelArts?
1. Log in to the ModelArts management console, and choose DevEnviron >

Notebooks.
2. Create a notebook instance. When the instance is running, click Open in the

Operation column. The JupyterLab page is displayed.
3. Choose File > New > Terminal. The Terminal page is displayed.

Figure 15-13 Going to the Terminal page

15.3.4.3 How Do I Install External Libraries in a Notebook Instance?
Multiple environments such as Jupyter and Python have been integrated into
ModelArts notebook to support many frameworks, including TensorFlow,
MindSpore, PyTorch, and Spark. You can use pip install to install external libraries
in Jupyter Notebook or on the Terminal page.

Installing External Libraries in Jupyter Notebook
You can use JupyterLab to install Shapely in the TensorFlow-1.8 environment.

1. Open a notebook instance and access the Launcher page.
2. In the Notebook area, click TensorFlow-1.8 and create an IPYNB file.
3. In the new notebook instance, enter the following command in the code input

bar:
!pip install Shapely

Installing External Libraries on the Terminal Page
You can use pip to install external libraries in the TensorFlow-1.8 environment on
the Terminal page. For example, to install Shapely:

1. Open a notebook instance and access the Launcher page.
2. In the Other area, click Terminal and create a terminal file.
3. Enter the following commands in the code input box to obtain the kernel of

the current environment and activate the Python environment on which the
installation depends:

Modelarts
Usermanual 15 FAQs

2024-04-30 899

cat /home/ma-user/README
source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8

NO TE

To install TensorFlow in another Python environment, replace TensorFlow-1.8 in the
command with the target engine.

Figure 15-14 Activating the environment

4. Run the following command in the code input box to install Shapely:
pip install Shapely

15.3.4.4 How Do I Obtain the External IP Address of My Local PC?

Search for "IP address lookup" in a mainstream search engine.

Figure 15-15 IP address lookup

15.3.4.5 How Can I Resolve Abnormal Font Display on a ModelArts Notebook
Accessed from iOS?

Symptom

When a ModelArts notebook is accessed from iOS, the font is displayed
abnormally.

Solution

Set fontFamily of Terminal to Menlo.

Procedure

Step 1 Log in to the ModelArts management console and choose DevEnviron >
Notebook.

Modelarts
Usermanual 15 FAQs

2024-04-30 900

Step 2 Locate the row containing the target notebook instance and click Open in the
Operation column. The JupyterLab page is displayed.

Step 3 On the JupyterLab page, choose Settings > Advanced Settings Editor. The
Settings tab page is displayed.

Step 4 Choose Terminal in the navigation pane on the left and set fontFamily to Menlo.

Modelarts
Usermanual 15 FAQs

2024-04-30 901

----End

15.3.4.6 Is There a Proxy for Notebook? How Do I Disable It?

There is a proxy for Notebook.

Run the env|grep proxy command to obtain the notebook proxy.

Run the unset https_proxy unset http_proxy command to disable the proxy.

15.3.5 Notebook Instances

15.3.5.1 What Do I Do If I Cannot Access My Notebook Instance?

Troubleshoot the issue based on error code.

A Black Screen Is Displayed When a Notebook Instance Is Opened

A black screen is displayed after a notebook instance is opened, which is caused by
a proxy issue. Change the proxy to rectify the fault.

A Blank Page Is Displayed When a Notebook Instance Is Opened
● If a blank page is displayed after a notebook instance is opened, clear the

browser cache and open the notebook instance again.

● Check whether the ad filtering component is installed for the browser. If yes,
disable the component.

Modelarts
Usermanual 15 FAQs

2024-04-30 902

Error 404
If this error is reported when an IAM user creates an instance, the IAM user does
not have the permissions to access the corresponding storage location (OBS
bucket).

Solution

1. Log in to the OBS console using the primary account and grant access
permissions for the OBS bucket to the IAM user.

2. After the IAM user obtains the permissions, log in to the ModelArts console,
delete the instance, and use the OBS path to create a notebook instance.

Error 503
If this error is reported, it is possible that the instance is consuming too many
resources. If this is the case, stop the instance and restart it.

Error 500
Notebook JupyterLab cannot be opened, and error 500 is reported. The possible
cause is that the disk space in the work directory is used up. In this case, identify
the fault cause and clear the disk by referring to .

Error "This site can't be reached"
After a notebook instance is created, click Open in the Operation column. The
error message shown in the following figure is displayed.

To solve the problem, copy the domain name of the page, add it to the Do not
use proxy server for addresses beginning with text box, and save the settings.

Modelarts
Usermanual 15 FAQs

2024-04-30 903

15.3.5.2 What Should I Do When the System Displays an Error Message
Indicating that No Space Left After I Run the pip install Command?

Symptom
In the notebook instance, error message "No Space left..." is displayed after the
pip install command is run.

Solution
You are advised to run the pip install --no-cache ** command instead of the pip
install ** command. Adding the --no-cache parameter can solve such problem.

15.3.5.3 What Do I Do If "Read timed out" Is Displayed After I Run pip
install?

Symptom
After I run pip install in a notebook instance, the system displays error message
"ReadTimeoutError..." or "Read timed out...".

Modelarts
Usermanual 15 FAQs

2024-04-30 904

Solution
Run pip install --upgrade pip and then pip install.

15.3.5.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the
Error Message "save error" Is Displayed?

If the notebook instance can run the code but cannot save it, the error message
"save error" is displayed when you save the file. In most cases, this error is caused
by a security policy of Web Application Firewall (WAF).

On the current page, some characters in your input or output of the code are
intercepted because they are considered to be a security risk. Submit a service
ticket and contact customer service to check and handle the problem.

15.3.5.5 When the SSH Tool Is Used to Connect to a Notebook Instance,
Server Processes Are Cleared, but the GPU Usage Is Still 100%

This fault occurs because code execution is suspended and the GPU memory is not
released. Alternatively, the program is cleared due to memory overflow during
code execution. In this case, you need to release the GPU memory and restart the
instance. To avoid unsaved code caused by the end of processes, you are advised
to periodically save the code to an OBS bucket or the ./work directory of the
container.

15.3.6 Code Execution

15.3.6.1 What Do I Do If a Notebook Instance Won't Run My Code?
If a notebook instance fails to execute code, you can locate and rectify the fault as
follows:

1. If the execution of a cell is suspended or lasts for a long time (for example,
the execution of the second and third cells in Figure 15-16 is suspended or
lasts for a long time, causing execution failure of the fourth cell) but the
notebook page still responds and other cells can be selected, click interrupt
the kernel highlighted in a red box in the following figure to stop the
execution of all cells. The notebook instance retains all variable spaces.

Modelarts
Usermanual 15 FAQs

2024-04-30 905

Figure 15-16 Stopping all cells

2. If the notebook page does not respond, close the notebook page and the
ModelArts console. Then, open the ModelArts console and access the
notebook instance again. The notebook instance retains all the variable
spaces that exist when the notebook instance is unavailable.

3. If the notebook instance still cannot be used, access the Notebook page on
the ModelArts console and stop the notebook instance. After the notebook
instance is stopped, click Start to restart the notebook instance and open it.
The instance will have preserved all the spaces for the variables that were
unable to run.

15.3.6.2 Why Does the Instance Break Down When dead kernel Is Displayed
During Training Code Running?

The notebook instance breaks down during training code running due to
insufficient memory caused by large data volume or excessive training layers.

After this error occurs, the system automatically restarts the notebook instance to
fix the instance breakdown. In this case, only the breakdown is fixed. If you run
the training code again, the failure will still occur. To solve the problem of
insufficient memory, you are advised to create a new notebook instance and use a
resource pool of higher specifications, such as a dedicated resource pool, to run
the training code. An existing notebook instance that has been successfully
created cannot be scaled up using resources with higher specifications.

15.3.6.3 What Do I Do If cudaCheckError Occurs During Training?

Symptom
The following error occurs when the training code is executed in a notebook:

cudaCheckError() failed : no kernel image is available for execution on the device

Possible Cause
Parameters arch and code in setup.py have not been set to match the GPU
compute power.

Modelarts
Usermanual 15 FAQs

2024-04-30 906

Solution

For Tesla V100 GPUs, the GPU compute power is -gencode
arch=compute_70,code=[sm_70,compute_70]. Set the compilation parameters in
setup.py accordingly.

15.3.6.4 What Should I Do If DevEnviron Prompts Insufficient Space?

If space is insufficient, use notebook instances of the EVS type.

Upload code and data to an OBS bucket for the original notebook instance by
referring to How Do I Upload a File from a Notebook Instance to OBS or
Download a File from OBS to a Notebook Instance?. Then, create a notebook
instance of the EVS type, and download files from OBS to the new notebook
instance.

15.3.6.5 Why Does the Notebook Instance Break Down When
opencv.imshow Is Used?

Symptom

When opencv.imshow is used in a notebook instance, the notebook instance
breaks down.

Possible Causes

The cv2.imshow function in OpenCV malfunctions in a client/server environment
such as Jupyter. However, Matplotlib does not have this problem.

Solution

Display images by referring to the following example. Note that OpenCV displays
BGR images while Matplotlib displays RGB images.

Python:

from matplotlib import pyplot as plt
import cv2
img = cv2.imread('Image path')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('my picture')
plt.show()

15.3.6.6 Why Cannot the Path of a Text File Generated in Windows OS Be
Found In a Notebook Instance?

Symptom

When a text file generated in Windows is used in a notebook instance, the text
content cannot be read and an error message may be displayed indicating that
the path cannot be found.

Modelarts
Usermanual 15 FAQs

2024-04-30 907

Possible Causes
The notebook instance runs Linux and its line feed format (CRLF) differs from that
(LF) in Windows.

Solution
Convert the file format to Linux in your notebook instance.

Shell:

dos2unix File name

15.3.6.7 What Do I Do If Files Fail to Be Saved in JupyterLab?

Symptom
When a file is saved in JupyterLab, an error message is displayed.

Possible Cause
● A third-party plug-in has been installed on the browser, and the proxy

intercepts the request. As a result, the file cannot be saved.
● The runtime file in the notebook is too large.
● You have stayed on the Jupyter page for too long.
● There is a network error. Check whether a network proxy is connected.

Solution
● Disable the plug-in and save the file again.
● Reduce the file size.
● Open the Jupyter page again.
● Check the network.

15.3.7 Failures to Access the Development Environment
Through VS Code

15.3.7.1 What Do I Do If the VS Code Window Is Not Displayed?

Possible Cause
VS Code is not installed or the installed version is outdated.

Modelarts
Usermanual 15 FAQs

2024-04-30 908

Solution
Download and install VS Code. (Windows users click Windows. Users of other
operating systems click another OS.) After the installation, click refresh to
complete the connection.

15.3.7.2 What Do I Do If a Remote Connection Failed After VS Code Is
Opened?

NO TICE

If your local PC runs Linux, see possible cause 2.

Possible Cause 1
Automatically installing the VS Code plug-in failed.

Solution
Method 1: Verify that the VS Code network is accessible. Search for ModelArts in
the VS Code marketplace. If the following information is displayed, a network
error occurred. In this case, switch to another proxy or use another network.

Modelarts
Usermanual 15 FAQs

2024-04-30 909

Search for ModelArts again. If the following information is displayed, the network
is normal. Then, switch back to the ModelArts management console and try to
access VS Code again.

Method 2: If the error message shown in the following figure is displayed, the VS
Code version is outdated. Upgrade the VS Code to 1.57.1 or the latest version.

Possible Cause 2
The local PC runs Linux, and VS Code is installed as user root. When you access VS
Code, the information "It is not recommended to run Code as root user" is
displayed.

Modelarts
Usermanual 15 FAQs

2024-04-30 910

Solution
Install VS Code as a non-root user, return to the ModelArts management console,
and click Access VS Code.

Modelarts
Usermanual 15 FAQs

2024-04-30 911

15.3.7.3 Basic Problems Causing the Failures to Access the Development
Environment Through VS Code

If the VS Code fails to connect to the development environment, perform the
following steps:

Step 1 Check whether the plug-in package is of the latest version. Search for the plug-in
in extensions and check whether it needs to be upgraded.

Step 2 Check whether the instance is running. If yes, go to the next step.

Step 3 Run the following command in VS Code's Terminal to connect to the remote
development environment:
ssh -tt -o StrictHostKeyChecking=no -i ${IdentityFile} ${User}@${HostName} -p ${Port}

Parameters:

Modelarts
Usermanual 15 FAQs

2024-04-30 912

- IdentityFile: path to the local key

- User: username, for example, ma-user

- HostName: IP address

- Port: port number

If the connection is successful, go to the next step.

Step 4 Check whether the configuration is correct. If yes, go to the next step.

Check the config file.

HOST remote-dev
 hostname <instance connection host>
 port <instance connection port>
 user ma-user
 IdentityFile ~/.ssh/test.pem
 StrictHostKeyChecking no
 UserKnownHostsFile /dev/null
 ForwardAgent yes

Step 5 Check the key file. You are advised to save the key file in C:\Users\xx.ssh and
ensure that the file does not contain Chinese characters.

Step 6 If the fault persists, rectify it by referring to the FAQs in follow-up sections.

----End

Modelarts
Usermanual 15 FAQs

2024-04-30 913

15.3.7.4 What Do I Do If Error Message "Could not establish connection to
xxx" Is Displayed During a Remote Connection?

Symptom

Possible Cause
Establishing a remote SSH connection to an instance through VS Code failed.

Solution
Close the displayed dialog box, view the error information in OUTPUT, and rectify
the fault by referring to the troubleshooting methods provided in the following
sections.

15.3.7.5 What Do I Do If the Connection to a Remote Development
Environment Remains in "Setting up SSH Host xxx: Downloading VS Code
Server locally" State for More Than 10 Minutes?

Symptom

Modelarts
Usermanual 15 FAQs

2024-04-30 914

Possible Cause
The local network is faulty. As a result, it takes a long time to automatically install
the VS Code server remotely.

Solution
Manually install the VS Code server.

Step 1 Obtain the VS Code commit ID.

Step 2 Download the VS Code server package of the required version. Select Arm or x86
based on the CPU architecture of the development environment.

NO TE

Replace ${commitID} in the following link with the commit ID obtained in 1.

● For Arm, download vscode-server-linux-arm64.tar.gz.
https://update.code.visualstudio.com/commit:${commitID}/server-linux-
arm64/stable

● For x86, download vscode-server-linux-x64.tar.gz.
https://update.code.visualstudio.com/commit:${commitID}/server-linux-x64/
stable

Step 3 Access the remote environment.

Switch to Terminal in VS Code.

Modelarts
Usermanual 15 FAQs

2024-04-30 915

Run the following command in VS Code Terminal to access the remote
development environment:

ssh -tt -o StrictHostKeyChecking=no -i ${IdentityFile} ${User}@${HostName} -p ${Port}

Parameters:

- IdentityFile: Path to the local key

- User: Username, for example, ma-user

- HostName: IP address

- Port: Port number

Step 4 Manually install the VS Code server.

Run the following commands on the VS Code terminal to clear the residual data
(replace ${commitID} in the commands with the commit ID obtained in 1):

rm -rf /home/ma-user/.vscode-server/bin/${commitID}/*
mkdir -p /home/ma-user/.vscode-server/bin/${commitID}

Upload the VS Code server package to the development environment.

exit
scp -i xxx.pem -P 31205 Local path to the VS Code server package ma-user@xxx:/home/ma-user/.vscode-
server/bin
ssh -tt -o StrictHostKeyChecking=no -i ${IdentityFile} ${User}@${HostName} -p ${Port}

Parameters:

- IdentityFile: Path to the local key

- User: Username, for example, ma-user

- HostName: IP address

- Port: Port number

Take Arm as an example. Decompress the VS Code server package to
$HOME/.vscode-server/bin. Replace ${commitID} in the command with the
commit ID obtained in 1.

Modelarts
Usermanual 15 FAQs

2024-04-30 916

cd /home/ma-user/.vscode-server/bin
tar -zxf vscode-server-linux-arm64.tar.gz
mv vscode-server-linux-arm64/* ${commitID}

Step 5 Establish the remote connection again.

----End

15.3.7.6 What Do I Do If the Connection to a Remote Development
Environment Remains in the State of "Setting up SSH Host xxx:
Downloading VS Code Server locally" for More Than 10 Minutes?

Symptom

Possible Cause
Logs show that vscode-scp-done.flag has been uploaded locally, but it is not
received on the remote end.

Solution
Close all VS Code windows, return to the ModelArts management console, and
click Access VS Code.

Modelarts
Usermanual 15 FAQs

2024-04-30 917

15.3.7.7 What Do I Do If the Connection to a Remote Development
Environment Remains in the State of "ModelArts Remote Connect:
Connecting to instance xxx..." for More Than 10 Minutes?

Symptom

Solution
Click Cancel, return to the ModelArts management console, and click Access VS
Code.

15.3.7.8 What Do I Do If a Remote Connection Is in the Retry State?

Symptom

Modelarts
Usermanual 15 FAQs

2024-04-30 918

Possible Cause
Downloading the VS Code server failed before, leading to residual data. As a
result, new download cannot be performed.

Solution
Method 1 (performed locally): Open the command panel (Ctrl+Shift+P for
Windows and Cmd+Shift+P for macOS), search for Kill VS Code Server on Host,
and locate the affected instance, which will be automatically cleared. Then,
establish the connection again.

Figure 15-17 Clearing the affected instance

Method 2 (performed remotely): Delete the files that are being used in /
home/ma-user/.vscode-server/bin/ on the VS Code terminal. Then, establish the
connection again.
ssh -tt -o StrictHostKeyChecking=no -i ${IdentityFile} ${User}@${HostName} -p ${Port}
rm -rf /home/ma-user/.vscode-server/bin/

Parameters:

- IdentityFile: Path to the local key

- User: Username, for example, ma-user

- HostName: IP address

- Port: Port number

Modelarts
Usermanual 15 FAQs

2024-04-30 919

NO TE

The preceding methods can also be used to resolve issues related to the VS Code server.

15.3.7.9 What Do I Do If Error Message "The VS Code Server failed to start"
Is Displayed?

Symptom

Solution

Step 1 Check whether the VS Code version is 1.65.0 or later. If so, check the Remote-SSH
version. If the version is earlier than 0.76.1, upgrade Remote-SSH.

Step 2 Open the command panel (Ctrl+Shift+P for Windows and Cmd+Shift+P for
macOS), search for Kill VS Code Server on Host, and locate the affected instance,
which will be automatically cleared. Then, establish the connection again.

Modelarts
Usermanual 15 FAQs

2024-04-30 920

Figure 15-18 Clearing the affected instance

----End

15.3.7.10 What Do I Do If Error Message "Permissions for 'x:/xxx.pem' are
too open" Is Displayed?

Symptom

Modelarts
Usermanual 15 FAQs

2024-04-30 921

Possible Cause
Possible cause 1: The key file is not stored in the specified path. For details, see the
security restrictions or VS Code document. Resolve this issue by referring to
solution 1.

Possible cause 2: For macOS or Linux, the permission on the key file or the folder
where the key is stored may be incorrect. Resolve this issue by referring to solution
2.

Solution
Solution 1:

Place the key file in a specified path or its sub-path:

Windows: C:\Users\{{user}}

macOS or Linux: Users/{{user}}

Solution 2:

Check the file and folder permissions.

15.3.7.11 What Do I Do If Error Message "Bad owner or permissions on
C:\Users\Administrator/.ssh/config" or "Connection permission denied
(publickey)" Is Displayed?

Symptom
The following error message is displayed: "Bad owner or permissions on C:\Users
\Administrator/.ssh/config" or "Connection permission denied (publickey). Please

Modelarts
Usermanual 15 FAQs

2024-04-30 922

https://github.com/PowerShell/Win32-OpenSSH/wiki/Security-protection-of-various-files-in-Win32-OpenSSH
https://code.visualstudio.com/docs/remote/troubleshooting#_quick-start-using-ssh-keys
https://code.visualstudio.com/docs/remote/troubleshooting#_local-ssh-file-and-folder-permissions

make sure the key file is correctly selected and the file permission is correct. You
can view the instance keypair information on ModelArts console."

Possible Causes
The permission to the SSH folder has been granted to other users, not only to the
current Windows user, or the current user does not have the permission. In these
cases, you only need to modify the permission.

Solution
1. Find the SSH folder, which is typically located in C:\Users, for example,

C:\Users\xxx.

NO TE

The file name in C:\Users must be the same as the Windows login username.

2. Right-click the folder and choose Properties. Then, click the Security tab.
3. Click Advanced. In the displayed window, click Disable inheritance. Then, in

the Block Inheritance dialog box, click Remove all inherited permissions
from this object. In this case, all users will be deleted.

4. Add an owner. In the same window, click Add. In the displayed window, click
Select a principal next to Principal. In the displayed Select User, Computer,
Service Account, or Group dialog box, click Advanced, enter the username,
and click Find Now. Then, the search results will be displayed. Select your
account and click OK to close all windows.

Figure 15-19 Adding an owner

5. Close and open VS Code again and try to remotely access the SSH host.
Ensure that the target key is stored in the SSH folder.

Modelarts
Usermanual 15 FAQs

2024-04-30 923

15.3.7.12 What Do I Do If Error Message "ssh: connect to host xxx.pem port
xxxxx: Connection refused" Is Displayed?

Symptom

Possible Cause
The target instance is not running.

Solution
Log in to the ModelArts management console and check the status of the
instance. If the instance is stopped, start it. If the instance is in other states, such
as Error, stop and then start it. After the instance status changes to Running,
establish the remote connection again.

15.3.7.13 What Do I Do If Error Message "ssh: connect to host ModelArts-xxx
port xxx: Connection timed out" Is Displayed?

Symptom

Possible Cause
Possible cause 1: The whitelisted IP addresses configured for the instance are
different from the ones used in the local network.

Change the whitelist so that the whitelisted IP addresses are the same as those
used in the local network or disable the whitelist.

Modelarts
Usermanual 15 FAQs

2024-04-30 924

Possible cause 2: The local network is inaccessible.

Solution: Check the local network and network restrictions.

15.3.7.14 What Do I Do If Error Message "Load key "C:/Users/xx/test1/
xxx.pem": invalid format" Is Displayed?

Symptom

Possible Cause
The content or format of the key file is incorrect.

Solution
Use the correct key file for remote access. If there is no correct key file locally or
the file is damaged, perform the following operations:

1. Log in to the console, search for DEW. On the DEW management console,
choose Key Pair Service and click Private Key Pairs. Then, view and
download the correct key file.

2. If the key cannot be downloaded and the originally downloaded key was lost,
create a new development environment instance and a new key file.
Replacing a key file in a running development environment will be supported
later.

Modelarts
Usermanual 15 FAQs

2024-04-30 925

15.3.7.15 What Do I Do If Error Message "An SSH installation couldn't be
found" or "Could not establish connection to instance xxx: 'ssh' ..." Is
Displayed?

Symptom

Or

When VS Code attempts to access a notebook instance, the system always
prompts you to select a certificate, and the message, excepting the title, consists
of garbled characters. After the certificate is selected, the system still does not
respond and the connection failed.

Possible Cause
OpenSSH is not installed in the current environment or is not installed in the
default path. For details, see the VS Code document.

Solution
● If OpenSSH is not installed in the current environment, download and install

it.

Modelarts
Usermanual 15 FAQs

2024-04-30 926

https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client

If OpenSSH fails to be installed, manually download the OpenSSH installation
package and perform the following operations:

Step 1 Download the .zip package and decompress it into C:\Windows\System32.

Step 2 In C:\Windows\System32\OpenSSH-xx, open CMD as the administrator and run
the following command:
 powershell.exe -ExecutionPolicy Bypass -File install-sshd.ps1

Step 3 Add C:\Program Files\OpenSSH-xx (in which the SSH executable .exe file is
stored) to environment system variables.

Step 4 Open CMD again and run ssh. If the following information is displayed, the
installation is successful. Otherwise, go to 5 and 6.

Step 5 Enable port 22 (default OpenSSH port) on the firewall and run the following
command in Command Prompt:
 netsh advfirewall firewall add rule name=sshd dir=in action=allow protocol=TCP localport=22

Step 6 Run the following command to start OpenSSH:
 Start-Service sshd

----End

● If OpenSSH is not installed in the default path, open the command panel
(Ctrl+Shift+P for Windows and Cmd+Shift+P for macOS).
Search for Open settings.

Modelarts
Usermanual 15 FAQs

2024-04-30 927

https://github.com/PowerShell/Win32-OpenSSH/releases
https://github.com/PowerShell/Win32-OpenSSH/releases

Add remote.SSH.path to settings.json, for example, "remote.SSH.path":
"Installation path of the local OpenSSH".

15.3.7.16 What Do I Do If Error Message "no such identity: C:/Users/xx /
test.pem: No such file or directory" Is Displayed?

Symptom

Possible Cause
The key file is not in the path, or the name of the key file in the path has been
changed.

Solution
Select the key path again.

Modelarts
Usermanual 15 FAQs

2024-04-30 928

15.3.7.17 What Do I Do If Error Message "Host key verification failed" or
"Port forwarding is disabled" Is Displayed?

Symptom

Or

Modelarts
Usermanual 15 FAQs

2024-04-30 929

Possible Cause

After the notebook instance is restarted, its public key changes. The alarm is
generated when OpenSSH detected the key change.

Solution
● Add -o StrictHostKeyChecking=no for remote access through the CLI in VS

Code.
ssh -tt -o StrictHostKeyChecking=no -i ${IdentityFile} ${User}@${HostName} -p ${Port}

Parameters:

- IdentityFile: Path to the local key

- User: Username, for example, ma-user

- HostName: IP address

- Port: Port number

● Add StrictHostKeyChecking no and UserKnownHostsFile=/dev/null to the
local ssh config file for manual configuration of remote access in VS Code.
Host xxx
 HostName x.x.x.x # IP address
 Port 22522
 User ma-user
 IdentityFile C:/Users/my.pem
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null
 ForwardAgent yes

Note that SSH logins will be insecure after the preceding parameters are added
because the known_hosts file will be ignored during the logins.

Modelarts
Usermanual 15 FAQs

2024-04-30 930

15.3.7.18 What Do I Do If Error Message "Failed to install the VS Code
Server" or "tar: Error is not recoverable: exiting now" Is Displayed?

Symptom

Or

Possible Cause
The disk space of /home/ma-user/work is insufficient.

Solution
Delete unnecessary files in /home/ma-user/work.

15.3.7.19 What Do I Do If Error Message "XHR failed" Is Displayed When a
Remote Notebook Instance Is Accessed Through VS Code?

Possible Cause
The network of the environment may be faulty.

Solution
Rectify the fault by referring to Troubleshooting Failed XHR.

Modelarts
Usermanual 15 FAQs

2024-04-30 931

https://github.com/microsoft/vscode/issues/112085

15.3.7.20 What Do I Do for an Automatically Disconnected VS Code
Connection If No Operation Is Performed for a Long Time?

Symptom
After an SSH connection is set up through VS Code, no operation is performed for
a long time and the window retains open. When the connection is used again, it is
found that the connection is disconnected and no error message is displayed. The
following figure shows the reconnection information.

According to VS Code Remote-SSH logs, the connection was disconnected about
two hours after the setup.

Possible Cause
After SSH interaction stops for a period of time, the firewall disconnects idle
connections (http://bluebiu.com/blog/linux-ssh-session-alive.html). The default
SSH configuration does not lead to a proactive disconnection upon timeout. Since
the instance runs stably on the backend, set up the connection again to resolve
this issue.

Solution
To retain connections if no operation is performed for a long time, configure
periodic message sending through SSH. In this way, the connection will not
become idle on the firewall.

● Configure the client as needed. If the client is not configured, no heartbeat
packet will be sent to the server by default.

Modelarts
Usermanual 15 FAQs

2024-04-30 932

Figure 15-20 Opening the VS Code SSH configuration file

Figure 15-21 Adding configurations

The configuration is as follows:
Host ModelArts-xx
 ...
 ServerAliveInterval 3600 # Add this configuration in the unit of second, indicating that the client
will actively send a heartbeat packet to the server every hour.
 ServerAliveCountMax 3 # Add this configuration, indicating that if the server does not respond
after the heartbeat packet is sent for three times, the connection will be disconnected.

For example, if the firewall is configured to disconnect a connection if the
connection is idle for two hours, set ServerAliveInterval to a value less than
two hours (for example, one hour) on the client to prevent the firewall from
disconnecting the connection.

● Configure the server in /home/ma-user/.ssh/etc/sshd_config. (Notebook has
been configured, and 24 hours is longer than the time configured on the
firewall for disconnecting connections. This configuration does not need to be
manually modified. It is only used to help understand the SSH configuration.)

The preceding configuration shows that the server actively sends a heartbeat
packet to the client every 24 hours, and the connection will be disconnected if
the client does not respond after the heartbeat packet is sent for three times.
For details, see https://unix.stackexchange.com/questions/3026/what-do-
options-serveraliveinterval-and-clientaliveinterval-in-sshd-config-d.

Modelarts
Usermanual 15 FAQs

2024-04-30 933

● If a connection must be consistently retained, it is a good practice to write
logs in a separate log file and run the script on the backend. For example:
nohup train.sh > output.log 2>&1 & tail -f output.log

15.3.7.21 What Do I Do If It Takes a Long Time to Set Up a Remote
Connection After VS Code Is Automatically Upgraded?

Symptom

Possible Cause
VS Code is automatically upgraded. As a result, download the new VS Code server
to set up a new connection.

Solution
Disable automatic VS Code upgrade. To do so, click Settings in the lower left
corner, search for Update: Mode, and set it to none.

Figure 15-22 Settings

Modelarts
Usermanual 15 FAQs

2024-04-30 934

Figure 15-23 Setting the update mode to none

15.3.7.22 What Do I Do If Error Message "Connection reset" Is Displayed
During an SSH Connection?

Symptom

Possible Causes

The user network is restricted. For example, SSH is disabled by default on some
enterprise networks.

Solution

Apply for the SSH permission.

15.3.7.23 What Can I Do If a Notebook Instance Is Frequently Disconnected
or Stuck After I Use MobaXterm to Connect to the Notebook Instance in SSH
Mode?

Symptom

After MobaXterm is connected to a development environment, it is disconnected
after a period of time.

Possible Cause

When MobaXterm is configured, SSH keepalive is not selected or Stop server
after of MobaXterm Professional is set to a value that is too small.

Modelarts
Usermanual 15 FAQs

2024-04-30 935

Solution

Step 1 Open MobaXterm and click Settings on the menu bar.

Figure 15-24 Settings

Step 2 On the MobaXterm configuration page, click the SSH tab and select SSH
keepalive.

Figure 15-25 Selecting SSH keepalive

NO TE

If MobaXterm Professional is used, go to step 3.

Step 3 Change the default value 360 seconds to 3600 seconds or a larger value for Stop
server after.

Modelarts
Usermanual 15 FAQs

2024-04-30 936

Figure 15-26 Setting Stop server after

----End

15.3.8 Others

15.3.8.1 How Do I Use Multiple Ascend Cards for Debugging in a Notebook
Instance?

An Ascend multi-card training job runs in multi-process, multi-card mode. The
number of cards is equal to the number of Python processes. The Ascend
underlayer reads the environment variable RANK_TABLE_FILE, which has been
configured in the development environment, without requiring manual
configuration. For example, to run a job on eight cards, the code is as follows:

 export RANK_SIZE=8
 current_exec_path=$(pwd)
 echo 'start training'
 for((i=0;i<=$RANK_SIZE-1;i++));
 do
 echo 'start rank '$i
 mkdir ${current_exec_path}/device$i
 cd ${current_exec_path}/device$i
 echo $i
 export RANK_ID=$i
 dev=`expr $i + 0`
 echo $dev
 export DEVICE_ID=$dev
 python train.py > train.log 2>&1 &
 done

Modelarts
Usermanual 15 FAQs

2024-04-30 937

Set the environment variable DEVICE_ID in train.py.

devid = int(os.getenv('DEVICE_ID'))
 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)

15.3.8.2 Why Is the Training Speed Similar When Different Notebook Flavors
Are Used?

If your training job is single-process in code, the training speed is basically the
same no matter when the notebook flavor of 8 vCPUs and 64 GB of memory or
the flavor of 72 vCPUs and 512 GB of memory is used. For example, if your
training job uses 2 vCPUs and 4 GB of memory, the training speed is similar no
matter when you use the notebook flavor of 4 vCPUs and 8 GB of memory or the
flavor of 8 vCPUs and 64 GB of memory.

If your training job is multi-process in code, the training speed backed by the
notebook flavor of 72 vCPUs and 512 GB of memory is higher than that backed by
the notebook flavor of 8 vCPUs and 64 GB of memory.

15.3.8.3 How Do I Perform Incremental Training When Using MoXing?
If you are not satisfied with training results when using MoXing to build a model,
you can perform incremental training after modifying some data and label
information.

Adding Incremental Training Parameters to mox.run
After modifying labeling data or datasets, you can modify the log_dir parameter
in and add the checkpoint_path parameter to mox.run. Set log_dir to a new
directory and checkpoint_path to the output path of the previous training results.
If the output path is an OBS directory, set the path to a value starting with obs://.

If labels are changed for label data, perform operations in If Labels Are Changed
before running mox.run.

 mox.run(input_fn=input_fn,
 model_fn=model_fn,
 optimizer_fn=optimizer_fn,
 run_mode=flags.run_mode,
 inter_mode=mox.ModeKeys.EVAL if use_eval_data else None,
 log_dir=log_dir,
 batch_size=batch_size_per_device,
 auto_batch=False,
 max_number_of_steps=max_number_of_steps,
 log_every_n_steps=flags.log_every_n_steps,
 save_summary_steps=save_summary_steps,
 save_model_secs=save_model_secs,
 checkpoint_path=flags.checkpoint_url,
 export_model=mox.ExportKeys.TF_SERVING)

If Labels Are Changed
If the labels in a dataset have changed, execute the following statement. The
statement must be executed before running mox.run.

In the statement, the logits variable indicates classification layer weights in
different networks, and different parameters are configured. Set this parameter to
the corresponding keyword.

Modelarts
Usermanual 15 FAQs

2024-04-30 938

mox.set_flag('checkpoint_exclude_patterns', 'logits')

If the built-in network of MoXing is used, the corresponding keyword needs to be
obtained by calling the following API. In this example, the Resnet_v1_50 keyword
is the value of logits.

import moxing.tensorflow as mox

model_meta = mox.get_model_meta(mox.NetworkKeys.RESNET_V1_50)
logits_pattern = model_meta.default_logits_pattern
print(logits_pattern)

You can also obtain a list of networks supported by MoXing by calling the
following API:

import moxing.tensorflow as mox
print(help(mox.NetworkKeys))

The following information is displayed:

Help on class NetworkKeys in module
moxing.tensorflow.nets.nets_factory:

class NetworkKeys(builtins.object)
 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)
 |
 | --
 | Data and other attributes defined here:
 |
 | ALEXNET_V2 = 'alexnet_v2'
 |
 | CIFARNET = 'cifarnet'
 |
 | INCEPTION_RESNET_V2 = 'inception_resnet_v2'
 |
 | INCEPTION_V1 = 'inception_v1'
 |
 | INCEPTION_V2 = 'inception_v2'
 |
 | INCEPTION_V3 = 'inception_v3'
 |
 | INCEPTION_V4 = 'inception_v4'
 |
 | LENET = 'lenet'
 |
 | MOBILENET_V1 = 'mobilenet_v1'
 |
 | MOBILENET_V1_025 = 'mobilenet_v1_025'
 |
 | MOBILENET_V1_050 = 'mobilenet_v1_050'
 |
 | MOBILENET_V1_075 = 'mobilenet_v1_075'
 |
 | MOBILENET_V2 = 'mobilenet_v2'
 |
 | MOBILENET_V2_035 = 'mobilenet_v2_035'
 |
 | MOBILENET_V2_140 = 'mobilenet_v2_140'
 |
 | NASNET_CIFAR = 'nasnet_cifar'
 |
 | NASNET_LARGE = 'nasnet_large'
 |

Modelarts
Usermanual 15 FAQs

2024-04-30 939

 | NASNET_MOBILE = 'nasnet_mobile'
 |
 | OVERFEAT = 'overfeat'
 |
 | PNASNET_LARGE = 'pnasnet_large'
 |
 | PNASNET_MOBILE = 'pnasnet_mobile'
 |
 | PVANET = 'pvanet'
 |
 | RESNET_V1_101 = 'resnet_v1_101'
 |
 | RESNET_V1_110 = 'resnet_v1_110'
 |
 | RESNET_V1_152 = 'resnet_v1_152'
 |
 | RESNET_V1_18 = 'resnet_v1_18'
 |
 | RESNET_V1_20 = 'resnet_v1_20'
 |
 | RESNET_V1_200 = 'resnet_v1_200'
 |
 | RESNET_V1_50 = 'resnet_v1_50'
 |
 | RESNET_V1_50_8K = 'resnet_v1_50_8k'
 |
 | RESNET_V1_50_MOX = 'resnet_v1_50_mox'
 |
 | RESNET_V1_50_OCT = 'resnet_v1_50_oct'
 |
 | RESNET_V2_101 = 'resnet_v2_101'
 |
 | RESNET_V2_152 = 'resnet_v2_152'
 |
 | RESNET_V2_200 = 'resnet_v2_200'
 |
 | RESNET_V2_50 = 'resnet_v2_50'
 |
 | RESNEXT_B_101 = 'resnext_b_101'
 |
 | RESNEXT_B_50 = 'resnext_b_50'
 |
 | RESNEXT_C_101 = 'resnext_c_101'
 |
 | RESNEXT_C_50 = 'resnext_c_50'
 |
 | VGG_16 = 'vgg_16'
 |
 | VGG_16_BN = 'vgg_16_bn'
 |
 | VGG_19 = 'vgg_19'
 |
 | VGG_19_BN = 'vgg_19_bn'
 |
 | VGG_A = 'vgg_a'
 |
 | VGG_A_BN = 'vgg_a_bn'
 |
 | XCEPTION_41 = 'xception_41'
 |
 | XCEPTION_65 = 'xception_65'
 |
 | XCEPTION_71 = 'xception_71'

15.3.8.4 How Do I View GPU Usage on the Notebook?

If you select GPU when creating a notebook instance, perform the following
operations to view GPU usage:

Modelarts
Usermanual 15 FAQs

2024-04-30 940

1. Log in to the ModelArts management console, and choose DevEnviron >
Notebooks.

2. In the Operation column of the target notebook instance in the notebook list,
click Open to go to the Jupyter page.

3. On the Files tab page of the Jupyter page, click New and select Terminal.
The Terminal page is displayed.

4. Run the following command to view GPU usage:
nvidia-smi

5. Check which processes in the current notebook instance use GPUs.
Method 1:
python /modelarts/tools/gpu_processes.py

The following figure shows the case that the current process is using GPUs.

The following figure shows the case that the current process is not using
GPUs.

Method 2:
Open /resource_info/gpu_usage.json and view the processes that are using
GPUs.

Modelarts
Usermanual 15 FAQs

2024-04-30 941

If no process is using GPUs, the file may be unavailable or empty.

15.3.8.5 How Can I Obtain GPU Usage Through Code?

Run the shell or python command to obtain the GPU usage.

Using the shell Command
1. Run the nvidia-smi command.

This operation relies on CUDA NVCC.
watch -n 1 nvidia-smi

2. Run the gpustat command.
pip install gpustat
gpustat -cp -i

To stop the command execution, press Ctrl+C.

Modelarts
Usermanual 15 FAQs

2024-04-30 942

Using the python Command
1. Run the nvidia-ml-py3 command (commonly used).

!pip install nvidia-ml-py3
import nvidia_smi
nvidia_smi.nvmlInit()
deviceCount = nvidia_smi.nvmlDeviceGetCount()
for i in range(deviceCount):
 handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)
 util = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
 mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
 print(f"|Device {i}| Mem Free: {mem.free/1024**2:5.2f}MB / {mem.total/1024**2:5.2f}MB | gpu-util:
{util.gpu:3.1%} | gpu-mem: {util.memory:3.1%} |")

2. Run the nvidia_smi, wapper, and prettytable commands.
Use the decorator to obtain the GPU usage in real time during model training.
def gputil_decorator(func):
 def wrapper(*args, **kwargs):
 import nvidia_smi
 import prettytable as pt

 try:
 table = pt.PrettyTable(['Devices','Mem Free','GPU-util','GPU-mem'])
 nvidia_smi.nvmlInit()
 deviceCount = nvidia_smi.nvmlDeviceGetCount()
 for i in range(deviceCount):
 handle = nvidia_smi.nvmlDeviceGetHandleByIndex(i)
 res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
 mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
 table.add_row([i, f"{mem.free/1024**2:5.2f}MB/{mem.total/1024**2:5.2f}MB",
f"{res.gpu:3.1%}", f"{res.memory:3.1%}"])

 except nvidia_smi.NVMLError as error:
 print(error)

 print(table)
 return func(*args, **kwargs)
 return wrapper

3. Run the pynvml command.
Run nvidia-ml-py3 to directly obtain the nvml c-lib library, without using
nvidia-smi. Therefore, this command is recommended.
from pynvml import *
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print("Total memory:", info.total)
print("Free memory:", info.free)
print("Used memory:", info.used)

Modelarts
Usermanual 15 FAQs

2024-04-30 943

4. Run the gputil command.
!pip install gputil
import GPUtil as GPU
GPU.showUtilization()

import GPUtil as GPU
GPUs = GPU.getGPUs()
for gpu in GPUs:
 print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0f}% | Total
{3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal))

When using a deep learning framework such as PyTorch or TensorFlow,
you can also use the APIs provided by the framework for query.

15.3.8.6 Which Real-Time Performance Indicators of an Ascend Chip Can I
View?

The real-time performance indicator that can be viewed is npu-smi, which is
similar to nvidia-smi of a GPU chip.

15.3.8.7 What Are the Relationships Between Files Stored in JupyterLab,
Terminal, and OBS?

● Files stored in JupyterLab are the same as those in the work directory on the
Terminal page. That is, the files are created on your notebook instances or
synchronized from OBS.

● Notebook instances with OBS storage mounted can synchronize files from
OBS to JupyterLab using the JupyterLab upload and download functions. The
files on the Terminal page are the same as those in JupyterLab.

● Notebook instances with EVS storage mounted can read files from OBS to
JupyterLab using the MoXing API or SDKs. The files on the Terminal page are
the same as those in JupyterLab.

15.3.8.8 How Do I Migrate Data from an Old-Version Notebook Instance to a
New-Version One?

The old-version notebook has been discontinued. This section describes how to
migrate data from a notebook instance of the old version to a notebook instance
of the new version.

Modelarts
Usermanual 15 FAQs

2024-04-30 944

Storage Differences Between the Old and New Versions

Table 15-7 Storage supported by notebook of the old and new versions

Storage Old-
Version
Notebook

New-
Version
Notebook

Description

OBS Supported Not
supported

OBS is a storage system, not a file
system.
In old-version notebook, remote
replication and local replication of OBS
data may be confused, leading to issues
in controlling operations on data.
Therefore, OBS mounting is removed
from notebook of the new version. You
can flexibly obtain and operate OBS
data using code.

OBS
parallel
file
system

Not
supported

Supported The new-version notebook allows
dynamic mounting of OBS parallel file
systems. You can mount storage on the
details page of a running notebook
instance. Data migration from the old
version to the new version is not
involved.

EVS Supported Supported EVS disks can be attached to notebook
instances of both the old and new
versions. Data stored in the old version
needs to be migrated to the new
version.

SFS Not
supported

Supported SFS is used in dedicated resource pools.
This function has been discontinued in
notebook of the old version. Therefore,
data migration is not involved.

EFS Not
supported

Supported EFS is used in notebook of the new
version only.

OBS Used in Notebook of the Old Version
When notebook instances of the old version use OBS for storage, data is stored in
OBS and does not need to be migrated. After a new-version notebook instance is
created, directly use the data in the OBS directory. For details, see How Do I Read
and Write OBS Files in a Notebook Instance?

Modelarts
Usermanual 15 FAQs

2024-04-30 945

Figure 15-27 OBS used in notebook of the old version

EVS Used in Notebook of the Old Version
If EVS disks are attached to a notebook instance of the old version for storing
data, back up and migrate the EVS data to a notebook instance of the new
version.

● If the volume of data stored in EVS is small, download the data to a local
directory, create a notebook instance of the new version, and upload the data
to the new notebook instance.

● If a large amount of data is stored in EVS, upload the data to an OBS bucket.
After a notebook instance of the new version is created, read data from the
the OBS bucket.

For more details, see Uploading and Downloading Data in Notebook.

Modelarts
Usermanual 15 FAQs

2024-04-30 946

Figure 15-28 EVS storage used in notebook of the old version

15.3.8.9 How Do I Use the Datasets Created on ModelArts in a Notebook
Instance?

Datasets created on ModelArts are stored in OBS. To use these datasets in a
notebook instance, download them from OBS to the notebook instance.

For details, see How Do I Upload a File from a Notebook Instance to OBS or
Download a File from OBS to a Notebook Instance?

15.3.8.10 pip and Common Commands
pip is a common Python package management tool. It allows you to search for,
download, install, and uninstall Python packages.

Common pip commands:

pip --help # Obtain help information.
pip install SomePackage==XXXX # Install a specified version.
pip install SomePackage # Install the latest version.
pip uninstall SomePackage # Uninstall a software version.

For other commands, run the pip --help command.

Modelarts
Usermanual 15 FAQs

2024-04-30 947

15.3.8.11 What Are Sizes of the /cache Directories for Different Notebook
Specifications in DevEnviron?

When creating a notebook instance, you can select resources based on the data
volume.

ModelArts mounts disks to /cache. You can use this directory to store temporary
files. The /cache directory shares resources with the code directory. The directory
size varies depending on resource specifications.

No disks can be mounted to /cache for CPUs. When only one GPU or Ascend card
is used, the /cache directory size is limited to 500 GB. If multiple GPUs or Ascend
cards are used, the /cache directory size is limited to 3 TB and calculated using
the following formula: /cache directory size = Number of cards x 500 GB. For
details, see Table 15-8.

Table 15-8 /cache directory sizes for different notebook specifications

Specification /cache Directory Size

GPU, 0.25 cards 500 GB x 0.25

GPU, 0.5 cards 500 GB x 0.5

GPU, 1 card 500 GB

GPU, dual cards 500 GB x 2

GPU, four cards 500 GB x 4

GPU, eight cards 3 TB

Ascend, single card 500 GB

Ascend, dual cards 500 GB x 2

Ascend, four cards 500 GB x 4

Ascend, eight cards 3 TB

CPU N/A

15.3.8.12 What Is the Impact of Resource Overcommitment on Notebook
Instances?

Notebook overcommitment refers to the sharing of GPUs and memory within a
node. To fully utilize resources, they are overcommitted in dedicated pools.

Example: A dedicated pool has one CPU node with 8 vCPUs and 64 GB memory. If
you create a notebook instance with 2 vCPUs and 8 GB memory, a maximum of
6.67 notebook instances (8 vCPUs/(2 vCPUs x 0.6)) can be started due to
overcommitment with an overcommitment ratio of 0.6. In this case, at least 1.2
vCPUs are required for starting the notebook instance, and a maximum of 2 vCPUs
are used for running the notebook instance. Similarly, at least 4.8 GB memory is
required, and a maximum of 8 GB memory is used for running the notebook
instance.

Modelarts
Usermanual 15 FAQs

2024-04-30 948

Instances may be forcibly terminated due to overcommitment. For example, if six
instances with 2 vCPUs are started on an 8 vCPUs node and the CPU usage of one
instance exceeds the upper limit (8 vCPUs) of the node, Kubernetes forcibly
terminates the instance that uses the most resources.

Do not overcommit resources as it may result in instance restart.

15.4 Training Jobs

15.4.1 Functional Consulting

15.4.1.1 What Are the Solutions to Underfitting?
1. Increasing model complexity

– For an algorithm, add more high-order items to the regression model,
improve the depth of the decision tree, or increase the number of hidden
layers and hidden units of the neural network to increase model
complexity.

– Discard the original algorithm and use a more complex algorithm or
model. For example, use a neural network to replace the linear
regression, and use the random forest to replace the decision tree.

2. Adding more features to make input data more expressive
– Feature mining is critical. In particular, a small set of highly expressive

features can often be more effective than a larger set of less expressive
ones.

– Feature quality is the focus.
– To explore highly expressive features, you must have an in-depth

understanding of data and application scenarios, which depends on
experience.

3. Adjusting parameters and hyperparameters
– Neural network: learning rate, learning attenuation rate, number of

hidden layers, number of units in a hidden layer, β1 and β2 parameters in
the Adam optimization algorithm, and batch_size

– Other algorithms: number of trees in the random forest, number of
clusters in k-means, and regularization parameter λ

4. Adding training data, which is of little effect
Underfitting is usually caused by weak model learning capabilities. Adding
data cannot significantly increase the training performance.

5. Reducing regularization constraints
Regularization aims to prevent model overfitting. If a model is underfitting
instead of overfitting, reduce the regularization parameter λ or directly
remove the regularization item.

15.4.1.2 What Are the Precautions for Switching Training Jobs from the Old
Version to the New Version?

The differences between the new version and the old version lie in:

Modelarts
Usermanual 15 FAQs

2024-04-30 949

● Differences in Training Job Creation
● Differences in Training Code Adaptation
● Differences in Built-in Training Engines

Differences in Training Job Creation
● In earlier versions, you can create a training job using Algorithm

Management, Frequently-used, and Custom.
● In the new version, you can create a training job using Custom algorithmor

My algorithm.

This allows you to select algorithms by category.

● The saved algorithms in Algorithm Management in the old version are in My
algorithm in the new version.

● The Frequently-used in the old version is the Custom algorithm in the new
version. Select Preset image for Boot Mode when you create jobs using the
new version.

● The Custom in the old version is the Custom algorithm in the new version.
Select Custom image for Boot Mode when you create jobs using the new
version.

Differences in Training Code Adaptation

In the old version, you are required to configure data input and output as follows:

Parse CLI parameters.
import argparse
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
parser.add_argument('--data_url', type=str, default="./Data",
 help='path where the dataset is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\
 path where the trained ckpt file')
args = parser.parse_args()
...
Download data to your local container. In the code, local_data_path specifies the training input path.
mox.file.copy_parallel(args.data_url, local_data_path)
...
Upload the local container data to the OBS path.
mox.file.copy_parallel(local_output_path, args.train_url)

In the new version, you only need to configure training input and output. In the
code, arg.data_url and arg.train_url are used as local paths. For details, see
Developing a Custom Script.

Parse CLI parameters.
import argparse
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
parser.add_argument('--data_url', type=str, default="./Data",
 help='path where the dataset is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\
 path where the trained ckpt file')
args = parser.parse_args()
...
The downloaded code does not need to be set. Use data_url and train_url for data training and output.
Download data to your local container. In the code, local_data_path specifies the training input path.
#mox.file.copy_parallel(args.data_url, local_data_path)
...
Upload the local container data to the OBS path.
#mox.file.copy_parallel(local_output_path, args.train_url)

Modelarts
Usermanual 15 FAQs

2024-04-30 950

Differences in Built-in Training Engines
● In the new version, MoXing 2.0.0 or later is installed by default for built-in

training engines.
● In the new version, Python 3.7 or later is used for built-in training engines.
● In the new image, the default home directory has been changed from /home/

work to /home/ma-user. Check whether the training code contains hard
coding of /home/work.

● Built-in training engines are different between the old and new versions.
Commonly used built-in training engines have been upgraded in the new
version.
To use a training engine in the old version, switch to the old version. Table
15-9 lists the differences between the built-in training engines in the old and
new versions.

Table 15-9 Differences between the built-in training engines in the old and
new versions

Runtime Environment Built-in Training Engine
and Version

Old
Versio
n

New
Version

Ascend-Powered-Engine Mindspore-1.3.0 √ x

Mindspore-1.7.0 x √

TensorFlow-1.15 √ √

15.4.1.3 How Do I Obtain a Trained ModelArts Model?
Models generated using ModelArts ExeML can be deployed only on ModelArts and
cannot be downloaded to your local PC.

Models trained using a custom or subscription algorithm are stored in specified
OBS paths for you to download.

15.4.1.4 What Is TensorBoard Used for in Model Visualization Jobs?
Visualization jobs are powered by TensorBoard. For details about TensorBoard
functions, see the TensorBoard official website.

15.4.1.5 How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed
Training?

ModelArts automatically provides the RANK_TABLE_FILE file for you. Obtain the
file location through environment variables.

● Open the notebook terminal and run the following command to view
RANK_TABLE_FILE:
env | grep RANK

● In a training job, add the following code to the first line of the training startup
script to print the value of RANK_TABLE_FILE:

Modelarts
Usermanual 15 FAQs

2024-04-30 951

https://www.tensorflow.org/tensorboard/get_started

os.system('env | grep RANK')

15.4.1.6 How Do I Obtain the CUDA and cuDNN Versions of a Custom
Image?

Obtain a CUDA version:

cat /usr/local/cuda/version.txt

Obtain a cuDNN version:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

15.4.1.7 How Do I Obtain a MoXing Installation File?
MoXing installation files cannot be downloaded or installed by users. The MoXing
installation package is preset in ModelArts notebook and training job images, and
can be directly used.

15.4.1.8 In a Multi-Node Training, the TensorFlow PS Node Functioning as a
Server Will Be Continuously Suspended. How Does ModelArts Determine
Whether the Training Is Complete? Which Node Is a Worker?

In a TensorFlow-powered distributed training, the PS task and worker task are
started. The worker task is a key task. ModelArts will use a process exit code of
the worker task to determine whether the training job is complete.

A task name will be used to determine which node is a worker. A Volcano job is
issued for training, which contains a PS task and a worker task. The startup
commands of the two tasks are different. The hyperparameter task_name will be
automatically generated, which is ps for the PS task and worker for the worker
task.

15.4.1.9 How Do I Install MoXing for a Custom Image of a Training Job?
To prevent automatic installation of MoXing from affecting the package
environment in the custom image, manually install MoXing for the custom image.
The MoXing installation package is stored in the /home/ma-user/modelarts/
package/ directory after the job is started. Before using MoXing, run the following
code to install it:

import os
os.system("pip install /home/ma-user/modelarts/package/moxing_framework-*.whl")

NO TE

This case applies only to the training environment.

15.4.2 Reading Data During Training

15.4.2.1 How Do I Configure the Input and Output Data for Training Models
on ModelArts?

ModelArts allows you to upload a custom algorithm for creating training jobs.
Create the algorithm and upload it to an OBS bucket. For details about how to

Modelarts
Usermanual 15 FAQs

2024-04-30 952

create an algorithm, see Creating an Algorithm. For details about how to create a
training job, see Creating a Training Job.

Parsing Input and Output Paths
When a ModelArts model reads data stored in OBS or outputs data to a specified
OBS path, perform the following operations to configure the input and output
data:

1. Parse the input and output paths in the training code. The following method
is recommended:
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description="train mnist",
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Add parameters.
parser.add_argument('--train_url', type=str,
 help='the path model saved')
parser.add_argument('--data_url', type=str, help='the training data')
Parse the parameters.
args, unknown = parser.parse_known_args()

After the parameters are parsed, use data_url and train_url to replace the
paths to the data source and the data output, respectively.

2. When using a preset image to create an algorithm, set the defined input and
output parameters based on the code parameters in 1.
– Training data is a must for algorithm development. You are advised to set

the input parameter name to data_url, indicating the input data source.
You can also customize code parameters based on the algorithm code in
1.

– After model training is complete, the trained model and the output
information must be stored in an OBS path. By default, Output specifies
the model output and the code path parameter is train_url. You can also
customize the output path parameters based on the algorithm code in 1.

3. When creating a training job, configure the input and output paths.
Select an OBS path or dataset path as the training input, and an OBS path for
the output.

15.4.2.2 How Do I Improve Training Efficiency While Reducing Interaction
with OBS?

Scenario Description
When you use ModelArts for custom deep learning training, training data is
typically stored in OBS. If the volume of training data is large (for example,
greater than 200 GB), a GPU resource pool is required, and the training efficiency
is low.

To improve training efficiency while reducing interaction with OBS, perform the
following operations for optimization.

Optimization Principles
For the GPU resource pool provided by ModelArts, 500 GB NVMe SSDs are
attached to each training node for free. The SSDs are attached to the /cache

Modelarts
Usermanual 15 FAQs

2024-04-30 953

directory. The lifecycle of data in the /cache directory is the same as that of a
training job. After the training job is complete, all content in the /cache directory
is cleared to release space for the next training job. Therefore, you can copy data
from OBS to the /cache directory during training so that data can be read from
the /cache directory until the training is finished. After the training is complete,
content in the /cache directory will be automatically cleared.

Optimization Methods
TensorFlow code is used as an example.

The following is code before optimization:

...
tf.flags.DEFINE_string('data_url', '', 'dataset directory.')
FLAGS = tf.flags.FLAGS
mnist = input_data.read_data_sets(FLAGS.data_url, one_hot=True)

The following is an example of the optimized code. Data is copied to the /cache
directory.

...
tf.flags.DEFINE_string('data_url', '', 'dataset directory.')
FLAGS = tf.flags.FLAGS
import moxing as mox
TMP_CACHE_PATH = '/cache/data'
mox.file.copy_parallel('FLAGS.data_url', TMP_CACHE_PATH)
mnist = input_data.read_data_sets(TMP_CACHE_PATH, one_hot=True)

15.4.2.3 Why the Data Read Efficiency Is Low When a Large Number of Data
Files Are Read During Training?

If a dataset contains a large number of data files (massive small files) and data is
stored in OBS, files need to be repeatedly read from OBS during training. As a
result, the training process is waiting for reading files, resulting in low read
efficiency.

Solution
1. Compress the massive small files into a package on your local PC, for

example, a .zip package.
2. Upload the package to OBS.
3. During training, directly download this package from OBS to the /cache

directory of your local PC. Perform this operation only once.
For example, you can use mox.file.copy_parallel to download the .zip package
to the /cache directory, decompress the package, and then read files for
training.
...
tf.flags.DEFINE_string('<obs_file_path>/data.zip', '', 'dataset directory.')
FLAGS = tf.flags.FLAGS
import os
import moxing as mox
TMP_CACHE_PATH = '/cache/data'
mox.file.copy_parallel('FLAGS.data_url', TMP_CACHE_PATH)
zip_data_path = os.path.join(TMP_CACHE_PATH, '*.zip')
unzip_data_path = os.path.join(TEMP_CACHE_PATH, 'unzip')
You can also decompress .zip Python packages.
os.system('unzip '+ zip_data_path + ' -d ' + unzip_data_path)
mnist = input_data.read_data_sets(unzip_data_path, one_hot=True)

Modelarts
Usermanual 15 FAQs

2024-04-30 954

15.4.2.4 How Do I Define Path Variables When Using MoXing?

Symptom
mox.file.copy_parallel(src_obs_dir=input_storage,'obs://dyyolov8/yolov5_test/yolov5-7.0/datasets'),

How do I define an OBS path as a variable in the mox function?

Solution
The following is an example of defining a variable:

input_storage = './test.py'
import moxing as mox
mox.file.copy_parallel(input_storage,'obs://dyyolov8/yolov5_test/yolov5-7.0/datasets')

15.4.3 Compiling the Training Code

15.4.3.1 How Do I Create a Training Job When a Dependency Package Is
Referenced by the Model to Be Trained?

ModelArts allows you to install third-party dependency packages for model
training. After the pip-requirements.txt file is stored in the training code
directory, the system runs the command below to install the specified Python
packages before the training boot file is executed.

pip install -r pip-requirements.txt

Only training jobs created using a preset image can reference dependency
packages for model training.

NO TE

Any one of the following file names can be used. This section uses pip-requirements.txt as
an example.
● pip-requirement.txt
● pip-requirements.txt
● requirement.txt
● requirements.txt

● For details about the code directory, see Storing the Installation File in the
Code Directory.

● For details about the specifications of pip-requirements.txt, see Installation
File Specifications.

Storing the Installation File in the Code Directory
● If you use My algorithm to create a training job, you can store related files in

the configured Code Directory when creating an algorithm. The Boot Mode
of the algorithm must be Preset image.

● If you use Custom algorithm to create a training job, you can store related
files in the configured Code Directory. The Boot Mode must be Preset
image.

Before creating a training job, upload related files to OBS. For details about the
file packaging requirements, see Installation File Specifications.

Modelarts
Usermanual 15 FAQs

2024-04-30 955

Installation File Specifications

The installation file varies depending on the dependency package type.

● Open-source installation packages

NO TE

Installation using the source code from GitHub is not supported.

Create a file named pip-requirements.txt in the code directory, and specify
the name and version number of the dependency package in the file. The
format is [Package name]==[Version].
Take for example, an OBS path specified by Code Dir that contains model
files and the pip-requirements.txt file. The code directory structure would be
as follows:
|---OBS path to the model boot file
 |---model.py #Model boot file
 |---pip-requirements.txt #Defined configuration file, which specifies the name and version of the
dependency package

The following shows the content of the pip-requirements.txt file:
alembic==0.8.6
bleach==1.4.3
click==6.6

● WHL packages
If the training background does not support the download of open source
installation packages or use of user-compiled WHL packages, the system
cannot automatically download and install the package. In this case, place the
WHL package in the code directory, create a file named pip-requirements.txt,
and specify the name of the WHL package in the file. The dependency
package must be a .whl file.
Take for example, an OBS path specified by Code Dir that contains model
files, the .whl file, and the pip-requirements.txt file. The code directory
structure would be as follows:
|---OBS path to the model boot file
 |---model.py #Model boot file
 |---XXX.whl #Dependency package. If multiple dependencies are required, place multiple
dependency packages here.
 |---pip-requirements.txt #Defined configuration file, which specifies the name of the dependency
package

The following shows the content of the pip-requirements.txt file:
numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
tensorflow-1.8.0-cp36-cp36m-manylinux1_x86_64.whl

15.4.3.2 What Is the Common File Path for Training Jobs?

The path to the training environment and the code directory in the container are
generally obtained using the environment variable ${MA_JOB_DIR}, which is /
home/ma-user/modelarts/user-job-dir.

15.4.3.3 How Do I Install a Library That C++ Depends on?

A third-party library may be used during job training. The following uses C++ as
an example to describe how to install a third-party library.

Modelarts
Usermanual 15 FAQs

2024-04-30 956

1. Download source code to a local PC and upload it to OBS. .
2. Use MoXing to copy the source code uploaded to OBS to a notebook instance

in the development environment.
The following is a code example for copying data to a notebook instance in a
development environment running on an EVS:
import moxing as mox
mox.file.make_dirs('/home/ma-user/work/data')
mox.file.copy_parallel('obs://bucket-name/data', '/home/ma-user/work/data')

3. On the Files tab page of the Jupyter page, click New and select Terminal.
Run the following command to go to the target path, and check whether the
source code has been downloaded, that is, whether the data file exists.
cd /home/ma-user/work
ls

4. Compile code in Terminal based on service requirements.
5. Use MoXing to copy the compilation results to OBS. The following is a code

example.
import moxing as mox
mox.file.make_dirs('/home/ma-user/work/data')
mox.file.copy_parallel('/home/ma-user/work/data', 'obs://bucket-name/file)

6. During training, use MoXing to copy the compilation result from OBS to the
container. The following is a code example.
import moxing as mox
mox.file.make_dirs('/cache/data')
mox.file.copy_parallel('obs://bucket-name/data', '/cache/data')

15.4.3.4 How Do I Check Whether a Folder Copy Is Complete During Job
Training?

In the script for training job boot file, run the following commands to obtain the
sizes of the copied folders and the folders to be copied. Then determine whether
folder copy is complete based on the command output.
import moxing as mox
mox.file.get_size('obs://bucket_name/obs_file',recursive=True)

get_size indicates the size of the file or folder to be obtained. recursive=True
indicates that the type is folder. True indicates that the type is folder, and False
indicates that the type is file.

If the command output is consistent, the folder copy is complete. If the command
output is inconsistent, the folder copy is not complete.

15.4.3.5 How Do I Load Some Well Trained Parameters During Job Training?
During job training, some parameters need to be loaded from a pre-trained model
to initialize the current model. You can use the following methods to load the
parameters:

1. View all parameters by using the following code.
from moxing.tensorflow.utils.hyper_param_flags import mox_flags
print(mox_flags.get_help())

2. Specify the parameters to be restored during model loading.
checkpoint_include_patterns is the parameter that needs to be restored, and
checkpoint_exclude_patterns is the parameter that does not need to be
restored.
checkpoint_include_patterns: Variables names patterns to include when restoring checkpoint. Such as:
conv2d/weights.

Modelarts
Usermanual 15 FAQs

2024-04-30 957

checkpoint_exclude_patterns: Variables names patterns to include when restoring checkpoint. Such as:
conv2d/weights.

3. Specify a list of parameters to be trained. trainable_include_patterns is a list
of parameters that need to be trained, and trainable_exclude_patterns is a
list of parameters that do not need to be trained.
--trainable_exclude_patterns: Variables names patterns to exclude for trainable variables. Such as:
conv1,conv2.
--trainable_include_patterns: Variables names patterns to include for trainable variables. Such as:
logits.

15.4.3.6 How Do I Obtain Training Job Parameters from the Boot File of the
Training Job?

Training job parameters can be automatically generated in the background or you
can enter them manually. To obtain training job parameters:

1. When creating a training job, enter the name of Input (generally set to
data_url) and specify a data path to the training input, and enter the name
of Output (generally set to train_url) and specify a data path to the training
output.

2. After the training job is executed, you can click the job name in the training
job list to view its details. You can obtain the parameter input mode from
logs, as shown in Figure 15-29.

Figure 15-29 Viewing logs

3. To obtain the values of train_url, data_url, and test during training, add the
following code to the boot file of the training job:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', type=str, default=None, help='test')
parser.add_argument('--train_url', type=str, default=None, help='test')
parser.add_argument('--test', type=str, default=None, help='test')

15.4.3.7 Why Can't I Use os.system ('cd xxx') to Access the Corresponding
Folder During Job Training?

If you cannot access the corresponding folder by using os.system('cd xxx') in the
boot script of the training job, you are advised to use the following method:

import os
os.chdir('/home/work/user-job-dir/xxx')

15.4.3.8 How Do I Invoke a Shell Script in a Training Job to Execute the .sh
File?

ModelArts enables you to invoke a shell script, and you can use Python to
invoke .sh. The procedure is as follows:

Modelarts
Usermanual 15 FAQs

2024-04-30 958

1. Upload the .sh script to an OBS bucket. For example, upload the .sh script to /
bucket-name/code/test.sh.

2. Create the .py file on a local PC, for example, test.py. The background
automatically downloads the code directory to the /home/work/user-job-dir/
directory of the container. Therefore, you can invoke the .sh file in the test.py
boot file as follows:
import os
os.system('bash /home/work/user-job-dir/code/test.sh')

3. Upload test.py to OBS. Then the file storage path is /bucket-name/code/
test.py.

4. When creating a training job, set the code directory to /bucket-name/code/,
and the boot file directory to /bucket-name/code/test.py.

After the training job is created, you can use Python to invoke the .sh file.

15.4.3.9 How Do I Obtain the Dependency File Path to be Used in Training
Code?

Since locally developed code must be uploaded to the ModelArts backend, you
may set an invalid dependency file path. A recommended general solution to this
problem is that you to use the OS API to obtain the absolute path of the
dependency files.

The following shows an example of obtaining the path of dependency files in
other folders using the OS API.

File directory structure:

project_root #Root directory of code
 └─bootfile.py #Boot file
 └─otherfileDirectory #Directory of dependency files
 └─otherfile.py #Dependency files

Add the following code to the boot file to obtain the path (otherfile_path) of
dependency files:

import os
current_path = os.path.dirname(os.path.realpath(__file__)) # Obtain the path of the boot file bootfile.py.
project_root = os.path.dirname(current_path) # Obtain the root directory of the project using the path of
the boot file, which is the code directory set on ModelArts console.
otherfile_path = os.path.join(project_root, "otherfileDirectory", "otherfile.py") # Obtain the path of the
dependency files using the root directory of the project.

15.4.3.10 What Is the File Path If a File in the model Directory Is Referenced
in a Custom Python Package?

To obtain the actual path to a file in a container, use Python.

os.getcwd() # Obtain the current work directory (absolute path) of the file.
os.path.realpath(__ file __) # Obtain the absolute path of the file.

You can also use other methods of obtaining a file path through the search engine
and use the obtained path to read and write the file.

15.4.4 Creating a Training Job

Modelarts
Usermanual 15 FAQs

2024-04-30 959

15.4.4.1 What Can I Do If the Message "Object directory size/quantity
exceeds the limit" Is Displayed When I Create a Training Job?

Issue Analysis
The code directory for creating a training job has limits on the size and number of
files.

Solution
Delete the files except the code from the code directory or save the files in other
directories. Ensure that the size of the code directory does not exceed 128 MB and
the number of files does not exceed 4,096.

15.4.4.2 What Are Sizes of the /cache Directories for Different Resource
Specifications in the Training Environment?

When creating a training job, you can select resources based on the size of the
training job.

ModelArts mounts a disk to /cache. You can use this directory to store temporary
files. The /cache directory shares resources with the code directory. The directory
has different capacities for different resource specifications.

NO TE

● The eviction policy of Kubernetes disks is 90%. Therefore, the effective size of a disk is
90% of the cache directory capacity.

● The local disks of BMSs are physical disks that have a fixed capacity. If you need to store
a large amount of data, you can use SFS, which provides scalable storage.

● GPU resources

Table 15-10 Capacities of the cache directories for GPU resources

GPU
Specifications

cache Directory Capacity

V100 800 GB

8*V100 3 TB

P100 800 GB

● CPU resources

Table 15-11 Capacities of the cache directories for CPU resources

CPU
Specifications

cache Directory Capacity

2 vCPUs | 8 GiB 50 GB

8 vCPUs | 32 GiB 50 GB

Modelarts
Usermanual 15 FAQs

2024-04-30 960

15.4.4.3 Is the /cache Directory of a Training Job Secure?
The program of a ModelArts training job runs in a container. The address of a
directory to which the container is mounted is unique, and can be accessed only
by the running container. Therefore, the /cache directory of the training job is
secure.

15.4.4.4 Why Is a Training Job Always Queuing?
If the training job is always queuing, the selected resources are limited in the
resource pool, and the job needs to be queued. In this case, wait for resources. To
speed up resource obtaining, do as follows:

1. If you use a public resource pool:
Resources in a public resource pool are limited. During peak hours, resources
may be insufficient if service traffic is heavy. Try to take the following
measures:
– If a free flavor was used, change it to a charged one. Few resources are

provided for free flavors, leading to a high queuing probability.
– The less number of cards in the selected flavor leads to the lower

queuing probability. For example, the probability of queuing when
selecting a 1-card flavor is much less than that of queuing when selecting
an 8-card flavor.

– Switch to another region.
– If resources will be used for a long term, purchase a dedicated resource

pool.
2. If you use a dedicated resource pool:

– If there are multiple available dedicated resource pools, switch to an idle
one.

– Release resources in the current resource pool, for example, stop
notebook instances that are not used for a long time.

– Submit a training job during off-peak hours.
– Contact the account administrator of the resource pool to expand the

resource pool based on the usage.

Helpful link: Why Is the Job Still Queued When Resources Are Sufficient?

15.4.4.5 What Determines the Hyperparameter Directory (/work or /ma-
user) When Creating a Training Job?

Symptom
The hyperparameter directory for the input and output parameters varies
between /work and /ma-user when creating a training job.

Figure 15-30 /ma-user directory

Modelarts
Usermanual 15 FAQs

2024-04-30 961

Figure 15-31 /work directory

Solution

The directory varies depending on the selected algorithm for the training job.

● If the selected algorithm is created using an old-version image, the
hyperparameter directory of the input and output parameters is /work.

Figure 15-32 Creating an algorithm

● If the selected algorithm is not created using an old-version image, the
hyperparameter directory of the input and output parameters is /ma-user.

15.4.5 Managing Training Job Versions

15.4.5.1 Does a Training Job Support Scheduled or Periodic Calling?

ModelArts training jobs do not support scheduled or periodic calling. When your
job is in the Running state, you can call the job based on service requirements.

15.4.6 Viewing Job Details

15.4.6.1 How Do I Check Resource Usage of a Training Job?

In the left navigation pane of the ModelArts management console, choose
Training Management > Training Jobs to go to the Training Jobs page. In the
training job list, click a job name to view job details. You can view the following
metrics on the Resource Usages tab page.

● CPU: CPU usage (cpuUsage) percentage (Percent)

● MEM: Physical memory usage (memUsage) percentage (Percent)

● GPU: GPU usage (gpuUtil) percentage (Percent)

● GPU_MEM: GPU memory usage (gpuMemUsage) percentage (Percent)

15.4.6.2 How Do I Access the Background of a Training Job?

ModelArts does not support access to the background of a training job.

Modelarts
Usermanual 15 FAQs

2024-04-30 962

15.4.6.3 Is There Any Conflict When Models of Two Training Jobs Are Saved
in the Same Directory of a Container?

Storage directories of ModelArts training jobs do not affect each other.
Environments are isolated from each other, and data of other jobs cannot be
viewed.

15.4.6.4 Only Three Valid Digits Are Retained in a Training Output Log. Can
the Value of loss Be Changed?

In a training job, only three valid digits are retained in a training output log. When
the value of loss is too small, the value is displayed as 0.000. Log content is as
follows:

INFO:tensorflow:global_step/sec: 0.382191
INFO:tensorflow:step: 81600(global step: 81600) sample/sec: 12.098 loss: 0.000
INFO:tensorflow:global_step/sec: 0.382876
INFO:tensorflow:step: 81700(global step: 81700) sample/sec: 12.298 loss: 0.000

Currently, the value of loss cannot be changed. You can multiply the value of loss
by 1000 to avoid this problem.

15.4.6.5 Can a Trained Model Be Downloaded or Migrated to Another
Account? How Do I Obtain the Download Path?

You can download a model trained by a training job and upload the downloaded
model to OBS in the region corresponding to the target account.

Obtaining a Model Download Path
1. Log in to the ModelArts console. In the left navigation pane, choose Training

Management > Training Jobs. The Training Jobs page is displayed.
2. In the training job list, click a job name to view job details.
3. Obtain the Output Path on the left, which is the download path of the

trained model.

Migrating a Model to Another Account

Use either of the following methods to migrate a trained model to another
account:

● Download the trained model and then upload it to the OBS bucket in the
region corresponding to the target account.

● Configure a policy for the folder or bucket where the model is stored to
authorize other accounts to perform read and write operations. For details,
see "Creating a Custom Bucket Policy (Visual Editor)" in OBS documentation.

15.5 Service Deployment

15.5.1 Model Management

Modelarts
Usermanual 15 FAQs

2024-04-30 963

15.5.1.1 Importing Models

15.5.1.1.1 How Do I Import the .h5 Model of Keras to ModelArts?

ModelArts does not support the import of models in .h5 format. You can convert
the models in .h5 format of Keras to the TensorFlow format and then import the
models to ModelArts.

For details about how to convert the Keras format to the TensorFlow format, see
the Keras official website.

15.5.1.1.2 How Do I Edit the Installation Package Dependency Parameters in a
Model Configuration File When Importing a Model?

Symptom
When importing a model from OBS or a container image, edit a model
configuration file. The model configuration file describes the model usage,
computing framework, precision, inference code dependency package, and model
API. The configuration file must be in JSON format. dependencies in the model
configuration file specifies the dependencies required for configuring the model
inference code. This parameter requires the package name, installation method,
and version constraints. For details, see Specifications for Editing a Model
Configuration File The following section describes how to edit dependencies in
the model configuration file during model import.

Solution
The installation packages must be installed in sequence. For example, before
installing mmcv-full, install Cython, pytest-runner, and pytest. In the
configuration file, Cython, pytest-runner, and pytest are ahead of mmcv-full.

Example:

"dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "package_name": "Cython"
 },
 {
 "package_name": "pytest-runner"
 },
 {
 "package_name": "pytest"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "5.0.0",
 "package_name": "Pillow"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.4.0",
 "package_name": "torch"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.19.1",

Modelarts
Usermanual 15 FAQs

2024-04-30 964

https://keras.io/getting_started/#tensorflow--keras-2-backwards-compatibility

 "package_name": "numpy"
 },
 {
 "package_name": "mmcv-full"
 }
]
 }
]

If installing mmcv-full failed, the possible cause is that GCC was not installed in
the base image, leading to a compilation failure. In this case, use the wheel
package on premises to install mmcv-full.

Example:
"dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "package_name": "Cython"
 },
 {
 "package_name": "pytest-runner"
 },
 {
 "package_name": "pytest"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "5.0.0",
 "package_name": "Pillow"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.4.0",
 "package_name": "torch"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.19.1",
 "package_name": "numpy"
 },
 {
 "package_name": "mmcv_full-1.3.9-cp37-cp37m-manylinux1_x86_64.whl"
 }
]
 }
]

dependencies in the model configuration file supports multiple dependency
structure arrays in list format.

Example:
"dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "package_name": "Cython"
 },
 {
 "package_name": "pytest-runner"
 },
 {
 "package_name": "pytest"
 },
 {

Modelarts
Usermanual 15 FAQs

2024-04-30 965

 "package_name": "mmcv_full-1.3.9-cp37-cp37m-manylinux1_x86_64.whl"
 }
]
 },
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "ATLEAST",
 "package_version": "5.0.0",
 "package_name": "Pillow"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.4.0",
 "package_name": "torch"
 },
 {
 "restraint": "ATLEAST",
 "package_version": "1.19.1",
 "package_name": "numpy"
 },
]
 }
]

15.5.1.1.3 What Do I Do If Error ModelArts.0107 Is Reported When I Use MindSpore
to Create an AI Application?

In the supercomputing ecosystem, OM models are checked according to
MindSpore model package specifications. Add an empty .om file to the model
package so that the model package can be imported.

15.5.1.1.4 How Do I Change the Default Port to Create a Real-Time Service Using a
Custom Image?

A port number (for example, 8443) has been specified in a model configuration
file. If you do not specify a port (default port 8080 will be used then) or specify
another port during AI application creation, deploying the AI application as a
service will fail. In this case, set the port number to 8443 in the AI application to
resolve this issue.

To change the default port, do as follows:

1. Log in to the ModelArts management console. In the navigation pane, choose
AI Application Management > AI Applications.

2. Click Create. On the page for creating an AI application, set Meta Model
Source to Container image and select a custom image.

3. Configure the container API and port number. Ensure that the port number is
the same as that specified in the model configuration file.

Modelarts
Usermanual 15 FAQs

2024-04-30 966

Figure 15-33 Changing the port

4. After the configuration, click Create now. Wait until the AI application runs
properly.

5. Deploy the AI application as a real-time service again.

15.5.1.1.5 Does ModelArts Support Multi-Model Import?

Importing a model package from OBS to ModelArts applies to single-model
scenarios. If multiple models are required, you are advised to import custom
images from SWR to create AI applications and deploy services. For details about
how to create a custom image, see Creating a Custom Image and Using It to
Create an AI Application.

15.5.1.1.6 Restrictions on the Size of an Image for Importing an AI Application

ModelArts uses containers for deploying services. There are size limitations during
container runtime. If the size of your model file, custom file, or system file exceeds
the container engine space, a message will be displayed, indicating that the image
space is insufficient.

The maximum container engine space in a public resource pool is 50 GB, and that
for a dedicated resource pool is 50 GB by default. You can set the container engine
space for a dedicated resource pool when you create it, which does not increase
costs.

If the AI application is imported from OBS or a training job, the total size of the
base image, model files, code, data files, and software packages cannot exceed
the limit.

If the AI application is imported from a custom image, the total size of the
decompressed image and image dependencies cannot exceed the limit.

15.5.2 Service Deployment

15.5.2.1 Functional Consulting

15.5.2.1.1 What Types of Services Can Models Be Deployed as on ModelArts?

Models can be deployed as real-time services or batch services.

Modelarts
Usermanual 15 FAQs

2024-04-30 967

15.5.2.1.2 What Are the Differences Between Real-Time Services and Batch
Services?

● Real-Time Services
Models are deployed as web services. You can access the services through the
management console or APIs.

● Batch Services
A batch service performs inference on batch data and automatically stops
after data processing is completed.

A batch service processes batch data at a time. A real-time service provides APIs
for you to call.

15.5.2.1.3 What Is the Maximum Size of a Prediction Request Body?
After a service is deployed and running, you can send an inference request to the
service. The requested content can be text, images, voice, or videos, depending on
the model of the service.

If you use the inference request address (URL of APIG) displayed on the Usage
Guides tab of the service details page for prediction, the maximum size of the
request body is 12 MB. If the request body is oversized, the request will be
intercepted.

If you perform the prediction on the Prediction tab of the service details page, the
size of the request body cannot exceed 8 MB. The size limit varies between the
two tab pages because they use different network links.

Ensure that the size of a request body does not exceed the upper limit. If there are
high-concurrency and heavy-traffic inference requests, submit a service ticket to
professional service support.

15.5.2.1.4 How Do I Select Compute Node Specifications for Deploying a Service?
Before deploying a service, specify node specifications. The node specifications
displayed on the GUI are calculated by ModelArts based on the target AI
application and the node specifications available in the resource pool. You can
select the specifications provided by ModelArts or customize the specifications
(supported only in dedicated resource pools).

Selecting compute node specifications based on the resources required by your AI
application. For example, if an AI application requires 3 CPUs and 10 GB of
memory, select compute node specifications higher than 3 CPUs and 10 GB of
memory. This ensures that the service can be successfully deployed and run
properly.

Figure 15-34 Compute node specifications

Modelarts
Usermanual 15 FAQs

2024-04-30 968

When using compute node specifications, pay attention to the following:

Permission control

Permissions on general-purpose compute node specifications, for example,
modelarts.vm.cpu.2u are not controlled. You can select the specifications as long
as there are idle resources in the resource pool. ModelArts provides two
specifications by default, CPU-powered modelarts.vm.cpu.2u and GPU-powered
modelarts.vm.gpu.p4.

For some special specifications, contact the system administrator to request for
permissions.

Unavailable public resource pool specifications

Resources in a public resource pool are limited. If a specification is in gray,
resources of the current specification have been used up. In this case, select other
specifications or create your own dedicated resource pool.

Custom specifications

You can customize resource specifications only when a dedicated resource pool is
used. Specifications cannot be customized in public resource pools.

Figure 15-35 Custom specifications

15.5.2.1.5 What Is the CUDA Version for Deploying a Service on GPUs?

CUDA 10.2 is supported by default. If a later version is required, submit a service
ticket to apply for technical support.

15.5.2.2 Real-Time Services

15.5.2.2.1 What Do I Do If a Conflict Occurs in the Python Dependency Package of
a Custom Prediction Script When I Deploy a Real-Time Service?

Before importing a model, save the inference code and configuration file in the
model folder. When coding with Python, import custom packages in relative
import (Python import) mode.

If there are packages with duplicate names in the ModelArts inference framework
code and they are imported not in relative import mode, a conflict will occur,
leading to a service deployment or prediction failure.

15.5.2.2.2 What Is the Format of a Real-Time Service API?

After an AI application is deployed as a real-time service, you can use the API for
inference.

Modelarts
Usermanual 15 FAQs

2024-04-30 969

The format of an API is as follows:

https://Domain name/Version/infer/service ID

Example:

https://6ac81cdfac4f4a30be95xxxbb682.apig.xxx.xxx.com/v1/infers/
468d146d-278a-4ca2-8830-0b6fb37d3b72

Figure 15-36 API

15.5.2.2.3 Why Did My Service Deployment Fail with Proper Deployment Timeout
Configured?

A model can properly start after a service is deployed. The startup status of a
model can be detected through a health check.

Check whether a service is deployed using a health check API for custom images.
When creating an AI application, configure a health check delay to ensure the
initialization of containers.

It is a good practice to configure a proper health check delay for service
deployment.

15.6 API/SDK

15.6.1 Can ModelArts APIs or SDKs Be Used to Download
Models to a Local PC?

ModelArts APIs or SDKs cannot be used to download models to a local PC.
However, the output models of training jobs are stored in OBS. You can use OBS
APIs or SDKs to download the models.

15.6.2 What Installation Environments Do ModelArts SDKs
Support?

ModelArts SDKs can run in notebook or local environments. However, the
supported environments vary depending on architectures. For details, see Table
15-12.

Modelarts
Usermanual 15 FAQs

2024-04-30 970

Table 15-12 SDK installation environments

Development
Environment

Architecture Supported

Notebook Arm Yes

x86 Yes

Local environment Arm No

x86 Yes

15.6.3 Does ModelArts Use the OBS API to Access OBS Files
over an Intranet or the Internet?

In the same region, ModelArts uses the OBS API to access files stored in OBS over
an intranet and does not consume public network traffic.

If you download data from OBS through the Internet, you will be charged for the
OBS public network traffic.

15.6.4 How Do I Obtain a Job Resource Usage Curve After I
Submit a Training Job by Calling an API?

After submitting a training job by calling an API, log in to the ModelArts console,
choose Training Management > Training Jobs, and click the name or ID of the
target training job to go to its details page. In the Resource Usages area, view the
resource usage curve of the job.

15.6.5 How Do I View the Old-Version Dedicated Resource
Pool List Using the SDK?

You can view the old-version dedicated resource pool list by referring to the
following code:

from modelarts.session import Session
from modelarts.estimator import Estimator
algo_info = Estimator(modelarts_session=Session()).get_job_pool_list()print(algo_info)

15.7 Using PyCharm Toolkit

15.7.1 What Should I Do If an Error Occurs During Toolkit
Installation?

Symptom

The following error message is displayed during Toolkit installation.

Modelarts
Usermanual 15 FAQs

2024-04-30 971

Figure 15-37 Error

Solution

This issue occurs because the plug-in version is inconsistent with the PyCharm
version. You need to obtain the plug-in of the same version as the PyCharm
version, that is, version 2019.2 or later.

15.7.2 What Should I Do If an Error Occurs When I Edit a
Credential in PyCharm Toolkit?

Symptom

When you edit a credential in PyCharm Toolkit, the message "Validate Credential
error" is displayed.

Or

Possible Causes
● Possible cause 1: Information such as the region is incorrectly configured.
● Possible cause 2: The hosts file is not configured or is incorrectly configured.
● Possible cause 3: The network proxy settings are incorrect.
● Possible cause 4: The AK/SK is incorrect.
● Possible cause 5: The computer time is incorrectly set.

Solution

1. Information such as the region is incorrectly configured.

Correctly configure the region, projects, and endpoint. . For details, see
Configuring a Local IDE Accessed Using PyCharm Toolkit

For example, if the endpoint is incorrect, the authentication fails.

Incorrect example: The endpoint is preceded by https.

Modelarts
Usermanual 15 FAQs

2024-04-30 972

Figure 15-38 Configuring PyCharm Toolkit

2. The hosts file is not configured or is incorrectly configured.

Configure the domain names and IP addresses in the hosts file on the local PC.
For details, see Configuring a Local IDE Accessed Using PyCharm Toolkit.

3. Network proxy settings are incorrect.

If the network requires proxy settings, check whether the proxy settings are
correct. You can also use the mobile hotspot to test.

Check whether the proxy settings are correct.

Figure 15-39 PyCharm network proxy settings

4. The AK/SK is incorrect.

Obtained correct AK/SK and try again. For details, see How Do I Obtain an
Access Key?

Modelarts
Usermanual 15 FAQs

2024-04-30 973

If you use a RightCloud account, contact the technical support of the region to
obtain the AK/SK.

5. The computer time is incorrectly set.

Set the computer time to the correct time.

15.7.3 Why Cannot I Start Training?
If code that does not belong to the used project is selected in a boot script,
training cannot be started. The following figure shows error information. You are
advised to add the boot script to the project or open the project where the boot
script is located, and then start the training job.

Figure 15-40 Error

15.7.4 What Should I Do If Error "xxx isn't existed in
train_version" Occurs When a Training Job Is Submitted?

Symptom
Error "xxx isn't existed in train_version" occurs when a training job is submitted.
See the following figure.

Figure 15-41 Error "xxx isn't existed in train_version"

Possible Causes
The preceding error occurs because the user logs in to the ModelArts
management console and deletes the training job after submitting the training job
using PyCharm Toolkit.

PyCharm Toolkit records the training job IDs of ModelArts on the cloud. If you
manually delete the job on the ModelArts management console, a message is
displayed indicating that the job with the ID cannot be found when you submit
the job locally.

Solution
If you have deleted a job on the ModelArts management console, you also need
to delete the local configuration from Toolkit. To delete the local configuration,
click Edit Training Configuration, find the job name, click the minus sign in the
upper right corner, and confirm the deletion.

Modelarts
Usermanual 15 FAQs

2024-04-30 974

Figure 15-42 Deleting the local configuration

In the displayed confirmation dialog box, confirm the information and click Yes to
delete the configuration. After the deletion, you can create a training job
configuration and submit the training job.

15.7.5 What Should I Do If Error "Invalid OBS path" Occurs
When a Training Job Is Submitted?

When a training job is running, the "Invalid OBS path" error is reported.

Figure 15-43 "Invalid OBS path" error

To locate the fault, perform the following operations:

● If you are using ModelArts for the first time, log in to the ModelArts
management console and complete access authorization configuration. The
agency authorization mode is recommended. After the global configuration is
complete, submit the job again.

● Check whether the configured Data Path in OBS exists and whether data files
exist in the directory. If the directory does not exist, create a directory on OBS
and upload the training data to the directory.

15.7.6 What Should I Do If Error "NoSuchKey" Occurs When
PyCharm Toolkit Is Used to Submit a Training Job?

Symptom
When PyCharm Toolkit is used to submit a training job, an error is reported. The
log is as follows.

Modelarts
Usermanual 15 FAQs

2024-04-30 975

Possible Causes

The image version is too old and incompatible with the training job.

Solution

When using PyCharm Toolkit to submit a training job, select a frequently-used
engine version supported by the training job. For details about the supported
versions, see AI engines supported by training jobs. Do not select PyTorch-1.0.0,
PyTorch-1.3.0, or PyTorch-1.4.0.

Figure 15-44 Selecting an AI engine supported by the training job

15.7.7 What Should I Do If an Error Occurs During Service
Deployment?

Before deploying a model as a service, edit the configuration file and inference
code based on the trained model.

Modelarts
Usermanual 15 FAQs

2024-04-30 976

If the confi.json configuration file or the customize_service.py inference code is
missing in the model storage path, an error is displayed, as shown in the following
figure.

Solutions:

Write the configuration file and inference code, and save them to the OBS
directory where the model to be deployed resides. For details, see Introduction to
Model Package Specifications.

Figure 15-45 Error

15.7.8 How Do I View Error Logs of PyCharm Toolkit?
The error logs of PyCharm Toolkit are recorded in the idea.log file of PyCharm.
For example, in the Windows operating system, the path of the idea.log file is
C:\Users\xxx\.IdeaIC2019.2\system\log\idea.log.

Search for modelarts in the log file to view all logs related to PyCharm Toolkit.

15.7.9 How Do I Use PyCharm ToolKit to Create Multiple Jobs
for Simultaneous Training?

PyCharm ToolKit supports only one job at a time. To run another job, you must
manually stop the current one.

15.7.10 What Should I Do If "Error occurs when accessing to
OBS" Is Displayed When PyCharm ToolKit Is Used?

Symptom

The PyCharm ToolKit log showed "Error occurs when accessing to OBS".

Possible Causes

You do not have OBS permissions.

Solution

Check whether you have the OBS permissions.

Step 1 Log in to the ModelArts console, choose Data Management > Datasets, and click
Create. You have the OBS permissions if you can access the OBS path. If you do
not have the OBS permissions, go to Configure the OBS permis... to configure the
OBS permissions.

Step 2 Configure the OBS permissions.

----End

Modelarts
Usermanual 15 FAQs

2024-04-30 977

16 Troubleshooting

16.1 General Issues

16.1.1 Incorrect OBS Path on ModelArts

Symptom
● When an OBS bucket path is used in ModelArts, a message indicating that the

created OBS bucket cannot be found or message "ModelArts.2791: Invalid
OBS path" is reported.

● "Error: stat:403" is reported when you perform operations on an OBS bucket.
● "Permission denied" is reported when a file is downloaded from OBS to

Notebook.

Possible Causes
● You do not have access to OBS buckets of other users.
● Access authorization has not been configured on ModelArts.
● Encrypted files are to upload to OBS. ModelArts does not support encrypted

OBS files.
● The permissions and access control lists (ACLs) of the OBS bucket are

incorrectly configured.
● When a training job is created, the code directory and boot file are configured

incorrectly.

Solution

Check whether you have the permission to access the OBS bucket.

Check whether you have the permission to access OBS buckets of other users from
a notebook instance.

Check delegation authorization.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 978

Go to the Global Configuration page and check whether you have the OBS
access authorization. If you do not, see Configuring Access Authorization (Global
Configuration).

Check whether the OBS bucket is encrypted.

1. Log in to the OBS management console and click the bucket name to go to
the Overview page.

2. Ensure that default encryption is disabled for the OBS bucket. If the OBS
bucket is encrypted, click Default Encryption and disable it.

NO TE

When you create an OBS bucket, do not select Archive or Deep Archive. Otherwise,
training models will fail.

Figure 16-1 Bucket encryption status

Check whether the OBS file is encrypted.

1. Log in to the OBS management console and click the bucket name to go to
the Overview page.

2. In the navigation pane on the left, choose Objects. The object list is displayed.
Click the name of the object that stores files and find the target file. In the
Encrypted column of the file list, check whether the file is encrypted. File
encryption cannot be canceled. In this case, cancel bucket encryption and
upload images or files again.

Check the ACLs of the OBS bucket.

1. Log in to the OBS management console and click the bucket name to go to
the Overview page.

2. In the navigation pane, choose Permissions and click Bucket ACLs. Then,
check whether the current account has the read and write permissions. If it
does not, contact the bucket owner to obtain the permissions.

3. In the navigation pane on the left, choose Permissions > Bucket Policy, and
check whether the current OBS bucket can be accessed by IAM users.

Check the code directory and boot file of a training job.

1. Log in to the ModelArts management console, choose Training Management
> Training Jobs, locate the failed training job, and click its name or ID to go
to the job details page.

2. In the pane on the left, check whether the code directory and startup file are
correct, and ensure that the OBS file name does not contain spaces.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 979

– Select an OBS directory for code directory. If a file is selected, the system
will display a message indicating an invalid OBS path.

– The boot file must be in the .py format. Otherwise, the system will
display a message indicating an invalid OBS path.

Figure 16-2 Code Directory and Boot File of a training job

If the fault persists, see for further troubleshooting.

16.2 ExeML

16.2.1 Preparing Data

16.2.1.1 Failed to Publish a Dataset Version

If this fault occurs, the data does not meet the requirements of the data
management module. As a result, the dataset fails to be published and the
following operations cannot be performed.

Check your data, exclude the data that does not meet the following requirements,
and restart the ExeML training task.

ModelArts.4710 OBS Permission Issues

This fault is caused by OBS permissions when ModelArts interacts with OBS. If the
message "OBS service Error Message" is displayed, the fault is caused by OBS
permissions. Perform the following steps to rectify the fault. If this information is
not contained in the error message, the fault is caused by backend services.
Contact technical support.

1. Check whether the current account has OBS permissions.
Perform this step if you log in to ModelArts as an IAM user.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 980

Grant the current IAM user with the Tenant Administrator permission on
global services so that the user has all OBS operation permissions. For details,
see "Service Overview" > "User Permissions" in OBS User Guide..
To restrict the IAM user account' permissions, configure the minimum OBS
operation permissions for it. For details, see "Creating a Custom Policy".

2. Check whether the user has OBS bucket permissions.

NO TE

The OBS bucket described in the following steps is specified when you create an
ExeML project or the one where the dataset selected during project creation is stored.

– Check whether the current account has been granted with the read and
write permissions on the OBS bucket (specified in bucket ACLs).

▪ Go to the OBS management console, select the OBS bucket used by
the ExeML project, and click the bucket name to go to the Overview
page.

▪ In the navigation pane, choose Permissions > Bucket ACLs. On the
Bucket ACLs page that is displayed, check whether the current
account has the read and write permissions. If it does not, contact
the bucket owner to grant the permissions.

– Check whether the OBS bucket is unencrypted.

i. Go to the OBS management console, select the OBS bucket used by
the ExeML project, and click the bucket name to go to the Overview
page.

ii. Ensure that the default encryption function is disabled for the OBS
bucket. If the OBS bucket is encrypted, click Default Encryption and
change its encryption status.

Figure 16-3 Checking whether the default encryption function is enabled
for the OBS bucket

– Check whether the direct reading function of archived data is disabled.

i. Go to the OBS management console, select the OBS bucket used by
the ExeML project, and click the bucket name to go to the Overview
page.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 981

ii. Ensure that the direct reading function is disabled for the archived
data in the OBS bucket. If this function is enabled, click Direct
Reading and disable it.

Figure 16-4 Disabling the direct reading function

ModelArts.4711 Number of Labeled Samples in the Dataset Does Not Meet
Algorithm Requirements

Each labeling type must contain at least five images.

ModelArts.4342 Labeling Information Does Not Meet Splitting Conditions
If this fault occurs, modify the labeling data based on the following suggestions
and try again.

● At least two multi-label samples (that is, an image contains multiple labels)
are required. If you enable dataset splitting when starting training and the
number of images with multiple labels is less than 2, the dataset splitting
fails. Check your labeling information and ensure that more than two images
with multiple labels are labeled.

● After the dataset is split, the label classes contained in the training set and
validation set are different. Cause: In the multi-label scenario, after random
data segmentation, samples containing a certain type of labels are classified
into the training set. As a result, the verification set does not contain the label
samples. This issue rarely occurs. You can try to release a new version to
handle the issue.

ModelArts.4371 Dataset Version Already Exists
If this error code is displayed, the dataset version already exists. In this case,
republish the dataset version.

ModelArts.4712 Datasets Are Being Imported or Synchronized
If the dataset used in ExeML is being imported or synchronized, this error occurs
during training. In this case, start the ExeML training task after other tasks are
complete.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 982

16.2.1.2 Invalid Dataset Version
If this issue occurs, the dataset version is successfully released but does not meet
the requirements of the ExeML training jobs. As a result, an error message is
displayed, indicating that the dataset version does not meet the requirements.

Labeling Information Does Not Meet the Trainning Requirements
For different types of ExeML projects, training jobs have the following
requirements on datasets:

● Image classification: There are at least two classes (that is, at least two
labels) for the images to be trained, and the number of images in each class
cannot be less than 5.

● Object detection: There is at least one class (that is, at least one label) for the
images to be trained, and the number of images for each class cannot be less
than 5.

● Predictive analytics: The dataset of the predictive analytics task is not
managed in a unified manner. Even if the data does not meet the
requirements, no fault information is displayed in this issue.

● Sound classification: There are at least two classes (that is, at least two
labels) for the audio files to be trained, and the number of audio files in each
class cannot be less than 5.

● Text classification: There are at least two classes (that is, at least two labels)
for the text files to be trained, and the number of text files in each class
cannot be less than 20.

16.2.2 Training a Model

16.2.2.1 Failed to Create an ExeML-powered Training Job
This fault is typically caused by a backend service failure. Recreate the training job
later. If the fault persists after three retries, contact .

16.2.2.2 ExeML-powered Training Job Failed
A training job that is successfully created fails to be executed due to some faults.

To rectify this fault, check whether your account is in arrears first. If your account
is normal, rectify the fault based on the job type.

● For details about how to rectify the job training faults related to Image
Classification, Sound Classification, and Text Classification, see Checking
Whether Data Exists in OBS, Checking the OBS Access Permission, and
Checking Whether the Images Meet the Requirements.

● For details about how to rectify the job training faults related to Object
Detection, see Checking Whether Data Exists in OBS, Checking the OBS
Access Permission, Checking Whether the Images Meet the Requirements,
and Checking Whether the Marking Boxes Meet the Object Detection
Requirements.

● For details about how to rectify the job training faults related to Predictive
Analytics, see Checking Whether Data Exists in OBS, Checking the OBS

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 983

Access Permission, and Troubleshooting of a Predictive Analytics Job
Failure.

Checking Whether Data Exists in OBS

If the images or data stored in OBS is deleted and not synchronized to ModelArts
ExeML or datasets, the task will fail.

Check whether data exists in OBS. For Image Classification, Sound Classification,
Text Classification, and Object Detection, you can click Synchronize Data Source
on the Data Labeling page of ExeML to synchronize data from OBS to ModelArts.

Checking the OBS Access Permission

If the access permission of the OBS bucket cannot meet the training requirements,
the training fails. Do the following to check the OBS permissions:

● Check whether the current account has been granted with the read and write
permissions on the OBS bucket (specified in bucket ACLs).

a. Go to the OBS management console, select the OBS bucket used by the
ExeML project, and click the bucket name to go to the Overview page.

b. In the navigation pane, choose Permissions and click Bucket ACLs. Then,
check whether the current account has the read and write permissions. If
it does not, contact the bucket owner to obtain the permissions.

● Check whether the OBS bucket is unencrypted.

a. Go to the OBS management console, select the OBS bucket used by the
ExeML project, and click the bucket name to go to the Overview page.

b. Ensure that the default encryption function is disabled for the OBS
bucket. If the OBS bucket is encrypted, click Default Encryption and
change its encryption status.

Figure 16-5 Default encryption status

● Check whether the direct reading function of archived data is disabled.

a. Go to the OBS management console, select the OBS bucket used by the
ExeML project, and click the bucket name to go to the Overview page.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 984

b. Ensure that the direct reading function is disabled for the archived data in
the OBS bucket. If this function is enabled, click Direct Reading and
disable it.

Figure 16-6 Disabled direct reading

● Ensure that files in OBS are not encrypted.

Do not select KMS encryption when uploading images or files. Otherwise, the
dataset fails to read data. File encryption cannot be canceled. In this case,
cancel bucket encryption and upload images or files again.

Figure 16-7 File encryption status

Checking Whether the Images Meet the Requirements

Currently, ExeML does not support four-channel images. Check your data and
exclude or delete this format of images.

Checking Whether the Marking Boxes Meet the Object Detection
Requirements

Currently, object detection supports only rectangular labeling boxes. Ensure that
the labeling boxes of all images are rectangular ones.

If a non-rectangle labeling box is used, the following error message may be
displayed:

Error bandbox.

For other types of projects (such as image classification and sound classification),
skip this checking item.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 985

Troubleshooting of a Predictive Analytics Job Failure
1. Check whether the data used for predictive analytics meets the following

requirements.
The predictive analytics task releases datasets without using the data
management function. If the data does not meet the requirements of the
training job, the job will fail to run.
Check whether the data used for training meets the requirements of the
predictive analytics job. The following lists the requirements. If the
requirements are met, go to the next step. If the requirements are not met,
adjust the data based on the requirements and then perform the training
again.
– The name of files in a dataset consists of letters, digits, hyphens (-), and

underscores (_), and the file name suffix is .csv. The files cannot be
stored in the root directory of an OBS bucket, but in a folder in the OBS
bucket, for example, /obs-xxx/data/input.csv.

– The files are saved in CSV format. Use newline characters (\n or LF) to
separate lines and commas (,) to separate columns of the file content.
The file content cannot contain Chinese characters. The column content
cannot contain special characters such as commas (,) and newline
characters. The quotation marks are not supported. It is recommended
that the column content consist of letters and digits.

– The number of training columns is the same. There are at least 100
different data records (a feature with different values is considered as
different data) in total. The training columns cannot contain data of the
timestamp format (such as yy-mm-dd or yyyy-mm-dd). Ensure that there
are at least two values in the specified label column and no data is
missing. In addition to the label column, the dataset must contain at
least two valid feature columns. Ensure that there are at least two values
in each feature column and that the percentage of missing data must be
lower than 10%. The training data CSV file cannot contain the table
header. Otherwise, the training fails. Due to the limitation of the feature
filtering algorithm, place the label column in the last column of the
dataset. Otherwise, the training may fail.

2. ModelArts automatically filters data and then starts the training job. If the
preprocessed data does not meet the training requirements, the training job
fails to be executed.
Filter policies for columns in a dataset:
– If the vacancy rate of a column is greater than the threshold (0.9) set by

the system, the data in this column will be deleted during training.
– If a column has only one value (that is, the data in each row is the

same), the data in this column will be deleted during training.
– For a non-numeric column, if the number of values in this column is

equal to the number of rows (that is, the values in each row are
different), the data in this column will be deleted during training.

After the preceding filtering, if the data in the dataset does not meet the
training requirements in Item 1, the training fails or cannot be executed.
Complete the data before starting the training.

3. Restrictions for a dataset file:

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 986

a. If you use the 2U8G flavor (2 vCPUs and 8 GB of memory), it is
recommended that the size of the dataset file be less than 10 MB. If the
file size meets the requirements but the data volume (product of the
number of rows and the number of columns) is extremely large, the
training may still fail. It is recommended that the product be less than
10,000.
If you use the 8U32G flavor (8 vCPUs and 32 GB of memory), it is
recommended that the size of the dataset file be less than 100 MB. If the
file size meets the requirements but the data volume (product of the
number of rows and the number of columns) is extremely large, the
training may still fail. It is recommended that the product be less than
1,000,000.

4. If the fault persists, contact .

16.2.3 Deploying a Model

16.2.3.1 Failed to Submit the Real-time Service Deployment Task
This fault is typically caused by the limited quota of the account.

In an ExeML project, after the deployment is started, the model is automatically
deployed as a real-time service. If the number of real-time services exceeds the
quota limit, the model cannot be deployed as a service. In this case, an error
message is displayed in the ExeML project, indicating that the real-time service
deployment task fails to be submitted.

Troubleshooting
● Method 1: Choose Service Deployment > Real-time Services. On the

displayed page, delete services that are no longer used to release resources.
● Method 2: If the deployed real-time service still needs to be used, you are

advised to apply for a higher quota.

16.2.3.2 Failed to Deploy a Real-time Service
This fault is typically caused by a backend service failure. You are advised to
redeploy the real-time service later. If the fault persists after three retries, obtain
the following information and contact .

● Obtain a service ID.
Go to the Service Deployment > Real-Time Services page. In the service list,
find the real-time service deployed in the ExeML task. All the services of
ExeML start with exeML- Click the service name to go to the service details
page. In the basic information area, obtain Service ID.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 987

Figure 16-8 Obtaining a service ID

● Obtain events about the real-time service.
On the service details page, click the Events tab. Take a screenshot of the
event information table, and send the screenshot to technical support
personnel.

Figure 16-9 Obtaining events

16.2.4 Publishing a Model

16.2.4.1 Failed to Submit the Model Publishing Task
This fault is typically caused by a backend service failure. You are advised to
recreate the training job later. If the fault persists after three retries, contact .

16.2.4.2 Failed to Publish a Model
This fault is typically caused by a backend service failure. You are advised to
recreate the training job later. If the fault persists after three retries, obtain the
following information and contact .

● Obtain a model ID.
Choose AI Application Management > AI Applications. In the AI application
list, find the applications automatically created in the ExeML task. All the AI

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 988

applications generated by ExeML start with exeML-. Click the model name to
go to the model details page. In the Basic Information area, obtain the value
of ID.

Figure 16-10 Obtaining a model ID

● Obtain model events.
On the model details page, click the Events tab. Take a screenshot of the
event information table, and send the screenshot to technical support
personnel.

Figure 16-11 Obtaining events

16.3 DevEnviron

16.3.1 Environment Configuration Faults

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 989

16.3.1.1 Disk Space Used Up

Symptom
● Error message "No Space left on Device" is displayed when a notebook

instance is used.
● Error message "Disk quota exceeded" is displayed when code is executed in a

notebook instance.

Possible Causes
● After a file is deleted from the navigation pane on the left of JupyterLab, the

file is moved to the recycle bin by default. This occupies memory, leading to
insufficient disk space.

● The disk quota is insufficient.

Solution

Check the storage space used by the VM, check the memory used by files in the
recycle bin, and delete unnecessary large files from the recycle bin.

1. On the notebook instance details page, view the storage capacity of the
instance.

2. Check the storage space used by the VM. The storage space is typically close
to the storage capacity.
cd /home/ma-user/work
du -h --max-depth 0

3. Run the following commands to check the memory used by the recycle bin
(recycle bin files are stored in /home/ma-user/work/.Trash-1000/files by
default):
cd /home/ma-user/work/.Trash-1000/
du -ah

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 990

4. Delete unnecessary large files from the recycle bin. Deleted files cannot be
restored.
rm {File path}

NO TE

If the name of the folder or file you want to delete contains spaces, add single
quotation marks to the name.

5. Run the following commands to check the storage space used by the VM
again:
cd /home/ma-user/work
du -h --max-depth 0

6. If the notebook instance uses an EVS disk for storage, expand the storage
capacity on the notebook instance details page.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 991

Summary and Suggestions

It is a good practice to delete unnecessary files when using a notebook instance to
prevent a training failure caused by insufficient disk space.

16.3.1.2 An Error Is Reported When Conda Is Used to Install Keras 2.3.1 in
Notebook

Symptom

An error is reported when Conda is used to install Keras 2.3.1.

Possible Cause

There are network issues with Conda. Run the pip install command to install
Keras 2.3.1.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 992

Solution

Run the !pip install keras==2.3.1 command to install Keras.

16.3.1.3 Error "HTTP error 404 while getting xxx" Is Reported During
Dependency Installation in a Notebook

Symptom

An error is reported during dependency installation in a notebook instance. The
following shows the error.

Possible Causes

The dependency is not in the PyPI source or the source is unavailable.

Solution

Run the following command to download the dependency from another source:

pip install -i Source address Dependency name

16.3.1.4 The numba Library Has Been Installed in a Notebook Instance and
Error "import numba ModuleNotFoundError: No module named 'numba'" Is
Reported

Symptom

After you install the numba library in a notebook instance by running the !pip
install numba command, the library is running properly and is saved as a custom
image. However, an error is reported indicating that the library does not exist
when you run the script in DataArts Studio.

Possible Causes

Multiple virtual environments are created and the numba library is installed in
python-3.7.10, as shown in Figure 16-12.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 993

Figure 16-12 Querying virtual environments

Solution

Run the conda deactivate command in Termina to exit the current virtual
environment and enter the default base environment. Run the pip list command
to query the installed packages. Install and save the required dependencies, switch
to the specified virtual environment, and run the script.

16.3.2 Instance Faults

16.3.2.1 Failed to Create a Notebook Instance and JupyterProcessKilled Is
Displayed in Events

Symptom

A user failed to create a notebook instance, and JupyterProcessKilled was
displayed in Events.

Possible Causes

This fault occurs because the Jupyter process is killed. Generally, the notebook
instance automatically restarts. If it does not restart, its creation fails. Check
whether the failure is caused by the custom image issue.

Solution

Check whether the custom image is correct.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 994

When registering a custom image on the ModelArts console after it is created,
ensure that its architecture and type are the same as those of the source image.

Figure 16-13 Registering an image

16.3.2.2 What Do I Do If I Cannot Access My Notebook Instance?

Troubleshoot the issue based on error code.

A Black Screen Is Displayed When a Notebook Instance Is Opened

A black screen is displayed after a notebook instance is opened, which is caused by
a proxy issue. Change the proxy to rectify the fault.

A Blank Page Is Displayed When a Notebook Instance Is Opened
● If a blank page is displayed after a notebook instance is opened, clear the

browser cache and open the notebook instance again.
● Check whether the ad filtering component is installed for the browser. If yes,

disable the component.

Error 404

If this error is reported when an IAM user creates an instance, the IAM user does
not have the permissions to access the corresponding storage location (OBS
bucket).

Solution

1. Log in to the OBS console using the primary account and grant access
permissions for the OBS bucket to the IAM user.

2. After the IAM user obtains the permissions, log in to the ModelArts console,
delete the instance, and use the OBS path to create a notebook instance.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 995

Error 503
If this error is reported, it is possible that the instance is consuming too many
resources. If this is the case, stop the instance and restart it.

Error 500
Notebook JupyterLab cannot be opened, and error 500 is reported. The possible
cause is that the disk space in the work directory is used up. In this case, identify
the fault cause and clear the disk by referring to .

Error "This site can't be reached"
After a notebook instance is created, click Open in the Operation column. The
error message shown in the following figure is displayed.

To solve the problem, copy the domain name of the page, add it to the Do not
use proxy server for addresses beginning with text box, and save the settings.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 996

16.3.2.3 What Should I Do When the System Displays an Error Message
Indicating that No Space Left After I Run the pip install Command?

Symptom
In the notebook instance, error message "No Space left..." is displayed after the
pip install command is run.

Solution
You are advised to run the pip install --no-cache ** command instead of the pip
install ** command. Adding the --no-cache parameter can solve such problem.

16.3.2.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the
Error Message "save error" Is Displayed?

If the notebook instance can run the code but cannot save it, the error message
"save error" is displayed when you save the file. In most cases, this error is caused
by a security policy of Web Application Firewall (WAF).

On the current page, some characters in your input or output of the code are
intercepted because they are considered to be a security risk. Submit a service
ticket and contact customer service to check and handle the problem.

16.3.2.5 ModelArts.6333 Error Occurs

Symptom
When you use a notebook instance, the ModelArts.6333 error is displayed.

Possible Cause
The fault may be caused by instance overload. The notebook instance
automatically restores. Refresh the page and wait for several minutes. The
common cause is that the memory is used up.

Solution
When this error occurs, the notebook instance automatically restores. You can
refresh the page and wait for several minutes.

The common cause is that the memory is used up. You can use the following
methods to rectify the fault.

● Method 1: Replace the notebook instance with a resource with higher
specifications.

● Method 2: Adjust the parameters in the code to reduce memory occupation. If
the memory is still insufficient after the code is modified, use method 1.

a. Call the sklearn method silhouette_score(addr_1,siteskmeans.labels)
and specify the sample_size parameter to reduce memory occupation.

b. When calling the train method, you can try to decrease the value of
batch_size.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 997

16.3.2.6 What Can I Do If a Message Is Displayed Indicating that the Token
Does Not Exist or Is Lost When I Open a Notebook Instance?

Symptom
You shared your notebook URL with others, but they receive an error message "...
lost token or incorrect token...." when attempting to access the URL.

Possible Cause
They do not have the token of the account.

Solution
Add the token of the notebook owner to the end of the URL.

16.3.3 Code Running Failures

16.3.3.1 Error Occurs When Using a Notebook Instance to Run Code,
Indicating That No File Is Found in /tmp

Symptom
When the a notebook instance is used to run code, the following error occurs:

FileNotFoundError: [Error 2] No usable temporary directory found in ['/tmp', '/var/tmp', '/usr/tmp',
'home/ma-user/work/SR/RDN_train_base']

Figure 16-14 Code running error

Possible Cause
Check whether a large amount of data is saved in /tmp.

Solution
1. Go to the Terminal page. In the /tmp directory, run the du -sh * command to

check the space usage of the directory.
sh-4.3$cd /tmp
sh-4.3$du -sh *
4.0K core-js-banners

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 998

0 npm-19-41ed4c62
6.7M v8-compile-cache-1000

2. Delete unnecessary large files.

a. Delete the sample file test.txt: rm -f /home/ma-user/work/data/
test.txt

b. Delete the sample folder data: rm -rf /home/ma-user/work/data/

16.3.3.2 What Do I Do If a Notebook Instance Won't Run My Code?

If a notebook instance fails to execute code, you can locate and rectify the fault as
follows:

1. If the execution of a cell is suspended or lasts for a long time (for example,
the execution of the second and third cells in Figure 16-15 is suspended or
lasts for a long time, causing execution failure of the fourth cell) but the
notebook page still responds and other cells can be selected, click interrupt
the kernel highlighted in a red box in the following figure to stop the
execution of all cells. The notebook instance retains all variable spaces.

Figure 16-15 Stopping all cells

2. If the notebook page does not respond, close the notebook page and the
ModelArts console. Then, open the ModelArts console and access the
notebook instance again. The notebook instance retains all the variable
spaces that exist when the notebook instance is unavailable.

3. If the notebook instance still cannot be used, access the Notebook page on
the ModelArts console and stop the notebook instance. After the notebook
instance is stopped, click Start to restart the notebook instance and open it.
The instance will have preserved all the spaces for the variables that were
unable to run.

16.3.3.3 Why Does the Instance Break Down When dead kernel Is Displayed
During Training Code Running?

The notebook instance breaks down during training code running due to
insufficient memory caused by large data volume or excessive training layers.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 999

After this error occurs, the system automatically restarts the notebook instance to
fix the instance breakdown. In this case, only the breakdown is fixed. If you run
the training code again, the failure will still occur. To solve the problem of
insufficient memory, you are advised to create a new notebook instance and use a
resource pool of higher specifications, such as a dedicated resource pool, to run
the training code. An existing notebook instance that has been successfully
created cannot be scaled up using resources with higher specifications.

16.3.3.4 What Do I Do If cudaCheckError Occurs During Training?

Symptom

The following error occurs when the training code is executed in a notebook:

cudaCheckError() failed : no kernel image is available for execution on the device

Possible Cause

Parameters arch and code in setup.py have not been set to match the GPU
compute power.

Solution

For Tesla V100 GPUs, the GPU compute power is -gencode
arch=compute_70,code=[sm_70,compute_70]. Set the compilation parameters in
setup.py accordingly.

16.3.3.5 What Do I Do If Insufficient Space Is Displayed in DevEnviron?

If space is insufficient, use notebook instances with EVS disks.

Upload the code and data of the affected notebook instance to an OBS bucket.
Then, create a notebook instance with EVS disks, and download the data from
OBS to the new notebook instance. For details, see How Do I Upload a File from
a Notebook Instance to OBS or Download a File from OBS to a Notebook
Instance?

16.3.3.6 Why Does the Notebook Instance Break Down When
opencv.imshow Is Used?

Symptom

When opencv.imshow is used in a notebook instance, the notebook instance
breaks down.

Possible Causes

The cv2.imshow function in OpenCV malfunctions in a client/server environment
such as Jupyter. However, Matplotlib does not have this problem.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1000

Solution

Display images by referring to the following example. Note that OpenCV displays
BGR images while Matplotlib displays RGB images.

Python:

from matplotlib import pyplot as plt
import cv2
img = cv2.imread('Image path')
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('my picture')
plt.show()

16.3.3.7 Why Cannot the Path of a Text File Generated in Windows OS Be
Found In a Notebook Instance?

Symptom

When a text file generated in Windows is used in a notebook instance, the text
content cannot be read and an error message may be displayed indicating that
the path cannot be found.

Possible Causes

The notebook instance runs Linux and its line feed format (CRLF) differs from that
(LF) in Windows.

Solution

Convert the file format to Linux in your notebook instance.

Shell:

dos2unix File name

16.3.3.8 What Do I Do If No Kernel Is Displayed After a Notebook File Is
Created?

Symptom

After a notebook file is created, "No Kernel" is displayed in the upper right corner
of the page.

Possible Causes

The code.py file in the work directory conflicts with the name of the import code
file on which the kernel depends.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1001

Solution
1. View the latest log file starting with kernelgateway in /home/ma-user/log/

and search for the logs near Starting kernel. If the stack similar to the
following is displayed, the possible cause is that the name of the code.py file
in the work directory conflicts with the name of the import code file on which
the kernel depends.

2. To resolve this issue, rename the code.py file in the work directory.
code.py and select.py are typically prone to conflict.

16.3.4 JupyterLab Plug-in Faults

16.3.4.1 What Do I Do If the Git Plug-in Password Is Invalid?

Symptom
If the Git plug-in is used in JupyterLab, when a private repository is cloned or a file
is pushed, an error occurs.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1002

Possible Causes
The authorization using a password has been canceled in GitHub. When cloning a
private repository or pushing a file, you are required to enter a token in the
authorization text box.

Solution
Use a token for authorization. When cloning a private repository or pushing a file,
enter the token in the authorization text box. For details about how to obtain a
token, see Using the Git Plug-in.

16.3.5 Save an Image Failures

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1003

16.3.5.1 What If the Error Message "there are processes in 'D' status, please
check process status using'ps -aux' and kill all the 'D' status processes" or
"Buildimge,False,Error response from daemon,Cannot pause container xxx"
Is Displayed When I Save an Image?

Symptom
● When an image is saved in a notebook instance, error "there are processes in

'D' status, please check process status using 'ps -aux' and kill all the 'D' status
processes" is displayed.

● When an image is saved in a notebook instance, error "Buildimge,False,Error
response from daemon: Cannot pause container xxx" is displayed.

Possible Causes

If there is a process in the D state in the notebook instance, saving an image will
fail.

Solution
1. Run the ps -aux on the terminal to check the process.

2. Run the kill -9 <pid> command to stop the process. Then, save the image
again.

16.3.5.2 What Do I Do If Error "container size %dG is greater than threshold
%dG" Is Displayed When I Save an Image?

Symptom

When an image is saved in a notebook instance, error "container size %dG is
greater than threshold %dG" is displayed.

Possible Causes

The size of the notebook container exceeded the threshold.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1004

Solution

Reduce the container size. The size of a notebook container consists of the image
size and the size of the files newly installed in the container. To resolve this issue,
use either of the following methods:

● Reduce the size of the files newly installed in the container.

a. Delete the files newly installed in a notebook instance. For example, if a
large number of files have been downloaded to the notebook instance,
delete them. This method applies only to directories other than the /
home/ma-user/work and /cache directories. The persistent storage data
in home/ma-user/work will not be stored in the created container
image, and the temporary files stored in /cache do not consume the
container storage space.

b. If no file can be deleted or it is unknown which files can be deleted, use
the same image to create a notebook instance. When using the new
notebook instance, minimize software package installations or file
downloads to reduce the container size.

● Reduce the size of the image file.
If you are not sure which packages or files do not need to be installed, use a
small image to create a notebook instance and install the required software
or files in it. Among all the public images, mindspore1.7.0-py3.7-
ubuntu18.04 takes the minimum size.

16.3.5.3 What Do I Do If Error "too many layers in your image" Is Displayed
When I Save an Image?

Symptom

When an image is saved, error "too many layers in your image" is displayed.

Possible Causes

The image selected for creating the target notebook instance is a bring-your-own
image or a custom image that has been saved for multiple times. No image can
be saved for the notebook instance that is created using such an image.

Solution

Use a public image or another custom image to create a notebook instance and
save the image.

16.3.5.4 What Do I Do If Error "The container size (xG) is greater than the
threshold (25G)" Is Reported When I Save an Image?

Symptom

The error The container size (30G) is greater than the threshold (25G) is
reported when an image is saved, and the image fails to be created.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1005

Possible Causes

To save an image, you need to run the docker commit command on the agent of
a resource cluster node. Administrative data will be uploaded and updated
automatically. Each time you run the command, the image becomes larger. After
the image is saved for multiple times, its actual size is larger than it shows. If the
image is too large, various problems may occur. You can rebuild the original image
environment and save the image to solve the problem.

Solution

Rebuild the original image environment. You can use a base image with
minimized installation and run the dependencies. Clear the installation cache and
save the image.

16.3.6 Other Faults

16.3.6.1 Failed to Open the checkpoints Folder in Notebook

checkpoints is a keyword in notebook. If a created folder is named checkpoints,
the folder will not be opened, renamed, or deleted on JupyterLab. To access
checkpoints, you have two options: either execute the command line in the
terminal to load the checkpoint files, or create a folder and transfer the
checkpoint data to that folder.

Figure 16-16 Unavailable checkpoints in the JupyterLab navigation pane

Procedure

Open the terminal and perform operations using the CLI.

Method 1: Run the cd checkpoints command to open the checkpoints folder.

Method 2: Create a folder and move the data in the checkpoints folder to that
folder.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1006

1. Run the mkdir xxx command to create a folder, in which xxx is the folder
name. Do not use checkpoints to name the folder.

2. Move the data in the checkpoints folder to the new folder and delete the
checkpoints folder in the root directory.
mv checkpoints/* xxx
rm -r checkpoints

16.3.6.2 Failed to Use a Purchased Dedicated Resource Pool to Create New-
Version Notebook Instances

Symptom
A dedicated resource pool that has been purchased cannot be selected for creating
a notebook instance, resulting in the creation failure.

A message is displayed, indicating that the development environment has not
been initialized in the dedicated resource pool.

Possible Causes
A newly purchased dedicated resource pool can be used to create notebook
instances only after its development environment is initialized.

Solution
Initialize the development environment on the dedicated resource pool page.

Step 1 Go to the Dedicated Resource Pools page and choose More > Set Job Type in
the Operation column.

Step 2 In the Set Job Type dialog box, select DevEnviron and click OK. Then, the
development environment is being initialized. After its status changes to Running,
the newly purchased dedicated resource pool can be used to create notebook
instances.

Figure 16-17 Setting job type to DevEnviron

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1007

Figure 16-18 Initializing the development environment

----End

16.3.6.3 Error Message "Permission denied" Is Displayed When the
tensorboard Command Is Used to Open a Log File in a Notebook Instance

Symptom
When the tensorboard --logdir ./ command is executed on the terminal of a
notebook instance, the error message "[Errno 13] Permission denied..." is
displayed.

Possible Causes
The current directory contains files on which you do not have permission.

Solution
Create a folder (for example, tb_logs), place the TensorBoard log file (for
example, tb.events) in this folder, and run the tensorboard command. The
following is an example command:

mkdir -p ./tb_logs
mv tb.events ./tb_logs
tensorboard --logdir ./tb_logs

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1008

16.4 Training Jobs

16.4.1 OBS Operation Issues

16.4.1.1 Error in File Reading

Symptom
● How to read the json and npy files when creating a training job.
● How the training job uses the cv2 library to read files.
● How to use the torch package in the MXNet environment.
● The following error occurs when the training job reads the file:

NotFoundError (see above for traceback): Unsucessful TensorSliceReader constructor: Failed to find
any matching files for xxx://xxx

Possible Cause
In ModelArts, user's data is stored in OBS buckets, but training jobs are running in
containers. Therefore, users cannot access files in OBS buckets by accessing local
paths.

Solution
If an error occurs when you read a file, you can use MoXing to copy data to a
container and then access the data in the container. For details, see 1.

You can also read files based on the file type. For details, see Reading .json files,
Reading .npy files, and Using the cv2 library to read files, and Using the torch
package in the MXNet environment.

1. If an error occurs when you read a file, you can use MoXing to copy data to a
container and then access the data in the container as follows:
import moxing as mox
mox.file.make_dirs('/cache/data_url')
mox.file.copy_parallel('obs://bucket-name/data_url', '/cache/data_url')

2. To read .json files, run the following code:
json.loads(mox.file.read(json_path, binary=True))

3. To use numpy.load to read .npy files, run the following code:
– Using the MoXing API to read files from OBS

np.load(mox.file.read(_SAMPLE_PATHS['rgb'], binary=True))

– Using the file module of MoXing to read and write OBS files
with mox.file.File(_SAMPLE_PATHS['rgb'], 'rb') as f:
np.load(f)

4. To use the cv2 library to read files, run the following code:
cv2.imdecode(np.fromstring(mox.file.read(img_path), np.uint8), 1)

5. To use the torch package in the MXNet environment, run the following
code:
import os
os.sysytem('pip install torch')
import torch

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1009

16.4.1.2 Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job
Is Connected to OBS

Symptom

After a training job is started based on TensorFlow-1.8 and the tf.gfile module is
used to connect to OBS in code, the following log information is frequently
printed:

Connection has been released. Continuing.
Found secret key

Possible Cause

This problem occurs in TensorFlow-1.8. This log is of the INFO level and is not
error information. You can set an environment variable to shield logs of the INFO
level. The environment variable must be set before the import tensorflow or
import moxing command is executed.

Solution

Set the environment variable TF_CPP_MIN_LOG_LEVEL in code to shield logs of
the INFO level. Detailed operations are as follows:

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import tensorflow as tf
import moxing.tensorflow as mox

The mapping between TF_CPP_MIN_LOG_LEVEL and log levels is as follows:

import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # Default level of logs to be displayed. All information is
displayed.
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # Only warning and error information is displayed.
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # Only error information is displayed.

16.4.1.3 TensorFlow Stops Writing TensorBoard to OBS When the Size of
Written Data Reaches 5 GB

Symptom

The following error message is displayed for a ModelArts training job:

Encountered Unknown Error EntityTooLarge
Your proposed upload exceeds the maximum allowed object size.:
If the signature check failed. This could be because of a time skew. Attempting to adjust the signer

Possible Cause

The size of files to be uploaded at a time is limited to 5 GB in OBS. TensorFlow
may save the summary file in local cache. Therefore, when flush is triggered each
time, the summary file overwrites the original file on OBS. If the size of the file
exceeds 5 GB, the file stops being written.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1010

Solution
If this problem occurs during the running of a training job, use the following
method for troubleshooting.

1. You are advised to use the following local cache method:
import moxing.tensorflow as mox
mox.cache()

16.4.1.4 Error "Unable to connect to endpoint" Error Occurs When a Model
Is Saved

Symptom
An error occurs in the log when a model is saved in a training job. The error
details are as follows:

InternalError (see above for traceback): : Unable to connect to endpoint

Possible Cause
When OBS connections are unstable, the following error may occur: Unable to
connect to endpoint

Solution
Add code to solve the problem of unstable OBS connections. You can add the
following code at the beginning of the existing code so that TensorFlow can read
and write ckpt and summary information in local cache mode:
import moxing.tensorflow as mox

mox.cache()

16.4.1.5 Error Message "BrokenPipeError: Broken pipe" Displayed When OBS
Data Is Copied

Symptom
The error message is displayed when MoXing is used to copy data for a training
job.

Figure 16-19 Error log

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1011

Possible Causes

The possible causes are as follows:

● In a large-scale distributed job, multiple nodes are concurrently copying files
in the same bucket, leading to traffic control in the OBS bucket.

● There is a large number of OBS client connections. During the polling
between processes or threads, an OBS client connection timed out if the
server does not respond to it within 30 seconds. As a result, the server
released the connection.

Solution
1. If the issue is caused by traffic control, the error code shown in the following

figure is displayed. In this case, submit a service ticket. For details about OBS
error codes, see Python > Troubleshooting > OBS Server-Side Error Codes in
Object Storage Service SDK Reference.

Figure 16-20 Error log

2. If the issue is caused by the large number of client connections, especially for
files larger than 5 GB, OBS APIs cannot be directly called. In this case, use
multiple threads to copy data. The timeout duration set on the OBS server is
30s. Run the following commands to reduce the number of processes:
Configure the number of processes.
os.environ['MOX_FILE_LARGE_FILE_TASK_NUM']=1
import moxing as mox

Copy files.
mox.file.copy_parallel(src_url=your_src_dir, dst_url=your_target_dir, threads=0, is_processing=False)

NO TE

When creating a training job, you can use the environment variable
_PARTIAL_MAXIMUM_SIZE to configure the threshold (in bytes) for downloading
large files in multiple parts. If the size of a file exceeds the threshold, the file will be
downloaded in multiple parts concurrently.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1012

16.4.1.6 Error Message "ValueError: Invalid endpoint: obs.xxxx.com"
Displayed in Logs

Symptom

When TensorBoard is used to directly write data in an OBS path for a training job,
an error is displayed.

Figure 16-21 Error log

Possible Causes

It is unstable to use TensorBoard to directly write data in OBS.

Solution

Locally write data and then copy it back to OBS.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.1.7 Error Message "errorMessage:The specified key does not exist"
Displayed in Logs

Symptom

When MoXing is used to access an OBS path, the following error is displayed:
ERROR:root:
stat:404
errorCode:NoSuchKey
errorMessage:The specified key does not exist.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1013

Possible Causes

The possible causes are as follows:

The object is unavailable in the bucket. For details about OBS error codes, see
Python > Troubleshooting > OBS Server-Side Error Codes in Object Storage
Service SDK Reference.

Solution
1. Check whether the OBS path and object are in correct format.

2. Use the local PyCharm to remotely access notebook for debugging.

Summary and Suggestions

Before creating a training job, use a ModelArts development environment to
debug training code. This maximally eliminates errors in code migration.

16.4.2 In-Cloud Migration Adaptation Issues

16.4.2.1 Failed to Import a Module

Symptom

The following error occurs in the log when a module is imported to a ModelArts
training job:

Traceback (most recent call last):File "project_dir/main.py", line 1, in <module>from module_dir import
module_file
ImportError: No module named module_dir
ImportError: No module named xxx

Possible Cause
● When a training job is imported to the module, the previous two error

messages are displayed in the log. The possible causes are as follows:

Before running code locally, you need to add project_dir to PYTHONPATH or
install project_dir in site-package. However, on ModelArts, you can add
project_dir to sys.path to solve this problem.

Use from module_dir import module_file to import a package. The code
structure is as follows:
project_dir
|- main.py
|- module_dir
| |- __init__.py
| |- module_file.py

● When a training job is imported to the module, the error message
"ImportError: No module named xxx" is displayed in the log. It can be
determined that the environment does not contain the Python package on
which the user depends.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1014

Solution
● When a training job is imported to the module, the previous two error

messages are displayed in the log. The solution is as follows:

a. Ensure that the imported module contains __init__.py used for creating
module_dir. Possible Cause provides the code structure.

b. Because the location of project_dir in the container is unknown, use an
absolute path by adding project_dir to sys.path in file main.py, and
import the following information:
import os
import sys
__file__ is the absolute path of the main.py script.
os.path.dirname(__file__) is the parent directory of main.py, that is, the absolute path of
project_dir.
current_path = os.path.dirname(__file__)
sys.path.append(current_path)
Import other modules after sys.path.append is executed.
from module_dir import module_file

● When a training job is imported to the module, the error message
"ImportError: No module named xxx" is displayed in the log. Add the
following code to install the dependency package:
import os
os.system('pip install xxx')

16.4.2.2 Error Message "No module named .*" Displayed in Training Job Logs

Perform the following operations to locate the fault:

1. Checking Whether the Dependency Package Is Available
2. Checking Whether the Dependency Package Path Can Be Detected
3. Checking Whether the Selected Resource Flavor Is Correct
4. Summary and Suggestions

Checking Whether the Dependency Package Is Available

If the dependency package is unavailable, use either of the following methods to
install it:

● Method 1 (recommended): When you create an algorithm, place the required
file or installation package in the code directory.
The required file varies depending on the dependency package type.
– If the dependency package is an open-source installation package

Create a file named pip-requirements.txt in the code directory, and
specify the dependency package name and version in the format of
Package name==Version in the file.
For example, the OBS path specified by Code Directory contains model
files and the pip-requirements.txt file. The code directory structure is as
follows:
|---OBS path to the model boot file
 |---model.py # Model boot file
 |---pip-requirements.txt # Customized configuration file, which specifies the name and
version of the dependency package

The following shows the content of the pip-requirements.txt file:

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1015

alembic==0.8.6
bleach==1.4.3
click==6.6

– If the dependency package is a WHL package
If the training backend does not support the download of open-source
installation packages or the use of custom WHL packages, the system
cannot automatically download and install the package. In this case,
place the WHL package in the code directory, create a file named pip-
requirements.txt, and specify the name of the WHL package in the file.
The dependency package must be in WHL format.
For example, the OBS path specified by Code Directory contains model
files, the WHL file, and the pip-requirements.txt file. The code directory
structure is as follows:
|---OBS path to the model boot file
 |---model.py # Model boot file
 |---XXX.whl # Dependency package. If multiple dependencies are required, place
all of them here.
 |---pip-requirements.txt # Customized configuration file, which specifies the name of the
dependency package

The following shows the content of the pip-requirements.txt file:
numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
tensorflow-1.8.0-cp36-cp36m-manylinux1_x86_64.whl

● Method 2: Add the following code to the boot file to install the dependency
package:
import os
os.system('pip install xxx')

In method 1, the dependency package can be downloaded and installed before
the training job is started. In method 2, the dependency package is downloaded
and installed during the running of the boot file.

Checking Whether the Dependency Package Path Can Be Detected
Before executing code locally, add project_dir to PYTHONPATH or install
project_dir in site-package. ModelArts enables you to add project_dir to sys.path
to resolve this issue.

Run from module_dir import module_file to import a package. The code
structure is as follows:

project_dir
|- main.py
|- module_dir
| |- __init__.py
| |- module_file.py

Checking Whether the Selected Resource Flavor Is Correct
Error message "No module named npu_bridge.npu_init" is displayed for a training
job.

from npu_bridge.npu_init import *
ImportError: No module named npu_bridge.npu_init

Check whether the flavor used by the training job supports NPUs. The possible
cause is that the job selected a non-NPU flavor, for example, a GPU flavor. As a
result, an error occurs when NPUs are used.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1016

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.3 Failed to Install a Third-Party Package

Symptom
● How to install custom library functions for ModelArts, for example, apex.
● The following error occurs when a third-party package is installed in the

ModelArts training environment:
xxx.whl is not a supported wheel on this platform

Possible Cause
Error xxx.whl is not a supported wheel on this platform occurs, because the
format of the name of the installed file is not supported. For details about the
solution, see 2.

Solution
1. Installing the third-party package

a. For an existing package in pip, run the following code to install it:
import os
os.system('pip install xxx')

b. For a package that do not exist in pip, for example, apex, use the
following method to upload the installation package to an OBS bucket. In
this example, the installation package has been uploaded to obs://
cnnorth4-test/codes/mox_benchmarks/apex-master/. Add the
following code to the boot file to install the package:
try:
 import apex
except Exception:
 import os
 import moxing as mox
 mox.file.copy_parallel('obs://cnnorth4-test/codes/mox_benchmarks/apex-master/', '/cache/
apex-master')
 os.system('pip --default-timeout=100 install -v --no-cache-dir --global-option="--cpp_ext" --
global-option="--cuda_ext" /cache/apex-master')

2. Installation error
If the xxx.whl file fails to be installed, perform the following steps to solve
the problem:

a. If the xxx.whl file fails to be installed, add the following code to the boot
file to check the file name and version supported by the pip command.
import pip
print(pip.pep425tags.get_supported())

The supported file names and versions are as follows:
[('cp36', 'cp36m', 'manylinux1_x86_64'), ('cp36', 'cp36m', 'linux_x86_64'), ('cp36', 'abi3',
'manylinux1_x86_64'), ('cp36', 'abi3', 'linux_x86_64'), ('cp36', 'none', 'manylinux1_x86_64'),
('cp36', 'none', 'linux_x86_64'), ('cp35', 'abi3', 'manylinux1_x86_64'), ('cp35', 'abi3',
'linux_x86_64'), ('cp34', 'abi3', 'manylinux1_x86_64'), ('cp34', 'abi3', 'linux_x86_64'), ('cp33',
'abi3', 'manylinux1_x86_64'), ('cp33', 'abi3', 'linux_x86_64'), ('cp32', 'abi3', 'manylinux1_x86_64'),
('cp32', 'abi3', 'linux_x86_64'), ('py3', 'none', 'manylinux1_x86_64'), ('py3', 'none', 'linux_x86_64'),
('cp36', 'none', 'any'), ('cp3', 'none', 'any'), ('py36', 'none', 'any'), ('py3', 'none', 'any'), ('py35',

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1017

'none', 'any'), ('py34', 'none', 'any'), ('py33', 'none', 'any'), ('py32', 'none', 'any'), ('py31', 'none',
'any'), ('py30', 'none', 'any')]

b. Change faiss_gpu-1.5.3-cp36-cp36m-manylinux2010_x86_64.whl to
faiss_gpu-1.5.3-cp36-cp36m-manylinux1_x86_64.whl, and run the
following code to install the package:
import moxing as mox
import os

mox.file.copy('obs://wolfros-net/zp/AI/code/faiss_gpu-1.5.3-cp36-cp36m-
manylinux2010_x86_64.whl','/cache/faiss_gpu-1.5.3-cp36-cp36m-manylinux1_x86_64.whl')
os.system('pip install /cache/faiss_gpu-1.5.3-cp36-cp36m-manylinux1_x86_64.whl')

16.4.2.4 Failed to Download the Code Directory

Symptom

The code directory fails to be downloaded during training job running, and the
following error message is displayed. See Figure 16-22.

ERROR: modelarts-downloader.py: Get object key failed: 'Contents'

Figure 16-22 Failure of getting content

Possible Cause

The code directory specified during training job creation does not exist. As a result,
the training fails.

Solution

Check whether the code directory specified during training job creation, that is, the
OBS bucket path, is correct based on the error cause. There are two methods to
check whether it exists.

● Log in to the OBS console using the current account, and search for the OBS
buckets, folders, and files in the path to check whether the code directory
exists.

● Using APIs to check whether the directory exists: Run the following command
in code to check whether the directory exists:
import moxing as mox
mox.file.exists('obs://obs-test/ModelArts/examples/')

16.4.2.5 Error Message "No such file or directory" Displayed in Training Job
Logs

Symptom

If a training job failed, error message "No such file or directory" is displayed in
logs.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1018

If a training input path is unreachable, error message "No such file or directory" is
displayed.

If a training boot file is unavailable, error message "No such file or directory" is
displayed.

Figure 16-23 Example log for an unavailable training boot file

Possible Causes
● If the training input path is unreachable, the path is incorrect. Perform the

following operations to locate the fault:

a. Checking Whether the Affected Path Is an OBS Path
b. Checking Whether the Affected Path Is Available

● If the training boot file is unavailable, the path to the training job boot
command is incorrect. Rectify the fault by referring to Checking the File Boot
Path of a Training Job Created Using a Custom Image.

● Multiple processes or workers read and write the same file. If SFS is used,
check whether multiple nodes concurrently write the same file. Analyze the
code and check whether multiple processes write the same file. It is a good
practice to prevent multiple processes or nodes from concurrently reading and
writing the same file.

Checking Whether the Affected Path Is an OBS Path
When using ModelArts, store data in an OBS bucket. However, the OBS path
cannot be used to read data during the execution of the training code.

The reason is as follows:

After a training job is created, the training performance is poor if the running
container is directly connected to OBS. To prevent this issue, the system
automatically downloads the training data to the local path of the running
container. Therefore, an error occurs if an OBS path is used in training code. For
example, if the OBS path to the training code is obs://bucket-A/training/, the
training code will be automatically downloaded to ${MA_JOB_DIR}/training/.

For example, the OBS path to the training code is obs://bucket-A/XXX/{training-
project}/, where {training-project} is the name of the folder where the training
code is stored. During training, the system will automatically download the data
from OBS {training-project} to the local path of the training container
($MA_JOB_DIR/{training-project}/).

If the affected path is to the training data, perform the following operations to
resolve this issue (see "Parsing Input and Output Paths" for details):

1. When creating an algorithm, set the code path parameter, which defaults to
data_url, in the input path mapping configuration.

2. Add a hyperparameter, which defaults to data_url, to the training code. Use
data_url as the local path for inputting the training data.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1019

Checking Whether the Affected Path Is Available
The code developed locally needs to be uploaded to the ModelArts backend. It is
likely to incorrectly set the path to a dependency file in training code.

You are suggested to use the following general solution to obtain the absolute
path to a dependency file through the OS API.

Example:

|---project_root # Root directory for code
 |---BootfileDirectory # Directory where the boot file is located
 |---bootfile.py # Boot file
 |---otherfileDirectory # Directory where other dependency files are located
 |---otherfile.py # Other dependency files

Do as follows to obtain the path to a dependency file, otherfile_path in this
example, in the boot file:

import os
current_path = os.path.dirname(os.path.realpath(__file__)) # Directory where the boot file is located
project_root = os.path.dirname(current_path) # Root directory of the project, which is the code directory set
on the ModelArts training console
otherfile_path = os.path.join(project_root, "otherfileDirectory", "otherfile.py")

Checking the File Boot Path of a Training Job Created Using a Custom Image
Take OBS path obs://obs-bucket/training-test/demo-code as an example. The
training code in this path will be automatically downloaded to ${MA_JOB_DIR}/
demo-code in the training container, where demo-code is the last-level directory
of the OBS path and can be customized.

If you use a custom image to create a training job, the system will automatically
run the image boot command after the code directory is downloaded. The boot
command must comply with the following rules:

● If the training startup script is a .py file, train.py for example, the boot
command can be python ${MA_JOB_DIR}/demo-code/train.py.

● If the training startup script is an .sh file, main.sh for example, the boot
command can be bash ${MA_JOB_DIR}/demo-code/main.sh,

where demo-code is the last-level directory of the OBS path and can be
customized.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.6 Failed to Find the .so File During Training

Symptom
During the execution of a ModelArts training job, the following error message is
displayed in the log and the training failed:

libcudart.so.9.0 cannot open shared object file no such file or directory

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1020

Possible Cause

The CUDA version of the .so file generated during compilation is different from
that of the training job.

Solution

If the CUDA version in the compilation environment is different from that in the
training environment, an error will occur when a training job runs. For example,
this error occurs if the .so file generated in the TensorFlow 1.13 development
environment of CUDA version 10 is used in the TensorFlow 1.12 training
environment of CUDA version 9.0.

To resolve this issue, perform the following operations:

1. Add the following command before executing a training job to check whether
the .so file is available. If the .so file is available, go to 2. Otherwise, go to 3.
import os;
os.system(find /usr -name *libcudart.so*);

2. Configure the environment variable LD_LIBRARY_PATH and issue the training
job again.

For example, if the path for storing the .so file is /use/local/cuda/lib64,
configure LD_LIBRARY_PATH as follows:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

3. Run the following command to check whether the CUDA version of the
training environment supports the .so file:
os.system("cat /usr/local/cuda/version.txt")

a. If so, import an external .so file (download it from the browser) and
configure LD_LIBRARY_PATH in 2.

b. If not, replace the engine and issue the training job again. Alternatively,
use a custom image to create a job. For details, see Using a Custom
Image to Train Models.

16.4.2.7 ModelArts Training Job Failed to Parse Parameters and an Error Is
Displayed in the Log

Symptom

The ModelArts training job failed to parse parameters, and the following error
occurs:

error: unrecognized arguments: --data_url=xxx://xxx/xxx
error: unrecognized arguments: --init_method=tcp://job
absl.flags._exceptions.UnrecognizedFlagError:Unknown command line flag 'task_index'

Possible Cause
● The parameters are not defined.

● In the training environment, the system may input parameters that are not
defined in the Python script. As a result, the parameters cannot be parsed,
and an error is displayed in the log.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1021

Solution
1. Define the parameters. The following is a code sample for reference:

parser.add_argument('--init_method', default='tcp://xxx',help="init-method")

2. Replace args = parser.parse_args() with args, unparsed =
parser.parse_known_args(). The following is a code sample:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', type=str, default=None, help='obs path of dataset')
args, unparsed = parser.parse_known_args()

16.4.2.8 Training Output Path Is Used by Another Job

Symptom

The following error message is displayed when a training job is created: Operation
failed. Other running job contain train_url: /bucket-20181114/code_hxm/

Possible Cause

According to the error information, the same training output path is used by
another job when a training job is created.

Solution

A training output path can be used by only one job in the running, queuing, or
initializing state.

If this error occurs, check and re-set the training output path of the training job to
avoid the job creation failure.

16.4.2.9 Error Message "RuntimeError: std::exception" Displayed for a
PyTorch 1.0 Engine

Symptom

When a PyTorch 1.0 image is used, the following error message is displayed:
"RuntimeError: std::exception"

Possible Causes

The soft link of libmkldnn in the PyTorch 1.0 image conflicts with that of the
native Torch. For details, see conv1d fails in PyTorch 1.0.

Solution
1. This issue is caused by library conflict in the environment. To resolve this

issue, add the following code at the very beginning of the boot script:
import os
os.system("rm /home/work/anaconda3/lib/libmkldnn.so")
os.system("rm /home/work/anaconda3/lib/libmkldnn.so.0")

2. Use the local PyCharm to remotely access notebook for debugging.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1022

https://github.com/pytorch/pytorch/issues/14952

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.10 Error Message "retCode=0x91, [the model stream execute failed]"
Displayed in MindSpore Logs

Symptom
When MindSpore is used for training, the following error message is displayed:
[ERROR] RUNTIME(3002)model execute error, retCode=0x91, [the model stream execute failed]

Possible Causes
The speed of reading data cannot keep up with the model iteration speed.

Solution
1. Reduce shuffle operations during preprocessing.

dataset = dataset.shuffle(buffer_size=x)

2. Disable data preprocessing, which may affect system performance.
NPURunConfig(enable_data_pre_proc=Flase)

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.11 Error Occurred When Pandas Reads Data from an OBS File If
MoXing Is Used to Adapt to an OBS Path

Symptom
If MoXing is used to adapt to an OBS path, an error occurs when pandas of a later
version reads data from an OBS file.
1. 'can't decode byte xxx in position xxx'
2. 'OSError:File isn't open for writing'

Possible Causes
MoXing does not support Pandas of a later version.

Solution
1. After the OBS path is adapted, change the file access mode from r to rb and

change the _write_check_passed value in mox.file.File to True, as shown in
the following is sample code:
import pandas as pd
import moxing as mox

mox.file.shift('os', 'mox') # Replace the open operation of the operating system with the operation
for adapting the mox.file.File to the OBS path.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1023

param = {'encoding': 'utf-8'}
path = 'xxx.csv'
with open(path, 'rb') as f:
 f._wirte_check_passed = True
 df = pd.read_csv(ff, **param)

2. Use the local PyCharm to remotely access notebook for debugging.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.12 Error Message "Please upgrade numpy to >= xxx to use this pandas
version" Displayed in Logs

Symptom
Dependency conflicts occur when other packages are installed. There are special
requirements on the NumPy library. However, NumPy cannot be uninstalled. The
error message similar to the following is displayed:
your numpy version is 1.14.5.Please upgrade numpy to >= 1.15.4 to use this pandas version

Possible Causes
Both Conda and pip packages are installed. Some packages cannot be uninstalled.

Solution
Perform the following operations to resolve this issue:

1. Uninstall the components that can be uninstalled in NumPy.
2. Delete the NumPy folder in the site-packages directory.
3. Install the required version again.

import os
os.system("pip uninstall -y numpy")
os.system('rm -rf /home/work/anaconda/lib/python3.6/site-packages/numpy/')
os.system("pip install numpy==1.15.4")

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.13 Reinstalled CUDA Version Does Not Match the One in the Target
Image

Symptom
An error occurs after the engine version is reinstalled or a new CUDA package is
compiled based on the existing image.
1. "RuntimeError: cuda runtime error (11) : invalid argument at /pytorch/aten/src/THC/
THCCachingHostAllocator.cpp:278"
2. "libcudart.so.9.0 cannot open shared object file no such file or directory"

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1024

3. "Make sure the device specification refers to a valid device. The requested device appears to be a
GPU,but CUDA is not enabled"

Possible Causes
The possible cause is as follows:

The CUDA version of the newly installed package does not match the CUDA
version in the image.

Solution
Use the local PyCharm to remotely access notebook for debugging and
installation.

1. Remotely log in to the selected image and run nvcc -V to obtain the CUDA
version of the image.

2. Reinstall Torch. Ensure that the version matches the one obtained in the
previous step.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.14 Error ModelArts.2763 Occurred During Training Job Creation

Symptom
When a training job is created, error code ModelArts.2763 is displayed, indicating
that the selected instance is invalid.

Possible Causes
The selected training flavor does not match the algorithm.

For example, the algorithm supports GPUs, but Ascend flavor is selected for
creating the training job.

Solution
1. Check the training resource flavor configured in the algorithm code.
2. Check whether the resource flavor selected during training job creation is

correct. If not, create a training job with the correct resource flavor.

16.4.2.15 Error Message "AttributeError: module '***' has no attribute '***'"
Displayed Training Job Logs

Symptom
Error message "AttributeError: module '***' has no attribute '***'" is displayed in the
logs of a training job, for example, "AttributeError: module 'torch' has no attribute
'concat'".

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1025

Possible Causes
The possible causes are as follows:

● The Python package is incorrectly used. There is no required variable or
method in the Python package.

● The Python package version in the third-party pip source has been updated.
As a result, the version of the Python package installed in the training job
may also change. If a training job ran properly originally, but this issue occurs
in the training job later, consider this cause.

Solution
● Use notebook for debugging.
● Specify a version for installation, for example, pip install xxx==1.x.x.
● The third-party pip source may be updated at any time. To prevent this issue

from occurring, create a custom image. For details, see Using a Custom
Image.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.2.16 System Container Exits Unexpectedly

Symptom
After a training job is created, the system container exits unexpectedly.

Figure 16-24 Error logs

Possible Causes
The possible causes are as follows:

1. An error occurred in OBS.

a. Unavailable file: The specified key does not exist.
b. Insufficient OBS permissions
c. OBS traffic limiting

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1026

d. Others
2. The disk space is insufficient.

Solution
1. For an OBS error:

a. Unavailable file: The specified key does not exist.
For details, see Error Message "errorMessage:The specified key does
not exist" Displayed in Logs.

b. Insufficient OBS permissions
For details, see What Should I Do If Error "stat:403 reason:Forbidden"
Is Displayed in Logs When a Training Job Accesses OBS.

c. OBS traffic limiting
For details, see Error Message "BrokenPipeError: Broken pipe"
Displayed When OBS Data Is Copied.

d. Others
For details, see . Alternatively, obtain the request ID and contact OBS
customer service.

2. For insufficient disk space:
For details, see Common Issues Related to Insufficient Disk Space and
Solutions.

16.4.3 Hard Faults Due to Space Limit

16.4.3.1 Downloading Files Timed Out or No Space Left for Reading Data

Symptom

When data, code, or model is copied during training, the error message "No space
left on device" is displayed.

Figure 16-25 Error log

Possible Causes

The possible causes are as follows:

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1027

● The disk space is insufficient.
● When a distributed job is executed, the docker base size configuration does

not take effect on certain nodes. As a result, the storage space of the / root
directory in the container is only the default value of 10 GB, which should be
50 GB, leading to the job training failure.

● The storage space is sufficient, but the error message "No Space left on
device" is still displayed.
If there are a large number of files in the same directory, the kernel creates an
index table to accelerate file retrieval. If a large number of files are created in
a short period of time, the number of indexes reaches the upper limit, and an
error occurs.

NO TE

The issue occurs depending on the following factors:

● A longer file name leads to a smaller upper limit for the number of files.

● A smaller block size leads to a smaller upper limit for the number of files. (There
are three block sizes, 1024 bytes, 2048 bytes, and 4096 bytes. The default size is
4096 bytes.)

● The issue is more likely to occur if files are created in a shorter period of time. The
reason is as follows: There is a cache, the size of which is determined based on the
preceding two factors. When the number of files in the directory is large, the cache
is enabled. The resources are released if they are not used.

Solution
1. Rectify the fault by following the operations described in Error Message

"write line error" Displayed in Logs.
2. If the issue occurs only on certain nodes used by the distributed job, submit a

service ticket to isolate the faulty nodes.
3. If the issue is caused by EulerOS restrictions, take the following measures:

– Reduce the number of files in a single directory.
– Slow down the file creation speed.
– Disable the dir_index attribute of the Ext4 file system, which may affect

the file retrieval performance. For details, see https://access.redhat.com/
solutions/29894.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.3.2 Insufficient Container Space for Copying Data

Symptom

When a ModelArts training job was running, the error below was printed in the
log. As a result, data failed to be copied to the container.

OSError:[Errno 28] No space left on device

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1028

Possible Causes
The container space is insufficient for downloading data.

Solution
1. Check if data is downloaded to the /cache directory. Each GPU node has a /

cache directory with 4 TB of storage. Check if the directory is experiencing an
excessive creation of files simultaneously, which will run out of inodes, leading
to a shortage of space.

2. Check whether GPU resources are used. If CPU resources are used, /cache and
the code directory share 10 GB of memory. As a result, the memory is
insufficient. In this case, use GPU resources instead.

3. Add the following environment variable to the code:
import os
os.system('export TMPDIR=/cache')

16.4.3.3 Error Message "No space left" Displayed When a TensorFlow Multi-
node Job Downloads Data to /cache

Symptom
During training job creation, error message "No space left" is displayed when a
TensorFlow multi-node job downloads data to /cache.

Possible Cause
In a TensorFlow multi-node job, the parameter server (ps) and worker roles are
started. The ps and worker roles are scheduled to the same machine. Training
data is useless for ps. Therefore, the ps-related logic in code does not need to
download the training data. If ps also downloads data to /cache, the actually
downloaded data will be doubled. For example, if only 2.5 TB data is downloaded,
the program displays a message indicating that space is insufficient because the /
cache has only 4 TB available space.

Solution
When a TensorFlow multi-node job is used to download data, the correct
download logic is as follows:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--job_name", type=str, default="")
args = parser.parse_known_args()

if args[0].job_name != "ps":
 copy..............................

16.4.3.4 Size of the Log File Has Reached the Limit

Symptom
An error occurs during the running of a ModelArts training job, indicating that the
size of the log file has reached the limit.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1029

modelarts-pope: log length overflow(max:1073741824; already: 107341771; new:90), process will continue
running silently

Possible Cause

Error information indicates that the size of the log file has reached the limit. After
this error occurs, the volume of logs does not increase and the background
continues to run.

Solution

Reduce unnecessary log output from the boot file.

16.4.3.5 Error Message "write line error" Displayed in Logs

Symptom

During program running, a large number of error messages "write line error" are
generated. This issue recurs each time the program runs at a specific progress.

Figure 16-26 Error log

Possible Causes

The possible causes are as follows:

● Core files are generated during the program running and exhaust the storage
space in the / root directory.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1030

● The 3.5 TB of storage space in the /cache directory is used up by the local
data and files stored in it.

NO TE

The disk space for in-cloud training consists of the space from the following directories:

1. The / root directory, which is specified by base size in Docker. The default value is 10
GB. On the cloud, the value has been changed to 50 GB.

2. The /cache directory, which is 3.5 TB typically.

Solution
1. If core files are generated in the training job's work directory, add the code

below at the beginning of the boot script to disable the generation of the core
files.
import os
os.system("ulimit -c 0")

2. Check whether the dataset and checkpoint file have used up the storage
space of the /cache directory.

3. Use the local PyCharm to remotely access notebook for debugging.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.3.6 Error Message "No space left on device" Displayed in Logs

Symptom

When data, code, or model is copied during training, the error message "No space
left on device" is displayed.

Figure 16-27 Error log

Possible Causes

The possible causes are as follows:

● The disk space is insufficient.
● When a distributed job is executed, the docker base size configuration does

not take effect on certain nodes. As a result, the storage space of the / root

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1031

directory in the container is only the default value of 10 GB, which should be
50 GB, leading to the job training failure.

● The storage space is sufficient, but the error message "No Space left on
device" is still displayed.

If there are a large number of files in the same directory, the kernel creates an
index table to accelerate file retrieval. If a large number of files are created in
a short period of time, the number of indexes reaches the upper limit, and an
error occurs.

NO TE

The issue occurs depending on the following factors:

● A longer file name leads to a smaller upper limit for the number of files.

● A smaller block size leads to a smaller upper limit for the number of files. The
block size can be 1024 bytes, 2048 bytes, or 4096 bytes, and it defaults to 4096
bytes.

● The issue is more likely to occur if files are created in a shorter period of time. The
reason is as follows: There is a cache, the size of which is determined based on the
preceding two factors. When the number of files in the directory is large, the cache
is enabled. The resources are released if they are not used.

Solution
1. Rectify the fault by following the operations described in Error Message

"write line error" Displayed in Logs.

2. If the issue occurs only on certain nodes used by the distributed job, submit a
service ticket to isolate the faulty nodes.

3. If the issue is caused by EulerOS restrictions, take the following measures:

– Reduce the number of files in a single directory.

– Slow down the file creation speed.

– Disable the dir_index attribute of the Ext4 file system, which may affect
the file retrieval performance. For details, see https://access.redhat.com/
solutions/29894.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.3.7 Training Job Failed Due to OOM

Symptom

If a training job failed due to out of memory (OOM), possible symptoms as as
follows:

1. Error code 137 is returned.

2. The log file contains error information with keyword killed.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1032

Figure 16-28 Error log

3. Error message "RuntimeError: CUDA out of memory." is displayed in logs.

Figure 16-29 Error log

4. Error message "Dst tensor is not initialized" is displayed in TensorFlow logs.

Possible Causes
The possible causes are as follows:

● GPU memory is insufficient.
● OOM occurred on certain nodes. This issue is typically caused by the node

fault.

Solution
1. Modify hyperparameter settings to release unnecessary tensors.

a. Modify network parameters, such as batch_size, hide_layer, and
cell_nums.

b. Release unnecessary tensors.
del tmp_tensor
torch.cuda.empty_cache()

2. Use the local PyCharm to remotely access notebook for debugging.
3. If the fault persists, submit a service ticket to locate the fault or even isolate

the affected node.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1033

16.4.3.8 Common Issues Related to Insufficient Disk Space and Solutions
This section centrally describes common issues related to insufficient disk space
and solutions to these issues.

Symptom
When data, code, or model is copied during training, error message "No space left
on device" is displayed.

Figure 16-30 Error log

Possible Causes
The possible causes are as follows:

● The storage space in the /cache directory is used up by the local data and
files stored in it.

● Data is decompressed when being processed. As a result, the data volume
increases, and finally the storage space in the /cache directory is used up.

● Data is not saved in /cache or /home/ma-user/ (/cache will be softly
connected to /home/ma-user/). As a result, the system directory is fully
occupied. The system directory supports only basic running of system
functions. It cannot be used to store large volumes of data.

● During the training of certain jobs, checkpoint files will be generated and
updated. If historical checkpoint files are not deleted after an update, the /
cache directory will be exhausted.

● The storage space is sufficient, but the error message "No Space left on
device" is still displayed. This may be triggered by insufficient inodes or an
error in the file index cache of the operating system. As a result, no file can be
created in the system disk, and finally data disks are used up.

NO TE

The conditions for triggering an error in the file index cache are as follows:
● A longer file name leads to a smaller upper limit for the number of files.
● A smaller block size leads to a smaller upper limit for the number of files. (There

are three block sizes, 1024 bytes, 2048 bytes, and 4096 bytes. The default size is
4096 bytes.)

● This issue is more likely to occur if files are created in a shorter period of time. The
reason is as follows: There is a cache, the size of which is determined based on the
preceding two factors. When the number of files in the directory is large, the cache
will be enabled and released with the files.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1034

● Core files are generated during the program running and exhaust the storage
space in the / root directory.

Solution
1. Obtain the sizes of the dataset, decompressed dataset, and checkpoint file

and check whether they have exhausted the disk space.
2. If the volume of data exceeds the /cache size, use SFS to attach more data

disks for expanding the storage size.
3. Save the data and checkpoint in /cache or /home/ma-user/.
4. Check the checkpoint logic and ensure that historical checkpoints are deleted

so that they will not use up the storage space in /cache.
5. If the file size is smaller than the /cache size, and the number of files exceeds

500,000, the issue may be caused by insufficient inodes or an error in the file
index cache of the operating system. In this case, do as follows to resolve this
issue:
– Reduce the number of files in a single directory.
– Slow down the file creation speed. For example, during data

decompression, add a sleep period of 5s before decompressing the next
piece of data.

6. If core files are generated in the training job's work directory, add the code
below at the beginning of the boot script to disable the generation of the core
files. (debug code in a development environment before adding the code):
import os
os.system("ulimit -c 0")

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.4 Internet Access Issues

16.4.4.1 Error Message "Network is unreachable" Displayed in Logs

Symptom
When PyTorch is used, the following error message will be displayed in logs after
pretrained in torchvision.models is set to True:
'OSError: [Errno 101] Network is unreachable'

Possible Causes
For security purposes, ModelArts internal training nodes are not allowed to access
the Internet.

Solution
1. Change the pretrained value to False, download the pre-trained model, and

load the path to this model.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1035

import torch
import torchvision.models as models

model1 = models.resnet34(pretrained=False, progress=True)
checkpoint = '/xxx/resnet34-333f7ec4.pth'
state_dict = torch.load(checkpoint)
model1.load_state_dict(state_dict)

2. Use the local PyCharm to remotely access notebook for debugging.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.4.2 URL Connection Timed Out in a Running Training Job

Symptom

In a running training job, a URL connection timeout error occurs.

urllib.error.URLERROR:<urlopen error [Errno 110] Connection timed out>

Possible Causes

For security purposes, ModelArts is not allowed to access the Internet to download
data.

Solution

Download the required data to a local directory and upload it to OBS. Then,
access the OBS path from ModelArts to obtain the data.

16.4.5 Permission Issues

16.4.5.1 What Should I Do If Error "stat:403 reason:Forbidden" Is Displayed
in Logs When a Training Job Accesses OBS

Symptom

When a training job accesses OBS, an error occurs.

Figure 16-31 Error log

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1036

Possible Causes

The possible causes are as follows:

● The OBS permission is incorrect. As a result, data cannot be read.

Solution

Verify that OBS permissions are correctly assigned. If the problem persists,
troubleshoot by following the instructions provided in "Why Can't I Access OBS
(403 AccessDenied) After Being Granted with the OBS Access Permission?".

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

● If an error occurred in OBS, identify the cause based on the error information,
including the error code and message. For details about OBS error codes, see
Python > Troubleshooting > OBS Server-Side Error Codes in Object Storage
Service SDK Reference.

16.4.5.2 Error Message "Permission denied" Displayed in Logs

Symptom

When a training job accesses the attached EFS disks or executes the .sh boot
script, an error occurs.

● [Errno 13]Permission denied: '/xxx/xxxx'

Figure 16-32 Error log

● bash: /bin/ln: Permission denied
● bash:/home/ma-user/.pip/pip.conf: Permission Denied (in a custom image)
● tee: /xxx/xxxx: Permission denied cp: cannot stat '' No such file or directory (in

a custom image)

Possible Causes

The possible causes are as follows:

● [Errno 13]Permission denied: '/xxx/xxxx'
– When data is uploaded, the ownership and permissions to the file are not

changed. As a result, the work user group does not have the permission
to access the training job.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1037

– After the .sh file in the code directory is copied to the container, the
execution permission is not granted for the file.

● bash: /bin/ln: Permission denied
For security purposes, the ln command is not supported.

● bash:/home/ma-user/.pip/pip.conf: Permission Denied
After the version of training jobs is switched from V1 to V2, the UID of the
ma-user user is still 1102.

● tee: /xxx/xxxx: Permission denied cp: cannot stat '': No such file or directory
The used startup script is run_train.sh of an earlier version. Some
environment variables in the script are unavailable in the training jobs of the
new version.

● The APIs using the Python file concurrently read and write the same file.

Solution
1. Add permissions to access the attached EFS disks so that the permissions are

the same as those of user group (1000) used in the training container. For
example, if the /nas disk is attached, run the following command:
chown -R 1000: 1000 /nas
Or
chmod 777 -R /nas

2. If the execution permission has not been granted for the .sh file used by the
custom image, run chmod +x xxx.sh to grant the permission before starting
the script.

3. On the ModelArts console, if a training job is created using a custom image, a
V2 container image is started using UID 1000 by default. In this case, change
the UID of the ma-user user from 1102 to 1000. To obtain the sudo
permission, comment out the sudoers line.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1038

4. Migrate environment variables from V1 training jobs to V2 training jobs.
– Use V2 MA_NUM_HOSTS (the number of selected training nodes) to

replace V1 DLS_TASK_NUMBER.
– Use V2 VC_TASK_INDEX (or MA_TASK_INDEX that will be available

later) to replace V1 DLS_TASK_INDEX. Obtain the environment variable
using the method provided in the demo script for compatibility.

– Use V2 ${MA_VJ_NAME}-${MA_TASK_NAME}-0.${MA_VJ_NAME}:6666
to replace V1 BATCH_CUSTOM0_HOSTS.

– Use V2 ${MA_VJ_NAME}-${MA_TASK_NAME}-{N}.$
{MA_VJ_NAME}:6666 to replace V1 BATCH_CUSTOM{N}_HOSTS
generally.

5. Check whether there are settings that allow concurrent reading and writing of
the same file in the code. If so, modify the settings to forbid this operation.
If a job uses multiple cards, the same code for reading and writing data may
be available on each card. In this case, do as follows to modify the code:
import moxing as mox
from mindspore.communication import init, get_rank, get_group_size
init()
rank_id = get_rank()
Enable only card 0 to download data.
if rank_id % 8 == 0:
 mox.file.copy_parallel('obs://bucket-name/dir1/dir2/', '/cache')

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.6 GPU Issues

16.4.6.1 Error Message "No CUDA-capable device is detected" Displayed in
Logs

Symptom
An error similar to the following occurs during the running of the program:
1. 'failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected'
2. 'No CUDA-capable device is detected although requirements are installed'

Possible Causes
The possible causes are as follows:

● CUDA_VISIBLE_DEVICES has been incorrectly set.
● CUDA operations are performed on GPUs with IDs that are not specified by

CUDA_VISIBLE_DEVICES.

Solution
1. Do not change the CUDA_VISIBLE_DEVICES value in the code. Use its default

value.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1039

2. Ensure that the specified GPU IDs are within the available GPU IDs.
3. If the error persists, print the CUDA_VISIBLE_DEVICES value and debug it in

the notebook, or run the following commands to check whether the returned
result is True:
import torch
torch.cuda.is_available()

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.6.2 Error Message "RuntimeError: connect() timed out" Displayed in
Logs

Symptom

When PyTorch is used for distributed training, the following error occurs.

Figure 16-33 Error log

Possible Causes

If data is copied before this issue occurs, data copy on all nodes is not complete at
the same time. If you perform torch.distributed.init_process_group() when data
copy is still in progress on certain nodes, the connection timed out.

Solution

If the issue is caused by asynchronous data copy between nodes and no barrier
occurs, perform torch.distributed.init_process_group() before copying data, copy
data based on local_rank()==0, call torch.distributed.barrier(), and wait until
data copy is complete on all nodes. For details, see the following code:
import moxing as mox
import torch

torch.distributed.init_process_group()
if local_rank == 0:
 mox.file.copy_parallel(src,dst)

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1040

torch.distributed.barrier()

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.6.3 Error Message "cuda runtime error (10) : invalid device ordinal at
xxx" Displayed in Logs

Symptom
A training job failed, and the following error is displayed in logs.

Figure 16-34 Error log

Possible Causes
The possible causes are as follows:

● The CUDA_VISIBLE_DEVICES setting does not comply with job specifications.
For example, you select a job with four GPUs, and the IDs of available GPUs
are 0, 1, 2, and 3. However, when you perform CUDA operations, for example
tensor.to(device="cuda:7"), tensors are specified to run on GPU 7, which is
beyond the available GPU IDs.

● GPUs are damaged on resource nodes if CUDA operations are performed on a
GPU with a specified ID. As a result, the number of GPUs that can be detected
is less than the selected specifications.

Solution
1. Perform CUDA operations on the GPUs with IDs specified by

CUDA_VISIBLE_DEVICES.
2. If a GPU on a resource node is damaged, contact technical support.

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1041

16.4.6.4 Error Message "RuntimeError: Cannot re-initialize CUDA in forked
subprocess" Displayed in Logs

Symptom
When PyTorch is used to start multiple processes, the following error message is
displayed:
RuntimeError: Cannot re-initialize CUDA in forked subprocess

Possible Causes
The multi-processing startup mode is incorrect.

Solution
For details, see Writing Distributed Applications with PyTorch.
"""run.py:"""
#!/usr/bin/env python
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank, size):
 """ Distributed function to be implemented later. """
 pass

def init_process(rank, size, fn, backend='gloo'):
 """ Initialize the distributed environment. """
 os.environ['MASTER_ADDR'] = '127.0.0.1'
 os.environ['MASTER_PORT'] = '29500'
 dist.init_process_group(backend, rank=rank, world_size=size)
 fn(rank, size)

if __name__ == "__main__":
 size = 2
 processes = []
 mp.set_start_method("spawn")
 for rank in range(size):
 p = mp.Process(target=init_process, args=(rank, size, run))
 p.start()
 processes.append(p)

 for p in processes:
 p.join()

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.6.5 No GPU Is Found for a Training Job

Symptom
The following error message is displayed during the running of a ModelArts
training job:

failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1042

https://pytorch.org/tutorials/intermediate/dist_tuto.html#setup

Possible Cause
According to error information, the error cause is that the training job running
program cannot read the GPU.

Solution
Check whether the following configuration information is added to code and set
the GPU visible to the program based on the error message:

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'

In the preceding information, 0 is a GPU ID of the server. The GPU ID can be 0, 1,
2, 3, or the like, indicating a GPU ID visible to the program. If the configuration
information is not added, the GPU corresponding to the ID is unavailable.

16.4.7 Service Code Issues

16.4.7.1 Error Message "pandas.errors.ParserError: Error tokenizing data. C
error: Expected .* fields" Displayed in Logs

Symptom
When pandas is used to read CSV data, the following error is displayed in logs,
and the training job failed:
pandas.errors.ParserError: Error tokenizing data. C error: Expected 4 field

Possible Causes
The number of columns in each row of the CSV file is different.

Solution
Use either of the following methods to resolve this issue:

● Check the CSV file and delete the lines with extra columns.
● Run the following commands to ignore the lines with extra columns:

import pandas as pd
pd.read_csv(filePath,error_bad_lines=False)

Summary and Suggestions
Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.2 Error Message "max_pool2d_with_indices_out_cuda_frame failed
with error code 0" Displayed in Logs

Symptom
After PyTorch 1.3 is upgraded to 1.4, the following error message is displayed:
"RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0"

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1043

Possible Causes

The PyTorch 1.4 engine is incompatible with that of PyTorch 1.3.

Solution
1. Run the following commands to add contiguous data:

images = images.cuda()
pred = model(images.permute(0, 3, 1, 2).contigous())

2. Roll back to PyTorch 1.3.
3. Use the local PyCharm to remotely access notebook for debugging.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.3 Training Job Failed with Error Code 139

Symptom

The training job failed, and error code 139 is returned.

Possible Causes

The possible causes are as follows:

● Certain pip packages in the pip source have been updated, leading to data
incompatibility. For example, an error occurs when the transformers package
is imported after the package update.

● The user code has a bug, leading to memory overwriting or unauthorized
memory access.

● An unknown system error occurs. In this case, create the training job again. If
the fault persists, submit a service ticket.

Solution
1. If the training job succeeded before and no modification has been made,

compare the logs in the two cases and check whether any dependency
package has been updated in the pip source.

Figure 16-35 Log comparison

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1044

2. Use the local PyCharm to remotely access notebook for debugging.
3. If the fault persists, contact technical support engineers.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.4 Debugging Training Code in the Cloud Environment If a Training Job
Failed

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.5 Error Message "'(slice(0, 13184, None), slice(None, None, None))' is
an invalid key" Displayed in Logs

Symptom

The following error message is displayed during training:
TypeError: '(slice(0, 13184, None), slice(None, None, None))' is an invalid key

Possible Causes

The data selected for segmentation is incorrect.

Solution

Run the following command to resolve the issue:
X = dataset.iloc[:,:-1].values

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.6 Error Message "DataFrame.dtypes for data must be int, float or
bool" Displayed in Logs

Symptom

The following error message is displayed during training:
DataFrame.dtypes for data must be int, float or bool

Possible Causes

The possible cause is as follows:

The training data is not of the int, float, or bool type.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1045

Solution

Run the following commands to convert the error column:
from sklearn import preprocessing
lbl = preprocessing.LabelEncoder()
train_x['acc_id1'] = lbl.fit_transform(train_x['acc_id1'].astype(str))

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.7 Error Message "CUDNN_STATUS_NOT_SUPPORTED" Displayed in
Logs

Symptom

The following error message is displayed during PyTorch training:
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a
non-contiguous input.

Possible Causes

The input data is not of contiguous type, which is not supported by cuDNN.

Solution
1. Disable cuDNN before training.

torch.backends.cudnn.enabled = False

2. Convert the input data into contiguous data.
images = images.cuda()
images = images.permute(0, 3, 1, 2).contigous()

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.8 Error Message "Out of bounds nanosecond timestamp" Displayed in
Logs

Symptom

When pandas.to_datetime is used to convert time, the following error message is
displayed:
pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 1-01-02
13:20:00

Possible Causes

The time is out of the permitted range. For details, see the official document.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1046

https://pandas.pydata.org/docs/dev/user_guide/timeseries.html#timestamp-limitations

Solution

Check the time. Timestamps in pandas are in the unit of nanosecond. Ensure that
the time is within the following permitted range:

● Earliest time: 1677-09-22 00:12:43.145225
● Latest time: 2262-04-11 23:47:16.854775807

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.9 Error Message "Unexpected keyword argument passed to optimizer"
Displayed in Logs

Symptom

After Keras is upgraded to 2.3.0 or later, the following error message is displayed:
TypeError: Unexpected keyword argument passed to optimizer: learning_rate

Possible Causes

Certain parameters have been renamed in Keras. For details, see Keras 2.3.0.

Figure 16-36 API changes

Solution

Rename learning_rate lr.

Summary and Suggestions

Before creating a training job, use the ModelArts development environment to
debug the training code to maximally eliminate errors in code migration.

16.4.7.10 Error Message "no socket interface found" Displayed in Logs

Symptom

An NCCL debug log level is set in a distributed job executed using a PyTorch
image.
import os
os.environ["NCCL_DEBUG"] = "INFO"

The following error message is displayed.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1047

https://github.com/keras-team/keras/releases/tag/2.3.0

Figure 16-37 Error log

Possible Causes

The environment variables NCCL_IB_TC, NCCL_IB_GID_INDEX, and
NCCL_IB_TIMEOUT are not configured. As a result, the communication is slow
and unstable, and the IB communication is interrupted.

Solution

Add environment variables to the code.

import os
os.environ["NCCL_IB_TC"] = "128"
os.environ["NCCL_IB_GID_INDEX"] = "3"
os.environ["NCCL_IB_TIMEOUT"] = "22"

16.4.7.11 Error Message "Runtimeerror: Dataloader worker (pid 46212) is
killed by signal: Killed BP" Displayed in Logs

Symptom

During the running of a training job, error message "Runtimeerror: Dataloader
worker (pid 46212) is killed by signal: Killed BP" is displayed in logs.

Possible Causes

The Dataloader process exits because the batch size is too large.

Solution

Decrease the batch size.

16.4.7.12 Error Message "AttributeError: 'NoneType' object has no attribute
'dtype'" Displayed in Logs

Symptom

Code can run properly in the notebook Keras image. When tensorflow.keras is
used for training, error message "AttributeError: 'NoneType' object has no attribute
'dtype'" is displayed.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1048

Possible Causes
The NumPy version of the training image is different from that in the notebook
instance.

Solution
Print the NumPy version in the code and check whether the version is 1.18.5. If the
version is not 1.18.5, run the following command at the beginning of the code:

import os
os.system('pip install numpy==1.18.5')

If the error persists, modify the preceding code as follows:

import os
os.system('pip install numpy==1.18.5')
os.system('pip install keras==2.6.0')
os.system('pip install tensorflow==2.6.0')

16.4.7.13 Error Message "No module name 'unidecode'" Displayed in Logs

Symptom
After the configuration file of the Tacotron 2 model downloaded from the master
branch of MindSpore open-source Gitee is modified and then uploaded to
ModelArts for training, error message "No module name 'unidecode'" is displayed
in logs.

Possible Causes
The Unidecode name of the requirements.txt file is incorrect, where U should be
lowercase. As a result, the Unidecode module is not installed in the training job
environment.

Solution
Change Unidecode in requirements.txt to unidecode.

Summary and Suggestions
Add the following line to the training code:

os.system('pip list')

Run the training job and check whether the required module is available in logs.

16.4.7.14 Distributed Tensorflow Cannot Use tf.variable

Symptom
The following error occurs when tf.variable is used across multiple machines and
multiple GPUs: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/
UNET_v7/sub_pixel/Variable:0.Make sure this variable is used in loss
computation

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1049

Figure 16-38 Distributed Tensorflow unavailable

Possible Cause
Distributed TensorFlow needs to use tf.get_variable instead of tf.variable.

Solution
Replace tf.variable in the boot file with tf.get_variable.

16.4.7.15 When MXNet Creates kvstore, the Program Is Blocked and No Error
Is Reported

Symptom
When kv_store = mxnet.kv.create('dist_async') is used to create kvstore, the
program is blocked. For example, run the following code. If end is not displayed,
the program is blocked.

print('start')
kv_store = mxnet.kv.create('dist_async')
print('end')

Possible Cause
The possible cause of a worker block is that the server cannot be connected.

Solution
Place the following code before import mxnet in Boot File to check the
communication status between nodes. In addition, ps can be resent.

import os
os.environ['PS_VERBOSE'] = '2'
os.environ['PS_RESEND'] = '1'

In the preceding code, os.environ['PS_VERBOSE'] = '2' indicates that all
communication information is printed. os.environ['PS_RESEND'] = '1' indicates
that the Van instance resends the message if it does not receive the ACK message
within the milliseconds set by PS_RESEND_TIMEOUT.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1050

16.4.7.16 ECC Error Occurs in the Log, Causing Training Job Failure

Symptom
The following error occurs during the running of the training job log:
RuntimeError: CUDA error: uncorrectable ECC error encountered

Possible Cause
ECC errors

Solution
If there are more than 64 ECC errors, the system automatically isolates the faulty
nodes. After the isolation, restart the training job to check whether the fault is
rectified. If the training job fails again or is suspended due to an unisolated node,
contact technical support.

16.4.7.17 Training Job Failed Because the Maximum Recursion Depth Is
Exceeded

Symptom
An error occurs for a ModelArts training job.

RuntimeError: maximum recursion depth exceeded in __instancecheck__

Possible Causes
The training failed because the recursion depth exceeded the default recursion
depth of Python.

Solution
If the maximum recursion depth is exceeded, increase the recursion depth in the
boot file as follows:

import sys
sys.setrecursionlimit(1000000)

16.4.7.18 Training Using a Built-in Algorithm Failed Due to a bndbox Error

Symptom
When a training job is created using a built-in algorithm, the training failed with
the following error message in the log:

KeyError: 'bndbox'

Possible Causes
Non-rectangles are used for labeling training sets. However, the built-in algorithm
does not support datasets labeled by a non-rectangle.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1051

Solution
This issue can be resolved in either of the following ways:

● Method 1: Use a common framework to develop a model that supports
polygon-labeled datasets.

● Method 2: Use rectangles to label the datasets. Then, start the training job
again.

16.4.7.19 Training Job Status Is Reviewing Job Initialization

Symptom
When Algorithm Source is set to Custom during training job creation, the
training job status is Reviewing Job Initialization.

Possible Cause
When a custom image is running for the first time, the image needs to be
reviewed first. After the image is reviewed, you can create a job. That is, the
current status is Reviewing Job Initialization.

16.4.7.20 Training Job Process Exits Unexpectedly

Symptom
Running a training job failed, and error information similar to the following is
displayed in logs:

[Modelarts Service Log]Training end with return code: 137

Possible Causes
According to the log, the exit code of the training job is 137. The training process
starts after the user code is executed. Therefore, the exit code mentioned in this
section is generated after the code for training job is executed. Common error
codes include codes 247 and 139.

● Exit code: 137 or 247
The possible cause is that the memory overflows. To resolve this issue, you
can reduce the data volume, decrease the batch_size value, optimize the
code, or aggregate and replicate the data.

NO TE

The size of data files is not equal to the memory usage. Therefore, evaluate the
memory usage.

● Exit code: 139
Check the version of the installation package. There may be a package
conflict.

Troubleshooting
According to the error information, the error is caused by the user code.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1052

You can use either of the following methods to locate the fault:

● Debug the code online (only available for the non-distributed code).

a. Apply for a development environment instance with the same
specifications in the development environment (notebook).

b. Debug the user code in the notebook and find the improper code snippet.
c. Find a solution by searching the key code snippet and exit code in a

search engine.
● Locate the fault based on the training logs.

a. Identify the improper code snippet based on the logs.
b. Print the improper code snippet to obtain more detailed log information.
c. Run the training job again to locate the improper code snippet.

16.4.7.21 Stopped Training Job Process

Symptom
The training job process is stopped and the logs are interrupted.

Possible Causes
● CPU soft lock

The decompression of a large number of files may cause CPU soft lock and
node restart. You can suspend the decompression for the specified amount of
time by invoking sleep method when decompressing a large number of files.
For example, every time 10,000 files are decompressed, the decompression
stops for 1 second.

● Storage limitation
Use data disks based on specifications. For details about a data disk size, see

● CPU overload
Reduce the number of threads.

Troubleshooting
According to the error information, the error is caused by the user code.

You can use either of the following methods to locate the fault:

● Debug the code online (only available for the non-distributed code).

a. Apply for a development environment instance with the same
specifications in the development environment (notebook).

b. Debug the user code in the notebook and find the improper code snippet.
c. Find a solution by searching the key code snippet and exit code in a

search engine.
● Locate the fault based on the training logs.

a. Identify the improper code snippet based on the logs.
b. Print the improper code snippet to obtain more detailed log information.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1053

c. Run the training job again to locate the improper code snippet.

16.4.8 Training Job Suspended

16.4.8.1 Data Replication Suspension

Symptom
The system stops responding when mox.file.copy_parallel is called to copy data.

Solution
● Run the following commands to copy files or folders:

import moxing as mox
mox.file.set_auth(is_secure=False)

● Run the following command to copy a single file that is greater than 5 GB:
from moxing.framework.file import file_io

Run file_io._LARGE_FILE_METHOD to check the version of the MoXing API.
Output value 1 indicates V1 and 2 indicates V2.
Run file_io._NUMBER_OF_PROCESSES=1 to resolve the issue for the V1 API.
To resolve the issue for the V2 API, run file_io._LARGE_FILE_METHOD = 1 to
switch to V1 and perform operations required in V1. Alternatively, run
file_io._LARGE_FILE_TASK_NUM=1 to resolve this issue.

● Run the following command to copy a folder:
mox.file.copy_parallel(threads=0,is_processing=False)

16.4.8.2 Suspension Before Training
If a job is trained on multiple nodes and suspension occurs before the job starts,
add os.environ["NCCL_DEBUG"] = "INFO" to the code to view the NCCL
debugging information.

Symptom 1
The job is suspended before the NCCL debugging information is displayed in logs.

Solution 1
Check the code for parameters such as master_ip and rank. Ensure that these
parameters are specified.

Symptom 2
The GDR information is displayed only on certain nodes of a multi-node training
job.

The possible cause of the suspension is GDR.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1054

Solution 2
Set os.environ["NCCL_NET_GDR_LEVEL"] = '0' at the beginning of the program
or ask the O&M personnel to add the GDR information to the affected nodes.

Symptom 3
Communication information such as "Got completion with error 12, opcode 1, len
32478, vendor err 129" is displayed. The current network is unstable.

Solution 3
Add the following environment variables:

● NCCL_IB_GID_INDEX=3: enables RoCEv2. RoCEv1 is enabled by default.
However, RoCEv1 does not support congestion control on switches, which may
lead to packet loss. In addition, later-version switches do not support RoCEv1,
leading to a RoCEv1 failure.

● NCCL_IB_TC=128: enables data packets to be transmitted through the queue
4 of switches, which is RoCE-compliant.

● NCCL_IB_TIMEOUT=22: enables a longer timeout interval. Generally, there is
a network interruption lasting about 5s if the network is unstable and then
the timeout message is returned. Change the timeout interval to 22s,
indicating that the timeout message will be returned in about 20s (4.096 µs x
2 ^ timeout).

16.4.8.3 Suspension During Training

Symptom 1
According to the logs of the nodes on which a training job runs, an error occurred
on a node but the job did not exit, leading to the job suspension.

Solution 1
Check the error cause and rectify the fault.

Symptom 2
The job is stuck in sync-batch-norm or the training speed is lowered down. If sync-
batch-norm is enabled for PyTorch, the training speed is lowered down because all
node data must be synchronized on each batch normalization layer in every
iteration, which leads to heavy communication traffic.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1055

Solution 2
Disable sync-batch-norm, or upgrade the PyTorch version to 1.10.

Symptom 3
The job is stuck in TensorBoard.

Solution 3
Set a local path for storage, for example, cache/tensorboard. Do not store data in
OBS.

Symptom 4
When PyTorch dataloader is used to read data, the job is stuck in data reading,
and logs stop to update.

Solution 4
When using dataloader to read data, set num_work to a small value.

16.4.8.4 Suspension in the Last Training Epoch

Symptom
Logs showed that an error occurred in split data. As a result, processes are in
different epochs, and uncompleted processes are suspended because they do not
receive response from other processes. As shown in the following figure, some
processes are in epoch 48 while others are in epoch 49 at the same time.

loss exit lane:0.12314446270465851
step loss is 0.29470521211624146
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:2 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.705(0.890) Loss 0.3403(0.3792)LR 0.00021887
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:1 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.705(0.891) Loss 0.3028(0.3466) LR 0.00021887
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:4 Epoch:[49][20384/all] Data Time 0.000(0.147) Net
Time 0.705(0.709) Loss 0.3364(0.3414)LR 0.00021887

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1056

[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:3 Epoch:[49][20384/all] Data Time 0.000 (0.115) Net
Time 0.706(0.814) Loss 0.3345(0.3418) LR 0.00021887
[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:0 Epoch:[49][20384/all] Data Time 0.000(0.006) Net
Time 0.704(0.885) Loss 0.2947(0.3566) LR 0.00021887
[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:7 Epoch:[49][20384/all] Data Time 0.001 (0.000) Net
Time 0.706 (0.891) Loss 0.3782(0.3614) LR 0.00021887
[2022-04-26 13:57:20,759][INFO][train_epoch]:Rank:5 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.706(0.891) Loss 0.5471(0.3642) LR 0.00021887
[2022-04-26 13:57:20,763][INFO][train_epoch]:Rank:6 Epoch:[49][20384/all] Data Time 0.000(0.000) Net
Time 0.704(0.891) Loss 0.2643(0.3390)LR 0.00021887
stage 1 loss 0.4600560665130615 mul_cls_loss loss:0.01245919056236744 mul_offset_loss
0.44759687781333923 origin stage2_loss 0.048592399805784225
stage 1 loss:0.4600560665130615 stage 2 loss:0.048592399805784225 loss exit lane:0.10233864188194275

Solution
Split tensors to align data.

16.4.9 Running a Training Job Failed

16.4.9.1 Troubleshooting a Training Job Failure

Symptom
A training job is in Failed state.

Cause Analysis and Solution
● The error "MoxFileNotExistsException(resp, 'file or directory or bucket not

found.')" is displayed in the training logs.
– Cause: The train_data_obs directory is not found when MoXing copies

files.
– Solution: Correct the address of the train_data_obs directory and restart

the training job.

NO TICE

Do not delete any objects from the OBS directory while MoXing is
downloading them. This will cause the download to fail.

● The error NVIDIA A30 with CUDA capability sm_80 is not compatible with
the current PyTorch installation.The current PyTorch install supports
CUDA capabilities sm_37 sm_50 sm_60 sm_70' is displayed in the training
logs.
– Cause: The CUDA version of the image used by the training job supports

only the sm_37, sm_50, sm_60, and sm_70 accelerator cards. The sm_80
accelerator card is not supported.

– Solution: Use a custom image to create a training job and install the
target CUDA and PyTorch versions.

● The error "ERROR:root:label_map.pbtxt cannot be found. It will take a long
time to open every annotation files to generate a tmp label_map.pbtxt." is
displayed in the training logs.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1057

– If you use an algorithm that you subscribed to from AI Gallery, make sure
the data label is accurate.

– If you use an object detection algorithm, make sure the label box of the
data is non-rectangular.

NO TE

Object detection algorithms support only rectangular label boxes.

● The error "RuntimeError: The server socket has failed to listen on any local
network address. The server socket has failed to bind to [::]:29500 (errno: 98 -
Address already in use). The server socket has failed to bind to 0.0.0.0:29500
(errno: 98 - Address already in use)." is displayed in the training logs.
– Cause: The port number of the training job is not unique.
– Solution: Change the port number in the code and restart the training

job.
● The error "WARNING: root: Retry=7, Wait=0.4, Times

tamp=1697620658.6282516" is displayed in the training logs.
– Cause: The MoXing version is too old.
– Solution: Contact technical support engineers to upgrade MoXing to 2.1.6

or later.

16.4.9.2 An NCCL Error Occurs When a Training Job Fails to Be Executed

Symptom
The training job fails to be executed. The training job logs contain NCCL-related
errors, such as "NCCL timeout", "RuntimeError: NCCL communicator was aborted
on rank 7", "NCCL WARN Bootstrap: no socket interface found", and "NCCL INFO
Call to connect returned Connection refused, retrying".

Possible Causes
NCCL is a library that provides primitives for communication between GPUs. It
implements collective communication and point-to-point send/receive primitives.
If a training job reports an NCCL error, you can adjust the NCCL environment
variables to solve the problem.

Solution
1. Go to the details page of the training job, click the Logs tab, and view the

NCCL error.
– If the error message NCCL timeout or RuntimeError: NCCL

communicator was aborted on rank 7 is displayed, InfiniBand Verbs
times out. Click Rebuild in the upper right corner to create a training job
again. Set the environment variable NCCL_IB_TIMEOUT to 22. Submit
the training job and wait until the job is completed.

– If the error message NCCL WARN Bootstrap : no socket interface found
or NCCL INFO Call to connect returned Connection refused, retrying is
displayed, NCCL cannot find the communication network adapter or
access the IP address. Check whether the NCCL_SOCKET_IFNAME
environment variable is set in the training code. This environment

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1058

variable is automatically injected by the system and does not need to be
set in the training code. After the NCCL_SOCKET_IFNAME environment
variable is removed from the training code, click Rebuild in the upper
right corner to create a training job again. After the training job is
submitted, wait until the job is completed.

2. Wait and check whether the status of the training job changes to Completed.
– If yes, no further action is required.
– If no, contact technical support to check the node status.

Summary and Suggestions
● The NCCL_SOCKET_IFNAME environment variable is used to specify the

name of the network adapter for communication.
NCCL_SOCKET_IFNAME=eth0 means that only the eth0 network adapter is
used for communication. This environment variable is automatically injected
by the system. Because the name of the communication network adapter is
not fixed, this environment variable should not be set by default in the
training code.

● The NCCL_IB_TIMEOUT environment variable is used to control InfiniBand
Verbs timeout. The default value used by NCCL is 18. The value ranges from 1
to 22.

16.4.9.3 A Training Job Created Using a Custom Image Is Always in the
Running State

Symptom
A training job created using a custom image is always in the running state.

Cause Analysis and Solution
The log message below indicates that the CPU architecture of the custom image
does not match that of the resource pool node.

standard_init_linux.go:215: exec user process caused "exec format error"
libcontainer: container start initialization failed: standard_init_linux.go:215: exec user process caused "exec
format error"

This usually happens when the resource type and specifications are incorrectly set
during job creation. For example, a custom image that uses the Arm CPU
architecture should have NPU specifications, but x86 CPU or x86 GPU
specifications are chosen instead.

16.4.9.4 Running a Job Failed Due to Persistently Rising Memory Usage

Symptom
A training job is in the Failed state.

Possible Causes
The memory usage continues to rise, leading to the training job failure.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1059

Solution
1. View the logs and monitoring data of the training job to check whether there

are any OOM errors.

– If yes, go to 2.

– If there are no OOM errors but the monitoring metrics show anomalies,
go to 3.

2. Check whether there is any code in the training script that keeps using
resources and prevents them from being allocated efficiently.

– If yes, optimize the code and wait until the job runs properly.

– If no, either upgrade the resource specifications allocated to the training
job or contact technical support.

3. Restart the training job. Use CloudShell to log in to the training container to
check the memory metrics and see if the memory usage spikes.

– If yes, check the training job logs generated when the memory usage
spikes and improve the relevant code logic to lower the memory
consumption.

– If no, either upgrade the resource specifications allocated to the training
job or contact technical support.

16.4.10 Training Jobs Created in a Dedicated Resource Pool

16.4.10.1 No Cloud Storage Name or Mount Path Displayed on the Page for
Creating a Training Job

Symptom

On the page for creating a training job, there is no option for the cloud storage
and mount path.

Possible Causes

The network of the target dedicated resource pool is not connected, or no SFS has
been created.

Solution

In the dedicated resource pool list, click the ID or name of the target resource pool
to go to its details page. Click Configure NAS VPC in the upper right corner to
check whether NAS VPC has been enabled. If the NAS VPC name and NAS subnet
ID on the details page are left blank, NAS VPC is not enabled. In this case, enable
NAS VPC.

If an error message is displayed after you attempt to enable it, the possible cause
is that a VPC peering connection has been created for the VPC. In this case, delete
the VPC peering connection and try again.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1060

16.4.10.2 Storage Volume Failed to Be Mounted to the Pod During Training
Job Creation

Symptom

The training job remains in the Creating state. When you check the events of the
training job, error message "Unable to mount volumes for pod xxx ... list of
unmounted volumes=[nfs-x]" is displayed.

Possible Cause

For your SFS Turbo file system to function correctly, it must reside within a VPC
network that is interconnected with the network of the dedicated resource pool.
This connection is essential to ensure that the SFS can be successfully mounted to
any training job executed within the dedicated resource pool. Disconnected
network may lead to mounting failure.

Procedure
1. Go to the training job details page and obtain the SFS Turbo name.

Figure 16-39 Obtaining SFS Turbo name

2. Log in to the SFS console, locate the SFS Turbo mounted to the training job,
and click it to go to the details page. Obtain the VPC, security group, and
endpoint information.
– VPC: value of VPC
– Security group: value of Security Group
– Endpoint: value of Shared Path excludes ":/", for example, the shared

path is 4ab556b5-d689-44f1-9302-24c09daxxxxc.sfsturbo.internal:/,
then the SFS Turbo endpoint is 4ab556b5-
d689-44f1-9302-24c09daxxxxc.sfsturbo.internal.

3. Check whether the VPC CIDR block meets the following requirements:
Requirement 1: To prevent CIDR block conflicts with the dedicated resource
pool, the SFS Turbo CIDR block cannot overlap with 192.168.20.0/24 (default
CIDR block of the dedicated resource pool). Go to the resource pool details
page and check Network to obtain the actual CIDR block of the dedicated
resource pool.
Requirement 2: To prevent network conflicts with the container, the SFS Turbo
CIDR block cannot overlap with 172 CIDR block (used by the container
network).

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1061

– If the requirements are not met, modify the VPC CIDR block of SFS Turbo.
The recommended value is 10.X.X.X.

– If the requirements are met, go to the next step.

4. Check whether the VPC CIDR block of SFS Turbo is limited by a security group
rule.

Create a training job in the selected dedicated resource pool without
mounting SFS Turbo. Once the job is in the Running state, access the
worker-0 instance via Cloud Shell. Execute the command curl {sfs-turbo-
endpoint}:{port} to verify if the ports are open. The ports that SFS Turbo
requires for inbound traffic are 111, 445, 2049, 2051, 2052, and 20048.

– If yes, modify the security group configurations.

– If there is no such a security group rule, perform the following steps.

5. Check whether SFS Turbo is normal.

Create an ECS that uses the same CIDR block as SFS Turbo and mount the SFS
Turbo to the ECS. If mounting failed, SFS Turbo is abnormal.

a. If SFS Turbo is abnormal, contact SFS technical support.

b. If SFS Turbo is normal, contact ModelArts technical support.

16.4.11 Training Performance Issues

16.4.11.1 Training Performance Deteriorated

Symptom

When a ModelArts algorithm is used for training, it will take more time than
expected for training.

Possible Causes

The possible causes are as follows:

1. The job code or training parameters have been modified.

2. The GPU hardware for training malfunctions.

Solution
1. Check whether the training code and parameters have been modified.

2. Check whether the allocation of the CPU, memory, GPU, snt9, or Infiniband
resources complies with the expectation.

3. Use CloudShell to log in to the Linux and check the GPU working status.

– Run the nvidia-smi command to check whether the GPU is working
properly.

– Run the nvidia-smi -q -d TEMPERATURE command to check the
temperature. If the temperature is too high, the training performance
deteriorates.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1062

16.5 Inference Deployment

16.5.1 AI Application Management

16.5.1.1 Creating an AI Application Failed

Fault Locating and Troubleshooting
There are two cases of an AI application creation failure: An error occurred during
the AI application creation or API calling; the command for creating an AI
application was successfully issued, but the creation failed.

1. For case 1, the issue is generally caused by invalid input parameters. In this
case, rectify the fault as prompted.

2. For case 2, do as follows to rectify the fault:
– On the AI application details page, view the events on the Events tab

page. Analyze the failure cause based on the events and rectify the fault.
– If the AI application is in the state of a building failure, click View Model

Building Log on the Events tab page on the AI application details page.
The building log provides details about the failure. Rectify the fault based
on the cause.

Figure 16-40 View Model Building Log

Common Issues
1. Dockerfiles are not allowed in a model file directory.

According to model building logs, "Not only a Dockerfile in your OBS path,
please make sure, The dockerfile list" is displayed, indicating that the file
directory is incorrect and that the file should be removed from the directory.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1063

Figure 16-41 Error message for an incorrect Dockerfile directory

2. The pip software package version is different from the version recorded in
logs.

Figure 16-42 Incorrect pip software package version

3. Error message "exec /usr/bin/sh: exec format error" is displayed in model
building logs.
This issue is generally due to the inconsistency between the used system
engine and the system engine for creating the image. For example, an x86
image is used but it is displayed as Arm.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1064

View the configured system engine on the AI application details page.

16.5.1.2 Failed to Build an Image or Import a File When an IAM user Creates
an AI Application

Symptom
● When an IAM user creates an AI application, creating an image failed. The

failure log indicates that downloading the OBS file failed.

● When an IAM user creates an AI application, either of the following prompts
are displayed: Failed to copy model file due to obs exception. Please Check
your obs access right. and User %s does not have obs:object:PutObjectAcl
permission. The AI application fails to be created due to OBS import
exceptions or permission issues.

Possible Causes
Using ModelArts requires OBS authorization. ModelArts users require OBS system
permissions. The IAM permissions of an IAM user are configured by their tenants.
If a tenant does not grant the OBS putObjectAcl permission to their IAM users,
this issue occurs.

Solution
1. Log in to the IAM console, choose Permissions > Policies/Roles, and click

Create Custom Policy in the upper right corner to create a custom policy.

Figure 16-43 Adding permissions on IAM

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1065

Figure 16-44 Creating a custom policy

An example custom policy is as follows:
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "obs:bucket:ListAllMybuckets",
 "obs:bucket:ListBucket",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:object:PutObject",
 "obs:object:GetObjectAcl",
 "obs:object:PutObjectAcl",
 "obs:object:GetObjectVersionAcl"
],
 "Effect": "Allow"
 }
]
}

2. Assign custom policy permissions to the user group to which the IAM user
belongs.

Figure 16-45 Assigning permissions to an IAM user

16.5.1.3 Obtaining the Directory Structure in the Target Image When
Importing an AI Application Through OBS

Symptom
When I create an AI application, customized files and folders are stored in the OBS
directory specified by a meta model source, and these files and folders will be
copied to the target image. What is the path to the copied files and folders?

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1066

Possible Causes
When an AI application is imported through OBS, ModelArts copies all files and
folders in the specified OBS directory to a path specified in the image. You can
obtain the path in the image by using self.model_path.

Solution
For details about how to obtain the path in an image, see Specifications for
Model Inference Coding.

16.5.1.4 Failed to Obtain Certain Logs on the ModelArts Log Query Page

Symptom
I used a base image to import AI applications through OBS and wrote some
inference code for implementing the inference logic. After an error occurred, I
attempted to use the fault logs to locate the fault. However, certain logs were not
displayed on the log query page in ModelArts.

Possible Causes
To display the logs of an inference service, print the logs on the console through
coding. Python logging used by inference base images allows the display of only
warning logs. To display INFO logs, set the log level to INFO in the code.

Solution
In the PY file for the inference code, set the default level of logs output to the
console to INFO. The example code is as follows:

import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

16.5.1.5 Failed to Download a pip Package When an AI Application Is
Created Using OBS

Symptom
Creating an AI application using OBS failed. Logs showed that downloading the
pip package failed, for example, downloading the NumPy 1.16 package failed.

Possible Causes
Possible causes are as follows:

1. The package is not available in the pip source. The default pip source is
pypi.org. Check whether the package of the target version is available in
pypi.org and check the package installation restrictions.

2. The downloaded package does not match the architecture in the base image.
For example, an x86 package is downloaded for Arm, or a Python 3 package
is downloaded for Python 2. For details about the runtime environment of a
base image, see Available Inference Base Images.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1067

3. The sequence of configuring package dependencies is incorrect.

Solution
1. Log in to pypi.org and check whether the required installation package is

available. If the package is unavailable, use the WHL package and place it
into the OBS directory where the model is stored.

2. Check whether the installation restrictions and dependencies of the package
are met.

3. If there are package dependencies, configure the dependencies in a correct
sequence. For details, see How Do I Edit the Installation Package
Dependency Parameters in a Model Configuration File When Importing a
Model?

16.5.1.6 Failed to Use a Custom Image to Create an AI application

Symptom

When I used a custom image to create an AI application, the creation failed.

Possible Causes

Possible causes are as follows:

● The URL of the image used for importing the AI application is invalid or the
image is unavailable.

● SWR operation permissions are not included in the agency authorization
configured on ModelArts.

● The IAM user does not obtain SWR operation permissions from the tenant.

● The image used is from another account.

● The image used is a public image.

Solution
1. Go to the SWR console and check whether the target image is available and

whether the URL of the image is the same as the actual one, including the
spelling and letter cases in the URL.

2. Check whether SWR operation permissions are included in the agency
authorization configured on ModelArts. To do so, go to the Global
Configuration page on ModelArts and view the authorization details. If no
SWR operation permissions are configured, go to the IAM console and grant
the permissions to the target agency.

Figure 16-46 Global Configuration

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1068

Figure 16-47 Entrance to permissions modification in IAM

Figure 16-48 Authorizing an agency

3. Set a private image
Log in to SWR, choose My Images in the navigation pane on the left to view
image details. Click Edit in the upper right corner and set Type to Private.

Figure 16-49 Changing the image type to private

16.5.1.7 Insufficient Disk Space Is Displayed When a Service Is Deployed
After an AI Application Is Imported

Symptom
After an AI application is imported, message "No space left on device" is displayed
during service deployment.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1069

Possible Causes

ModelArts uses containers to deploy services. There are size limitations for
containers to run. If the size of your model file, custom file, or system file exceeds
the Docker size, a message will be displayed, indicating that the image space is
insufficient.

Solution

The maximum Docker size for a container in a public resource pool is 10 GB, and
that for a container in a dedicated resource pool is 30 GB.

If the AI application is imported from OBS or a training job, the total size of the
base image, model files, code, data files, and software packages cannot exceed
the limit.

If the AI application is imported from a custom image, the total size of the
decompressed image and image dependencies cannot exceed the limit.

16.5.1.8 Error Occurred When a Created AI Application Is Deployed as a
Service

Symptom

After an AI application is created, an error occurred when it is deployed as a
service.

Possible Causes

When an AI application is imported using a custom or base image, many service
logics are customized. Any error in the logics will result in a service deployment or
prediction failure.

Solution
1. After deploying a service failed, go to the service details page and view

deployment logs to identify the failure cause. (Ensure that standard input and
output functions are used for code output. Otherwise, the output will not be
displayed on the ModelArts console.) Find the code based on the error in the
logs to locate the fault.

16.5.1.9 Invalid Runtime Dependency Configured in an Imported Custom
Image

Symptom

When a custom image is imported through an API to create an AI application, the
runtime dependency is configured, but the pip dependency package is not properly
installed.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1070

Possible Causes

An imported custom image does not support the runtime dependency. The system
does not automatically install the required pip dependency package.

Solution

Create a custom image again.

Install the pip dependency package (for example, the Flask dependency package)
in the Dockerfile file that is used to create the image.

16.5.1.10 Garbled Characters Displayed in an AI Application Name Returned
When AI Application Details Are Obtained Through an API

Symptom

When details about an AI application are obtained through an API, garbled
characters are displayed in a returned AI application name (model_name). For
example, the AI application name (model_name) is query_vec_recall_model, but
the name returned from the API is query_vec_recall_model_b.

Figure 16-50 Garbled characters in an AI application name

Possible Causes

If an AI application name contains underscores (_), these characters must be
escaped.

Solution

Add the exact_match parameter to the request and set the parameter value to
true to ensure that the returned value of model_name is correct.

16.5.1.11 The Model or Image Exceeded the Size Limit for AI Application
Import

Symptom

When an AI application is imported, a prompt says that the model or image
exceeds the limit.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1071

Possible Causes

If the AI application is imported using OBS or training, the total size of the basic
image, model files, code, data files, and downloaded software packages exceeds
the limit.

If the AI application is imported using a custom image, the total size of the
decompressed image and image dependencies exceeds the limit.

Solution

Downsize the model or image and import the AI application again.

16.5.1.12 A Single Model File Exceeded the Size Limit (5 GB) for AI
Application Import

Symptom

When an AI application is imported, a prompt says that a single model file
exceeded the size limit (5 GB).

Possible Causes

If dynamic loading is not used, a single model file cannot exceed 5 GB. Otherwise,
the AI application fails to be imported.

Solution
● Downsize the model file and import the AI application again.
● Use the dynamic loading function to import the AI application.

Figure 16-51 Using dynamic loading

16.5.1.13 Creating an AI Application Failed Due to Image Building Timeout

Symptom

The AI application fails to be created. A message is displayed showing "Model
image build task timed out" , and no detailed build log is generated.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1072

Figure 16-52 Building the model image timed out

Possible Cause

ImagePacker has a timeout limit when building images. The default value is 30
minutes (which may vary in different regions). If building a model image times
out, the building task will fail. In this case, the message "Model image build task
timed out" is displayed, and no detailed build log is generated.

Solution
● Prepare the dependency packages to be downloaded and built beforehand to

save time. You can install the running environment dependency using an
offline wheel package. When installing the offline wheel package, ensure that
the wheel package and model file are stored in the same directory.

● Optimize the model code to improve the efficiency of building model images.

16.5.2 Service Deployment

16.5.2.1 Error Occurred When a Custom Image Model Is Deployed as a Real-
Time Service

Symptom

A model fails to be deployed as a real-time service. On the real-time service
details page, the message "failed to pull image, retry later" is displayed on the
Events tab page while no information is displayed on the Logs tab page.

Solution

This fault is typically caused by the excessive size of the model you have deployed.
Do the following:

● Simplify the model, re-import it, and deploy it as a real-time service.
● Purchase a dedicated resource pool and use it to deploy the model as a real-

time service.

16.5.2.2 Alarm Status of a Deployed Real-Time Service

Symptom

A deployed real-time service is in the Alarm state.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1073

Solution
The prediction using a real-time service that is in the Alarm state may fail.
Perform the following operations to locate the fault and deploy the service again:

1. Check whether there are too many prediction requests on the backend.
If you call APIs for prediction, check whether there are too many prediction
requests. A large number of prediction requests lead to the alarm state of the
real-time service.

2. Check whether the service memory is functional.
Check whether memory overflow or leakage occurs in the inference code.

3. Check whether the model is running properly.
If the model fails, for example, the associated resources are faulty, check
inference logs.

4. Check whether there is an abnormal amount of instance pods.
If O&M engineers have deleted abnormal instance pods, the alarm "Service
error. There are XXX abnormal instances." may occur in the event. Once the
alarm is displayed, the service automatically starts a new normal instance to
restore to the normal state. The process may take a while.

16.5.2.3 Failed to Start a Service

Symptom
After a service is started, the system displays a message, indicating a container
startup failure.

Figure 16-53 Service startup failure

Possible Causes
Possible causes are as follows:

● The AI application is faulty and cannot be started.
● The port configured in the image is incorrect.
● The health check is incorrectly configured.
● The model inference code customize_service.py is incorrectly edited.
● The image fails to be pulled.
● Scheduling failed due to insufficient resources.

Faulty AI Application
If the image used for creating an AI application is faulty, recreate the image by
following the instructions provided in Creating a Custom Image and Using It to
Create an AI Application. Ensure the image can be started properly and the
expected data can be returned through curl on the local host.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1074

Incorrect Port in the Image

The port enabled in the image is not 8080, or the port enabled in the image is
different from the port configured during AI application creation. As a result, the
register-agent cannot communicate with the AI application during service
deployment. After a certain period of time (20 minutes at most), it is considered
that starting the AI application failed.

If this fault occurs, check the port enabled in the custom image code and the port
configured during AI application creation. Ensure that the two ports are the same.
If you do not specify a port during AI application creation, ModelArts will listen to
port 8080 by default. In this case, the port enabled in the custom image code
must be 8080.

Figure 16-54 Port enabled in the custom image code

Figure 16-55 Port configured during AI application creation

Incorrect Health Check Configuration

If health check is enabled in the image, perform the following operations to locate
the fault:

● Check whether the health check port runs properly.

If health check is enabled in a custom image, check whether the health check
API is functional during image test. For details about how to test an image
locally, see Building a Custom Image and Using It to Create an AI
Application.

● Check whether the health check address configured during AI application
creation is the same as the actual one.

If the AI application is created using a base image provided by ModelArts, the
health check URL must be /health by default.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1075

Figure 16-56 Configuring the health check URL

Incorrect customize_service.py

Check service runtime logs to locate the fault and rectify it.

Pulling an Image Failed

If the service fails to be started and a message is displayed indicating that the
image fails to be pulled, see What Do I Do If an Image Fails to Be Pulled When
a Service Is Deployed, Started, Upgraded, or Modified?

Scheduling Failed Due To Insufficient Resources

The service fails to be started, and a message is displayed indicating that resources
are insufficient and service scheduling fails. For details, see What Do I Do If
Resources Are Insufficient When a Service Is Deployed, Started, Upgraded, or
Modified?.

Insufficient Memory

The service fails to be started, and a message is displayed indicating that the
memory is insufficient. For details, see What Can I Do if the Memory Is
Insufficient?.

16.5.2.4 What Do I Do If an Image Fails to Be Pulled When a Service Is
Deployed, Started, Upgraded, or Modified?

Possible Causes

The available disk space of the node is smaller than the image size.

Solution
1. Reduce the image size.
2. If the problem persists after the image size is reduced, contact the system

administrator.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1076

16.5.2.5 What Do I Do If an Image Restarts Repeatedly When a Service Is
Deployed, Started, Upgraded, or Modified?

Possible Causes

There is a bug in the container image code.

Solution

Debug the container image code based on container logs, create the AI
application again, and deploy the application as a real-time service.

16.5.2.6 What Do I Do If a Container Health Check Fails When a Service Is
Deployed, Started, Upgraded, or Modified?

Possible Causes

Calling the container health check API failed. The possible causes are as follows:

● The health check is incorrectly configured for the image.

● The health check is incorrectly configured for the AI application.

Solution

Check container logs for the cause of the health check failure.

● If the health check is incorrectly configured for the image, debug the code,
create an image again and then the AI application, and use the new AI
application to deploy the service. For details about how to configure the
image health API for an image, see parameter health in Specifications for
Writing the Model Configuration File.

● If the health check is incorrectly configured for the AI application, create a
new AI application or create a version of the existing AI application, correctly
configure the health check, and use the new AI application or version to
deploy the service. For details about the AI application health check, see
parameter Health Check in Creating and Importing a Model Image.

16.5.2.7 What Do I Do If Resources Are Insufficient When a Service Is
Deployed, Started, Upgraded, or Modified?

Symptom

The service fails to be started, and an error message is displayed, indicating that
resources are insufficient and service scheduling fails. ("Schedule failed due to
insufficient resources. Retry later." or "ModelArts.3976: No resources are available
for the selected specification.")

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1077

Figure 16-57 Schedule failed due to insufficient resources

Possible Causes
● The configured instance specifications are beyond the remaining CPU or

memory resources. ("insufficient CPU" / "insufficient memory")
● The disk capacity cannot meet the requirements of the model. ("x node(s)

had taint {node.kubernetes.io/disk-pressure: }" / "No space")

Solution

When resources are insufficient, ModelArts retries for three times. If resources are
released during these retries, the service can be successfully deployed.

If resources are still insufficient after three retries, the service deployment fails. In
this case, perform the following operations to resolve this issue:

● If the service is to be deployed in a public resource pool, wait until other users
release resources.

● If the service is to be deployed in a dedicated resource pool, select lower
container specifications or custom specifications to deploy the service on the
premise that the model requirements are met.

● Expand the capacity of the current resource pool before deploying the service.
To expand the capacity of the public resource pool, contact the system
administrator. To expand the capacity of the dedicated resource pool, refer to
Resizing a Resource Pool.

● If the disk space is insufficient, try again to schedule the instance to another
node. If the disk space of a single instance is still insufficient, contact the
system administrator to use proper specifications.

NO TE

If an AI application imported though a large model is used to deploy the service,
ensure that the disk space of the dedicated resource pool is greater than 1 TB (1000
GB).

16.5.2.8 Error Occurred When a CV2 Model Package Is Used to Deploy a
Real-Time Service

Symptom

An error occurred when a CV2 model package is used to deploy a real-time
service.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1078

Possible Causes

When a meta model is imported from OBS, the service base image is used.
However, the base image does not provide the SO data on which CV2 depends.
Therefore, ModelArts does not support the import of CV2 model packages from
OBS.

Solution

Use the CV2 model package to create a custom image, upload the custom image
to SWR, import a meta model from the container image, and deploy a real-time
service. For details about how to create a custom image, see Creating a Custom
Image and Using It to Create an AI Application.

16.5.2.9 Service Is Consistently Being Deployed

Symptom

A service retains in the Deploying state. No obvious error is found in AI
application logs.

Possible Causes

The AI application port is typically incorrect. Check whether the port for creating
the AI application is correct.

Solution

Check the AI application port. If it is not configured, the default port 8080 is used.
If you have changed the port number in the configuration file of the custom
image, configure the correct port number when deploying the AI application.

For details, see How Do I Change the Default Port to Create a Real-Time
Service Using a Custom Image?

16.5.2.10 A Started Service Is Intermittently in the Alarm State

Symptom

The traffic for prediction is not heavy, but the following error frequently occurs:

● Backend service internal error. Backend service read timed out
● Send the request from gateway to the service failed due to connection

refused, please confirm your service is connectable
● Send the request from gateway to the service failed due to connection

timeout, please confirm your service is able to process the new request

Possible Causes

After a prediction request is sent, the service stops and then starts.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1079

Solution

Check the image used by the service, identify the cause of the service stop, and
rectify the fault. Re-create the AI application and use it to deploy a service.

16.5.2.11 Failed to Deploy a Service and Error "No Module named XXX"
Occurred

Symptom

Deploying a service failed. The system displays error message "No Module named
XXX".

Possible Causes

"No Module named XXX" indicates that the dependency module is not imported
to the model.

Solution

Import the required dependency module to the model through inference code.

For example, when you attempt to deploy a PyTorch AI application as a real-time
service, the system displays error message "ModuleNotFoundError: No module
named 'model_service.tfserving_model_service'". In this case, configure "from
model_service.pytorch_model_service import PTServingBaseService" in
customize_service.py. Example code:

import log
from model_service.pytorch_model_service import PTServingBaseService

16.5.2.12 Insufficient Permission to or Unavailable Input/Output OBS Path of
a Batch Service

Symptom
1. An input/output path is unavailable, and the following error message is

displayed:
"error_code": "ModelArts.3551",
"error_msg": "OBS path xxxx does not exist."

2. When the access to an input/output path is denied, the following error
message is displayed:
"error_code": "ModelArts.3567",
"error_msg": "OBS error occurs because Access Denied."

Possible Causes

ModelArts.3551: The OBS path for data input or output does not exist.

ModelArts.3567: The OBS path for data input or output is available, but the
current account does not have the permission to access the path.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1080

Solution
ModelArts.3551: Check whether the data input path is available in OBS. If not,
create an OBS path as required. If the path is available but the error persists,
submit a service ticket to apply for technical support.

ModelArts.3567: You can access only the OBS path under your own account. To
read the OBS data of other users through ModelArts, configure an agency.
Otherwise, the access is denied.

Log in to the ModelArts management console. In the navigation pane, choose
Settings. Click View Permissions to check whether the OBS agency permission is
configured.

Figure 16-58 Viewing permissions

If an agency already exists but the error persists, submit a service ticket for
technical support.

16.5.2.13 What Can I Do if the Memory Is Insufficient?

Symptom
● The deployment or upgrade of a real-time service fails and information

similar to the following is displayed in the event.

Figure 16-59 Example 1 of a message indicating insufficient memory

● An alarm is generated for a running service, and the following suggestion is
displayed in the event: "Insufficient memory, please increase memory."

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1081

Figure 16-60 Example 2 of a message indicating insufficient memory

Possible Causes
● If this message is displayed during deployment or upgrade, the memory size

of the chosen compute node is insufficient for the application deployment,
and you need to increase the memory.

● If an alarm is generated for a running service, memory overflow occurs due to
code problems, or the service usage is too large so the memory requirement
increases.

Solution
● When deploying or upgrading a real-time service, select a compute node with

larger memory.

Figure 16-61 Compute node specifications

● If an alarm is generated for a running service, check whether memory
overflow occurs due to code problems, or more memory is required due to
heavy service usage. If more memory is required, upgrade the real-time
service and select a compute node with larger memory.

16.5.3 Service Prediction

16.5.3.1 Service Prediction Failed

Symptom
After a real-time service is deployed and running, an inference request is sent to
the service, but the inference failed.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1082

Cause Analysis and Solution
Service prediction involves multiple phases, including the client, Internet, APIG,
dispatcher, and model service. A fault in any phase may lead to a prediction
failure.

Figure 16-62 Prediction process

1. If an "APIG.XXXX" error occurs, the request is intercepted on API Gateway due
to a fault.
Rectify the fault by referring to Error "APIG.XXXX" Occurred in a Prediction
Failure.
The following shows the other cases in which a request is intercepted on API
Gateway:
– Method Not Allowed
– Request Timed Out

2. If a "ModelArts.XXXXX" error occurs, the request is intercepted on the
dispatcher due to a fault.
Rectify the fault by referring to the methods provided in the following typical
cases:
– Error ModelArts.4302 Occurred in Real-Time Service Prediction
– Error ModelArts.4302 Occurred in Real-Time Service Prediction
– Error ModelArts.4503 Occurred in Real-Time Service Prediction

3. If an inference image is used and an "MR.XXXX" error occurs, the request has
been sent to the model service, and the fault is generally due to a bug in
model inference code.
Identify the cause of the prediction failure based on the error information in
logs, debug the model inference code, and import the model again for
prediction.
Rectify the fault by referring to Error MR.0105 Occurred in Real-Time
Service Prediction.

4. In other cases, check whether the client and the Internet are accessible.
5. If the fault persists, contact the system administrator.

16.5.3.2 Error "APIG.XXXX" Occurred in a Prediction Failure
A request is intercepted on API Gateway due to a fault, and error "APIG.XXXX"
occurs.

Rectify the fault by referring to the methods provided in the following typical
cases:

● APIG.0101 Incorrect Prediction URL
● APIG.0201 Request Body Oversized
● APIG.0301 Authentication Failed

For more details about API Gateway error codes and solutions, see .

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1083

APIG.0101 Incorrect Prediction URL

If the prediction URL is incorrect, API Gateway intercepts the request and reports
error message "APIG.0101:The API does not exist or has not been published in the
environment". In this case, go to the real-time service details page and obtain the
correct API address on the Usage Guides tab page.

NO TE

If you have specified a custom path in the configuration file, add this path to the called API
path. For example, if you have specified custom path /predictions/poetry, the called API
path will be {API address}/predictions/poetry.

Figure 16-63 Obtaining an API address

APIG.0201 Request Body Oversized

If a request body is oversized, API Gateway intercepts the request and reports
error message "APIG.0201:Request entity too large". Reduce the prediction request
body and try again.

If you perform prediction by calling an API address, the maximum size of the
request body is 12 MB. If the size of the request body exceeds 12 MB, the request
will be intercepted.

If you perform prediction on the Prediction tab of the service details page, the
maximum size of the request body is 8 MB. The size limit varies between the two
tab pages because they use different network links.

Figure 16-64 Request error APIG.0201

APIG.0301 Authentication Failed

If an API is called for service prediction or a token is used for application
authentication, a correct token must be obtained. If the token is invalid, API
Gateway intercepts the request and reports error message "APIG.0301:Incorrect
IAM authentication information: decrypt token fail". Obtain the correct token and
enter it in X-Auth-Token for prediction.

To obtain a token in a region, obtain the endpoint for this region and the
resource-path (/v3/auth/tokens) in the URI of the API that is used to obtain a
user token. Then, construct the URL as follows:

https://{iam-endpoint}/v3/auth/tokens

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1084

16.5.3.3 Error ModelArts.4206 Occurred in Real-Time Service Prediction

Symptom
After a real-time service is deployed and running, an inference request is sent to
the service, but error ModelArts.4206 occurred.

Possible Causes
ModelArts.4206 indicates that the request traffic on an API exceeded the preset
threshold. To ensure stable service running, ModelArts limits the inference request
traffic on a single API.

Solution
Reduce the inference request traffic on an API. If ultra-high concurrency is
required, submit a service ticket.

16.5.3.4 Error ModelArts.4302 Occurred in Real-Time Service Prediction

Symptom
After a real-time service is deployed and running, an inference request is sent to
the service, but error ModelArts.4302 occurred.

Cause Analysis and Solution
Error ModelArts.4302 may occur in multiple scenarios. The following describes two
typical scenarios:

1. "error_msg": "Gateway forwarding error. Failed to invoke backend service due
to connection refused. "
This error occurs in either of the following cases:
– The traffic exceeded the threshold that can be processed by the model. In

this case, reduce the traffic or increase the number of model instances.
– The image is faulty. In this case, separately run the image and check

whether it is functional.
2. "error_msg": "Due to self protection, the backend service is disconnected,

please wait moment."
This error occurs due to excessive number of model errors. A large number of
model errors trigger dispatcher circuit breaker, leading to a prediction failure.
In this case, check the result returned by the model and handle these errors.
Adjust request parameters or reduce the request traffic for higher model
calling success rate.

16.5.3.5 Error ModelArts.4503 Occurred in Real-Time Service Prediction

Symptom
After a real-time service is deployed and running, an inference request is sent to
the service, but error ModelArts.4503 occurred.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1085

Cause Analysis and Solution
Error ModelArts.4503 may occur in multiple scenarios. The following describes
typical scenarios:

1. Communication error
Request error: {"error_code":"ModelArts.4503","error_msg":"Failed to respond
due to backend service not found or failed to respond"}
To ensure high performance, ModelArts reuses the connections to the same
model service. According to the TCP protocol, a disconnection can be initiated
either by the client or server of a connection. Disconnecting a connection
requires a four-way handshake. If the model service (server) initiates a
disconnection, but the connection is being used by ModelArts (client), a
communication error occurs and this error code is returned.
If your model is imported from a custom image, set keep-alive of the web
server used by the custom image to a larger value. This prevents a
disconnection request initiated from the server. If you use Gunicorn as the
web server, configure the keep-alive value by running the Gunicorn
command. Models imported from other sources have been configured in the
service.

2. Protocol error
Request error: {"error_code":"ModelArts.4503", "error_msg":"Failed to find
backend service because SSL error in the backend service, please check the
service is https"}
If the model used for deploying a real-time service is imported from a
container image, this error occurs when the protocol used by the container
API is incorrectly configured.
For security purposes, all ModelArts inference requests are HTTPS-compliant.
When you import a model from a container image, ModelArts allows the
image to use HTTPS or HTTP. However, you must specify the protocol used by
the image in Container API.

Figure 16-65 Container API

If the Container API value is inconsistent with the value provided by your
image, for example, Container API is set to HTTPS but your image actually
uses HTTP, the preceding error occurs.
To resolve this issue, create an AI application version, select the correct
protocol (HTTP or HTTPS), and deploy a real-time service again or update the
existing real-time service.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1086

3. Long prediction time
The following error is reported: {"error_code": "ModelArts.4503", "error_msg":
"Failed to find backend service because response timed out, please confirm
your service is able to process the request without timeout. "}
Due to the limitation of API Gateway, the prediction duration of each request
does not exceed 40 seconds. A prediction is successful if the entire process
takes a time not longer than the time limit. The process involves sending data
to ModelArts, performing prediction, and sending the prediction result back. If
a prediction takes a time longer than the time limit or ModelArts cannot
respond to frequent prediction requests, this error occurs.
Take the following measures to resolve this issue:
– If a prediction request is oversized, the request times out due to slow

data processing. In this case, optimize the prediction code to shorten the
prediction time.

– A complex model leads to slow inference. Optimize the model to shorten
the prediction time.

– Increase the number of instances or select a compute node flavor with
better performance. For example, use GPUs instead of CPUs to improve
the service processing performance.

4. Service error
The following error is reported: {"error_code": "ModelArts.4503","error_msg":
"Backend service respond timeout, please confirm your service is able to
process the request without timeout. "}
Service logs are as follows:
[2022-10-24 11:37:31 +0000] [897] [INFO] Booting worker with pid: 897
[2022-10-24 11:41:47 +0000] [1997] [INFO] Booting worker with pid: 1997
[2022-10-24 11:41:22 +0000] [1897] [INFO] Booting worker with pid: 1897
[2022-10-24 11:37:54 +0000] [997] [INFO] Booting worker with pid: 997

The service malfunctions and restarts repeatedly. As a result, prediction
requests cannot be sent to the service instance.
Take the following measures to resolve this issue:
– Reduce the number of prediction requests and check whether the fault is

resolved. If the fault does not recur, the service process exits due to heavy
load. In this case, increase the number of instances or improve the
instance specifications.

– The inference code is defective. Debug the code to rectify the fault.

16.5.3.6 Error MR.0105 Occurred in Real-Time Service Prediction

Symptom
During the prediction in a running real-time service, error { "erno": "MR.0105",
"msg": "Recognition failed","words_result": {}} occurred.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1087

Figure 16-66 Prediction failed

Possible Causes

Locate the fault by analyzing the error log on the Logs tab of the real-time service
details page.

Figure 16-67 Error log

According to the error log shown in the preceding figure, the prediction failure is
caused by the model inference code.

Solution

According to the error log, mandatory parameters are missing in the append()
method. To rectify the fault, modify the code in the model inference code file
customize_service.py to transfer proper parameters to the append() method.

16.5.3.7 Method Not Allowed

Symptom

Error message "Method Not Allowed" is displayed during service prediction.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1088

Possible Causes
The APIs registered by default for service prediction must be called using POST. If
you use GET, API Gateway will intercept the request.

Solution
Use POST to call the API.

16.5.3.8 Request Timed Out

Symptom
The prediction request times out, and the error {"error_code":
"ModelArts.4205","error_msg":"Connection time out."} is reported.

Possible Causes
If a request times out, there is a high probability that the request is intercepted by
API Gateway. Check the API Gateway and model.

Solution
1. Run the :curl -kv {Prediction address} command on the local host to check

whether the API Gateway is reachable. If the request timed out, check the
local firewall, proxy, and network configurations.

2. Check whether the model is started or the duration for the model to process a
single request. Due to the limitation of API Gateway, the duration of a single
prediction cannot exceed 40s. If the duration exceeds 40s, the system will
return a timeout error by default.

16.5.3.9 Error Occurred When an API Is Called for Deploying a Model
Created Using a Custom Image

If an error occurs when an API is called for service deployment, check the
following items:

1. Check whether POST is used in the configuration file for the model API.
2. Check whether the URL in the configuration file contains a customized path,

for example, /predictions/poetry (the default path is /).
3. Check whether the called path in the body of the API request contains a

customized path, for example, {API address}/predictions/poetry.

16.6 MoXing

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1089

16.6.1 Error Occurs When MoXing Is Used to Copy Data

Symptom
1. When you call moxing.file.copy_parallel() to copy a file from the OBS

bucket for a development environment to another bucket, the file is not
visible in the target bucket.

2. An error occurs when MoXing is used to copy data. Example:
– The following error occurs when MoXing is used to copy OBS data in the

ModelArts development environment: keyError: 'request-id'
– The error No files to copy occurs when ModelArts uses MoXing to copy

data.
– socket.gaierror: [Errno -2] Name or service not known
– ERROR:root:Failed to call:

func=<bound method ObsClient.getObject of <obs.client.ObsClient object
at 0x7fd705939710>>
args=('bucket', 'data/TFRecord/HY_all_inside/
no_adjust_light_3/09_06_6x128x128_0000000212.tfrecord')

3. When MoXing is used to copy data, an error message is displayed, indicating
that the operation timed out. Example:
– TimeoutError: [Errno 110] Connection timed out
– WARNING:root:Retry=9,Wait=0.1, Timestamp = 1567152567.5327423

Possible Cause

The possible causes are as follows:

● The source file does not exist.
● The target OBS path is incorrect or the two OBS paths are not in the same

region.
● Space of the training job is insufficient.

Solution

Check the following items based on the error message:

1. Check whether the first parameter of moxing.file.copy_parallel() contains a
file. If it contains no file, the error message "No files to copy" is displayed.
– If the file exists, go to 2.
– If the file does not exist, ignore the error and proceed with subsequent

operations.
2. Check whether the OBS path where data is copied is in the same region as

the development environment or training job.
Log in to the ModelArts management console, and view the region where
ModelArts resides. Log in to OBS Console, and view the region where the OBS
bucket resides. Check whether they are in the same region.
– If they are in the same region, go to step 3.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1090

– If they are not in the same region, create a bucket and a folder in OBS
that is in the same region as ModelArts, and upload data to the bucket.

3. Check whether the OBS path is obs://xxx. You can check whether the OBS
path exists as follows:
mox.file.exists('obs://bucket_name/sub_dir_0/sub_dir_1')
– If the path exists, go to 4.
– If the path does not exist, change it to an available OBS path.

4. Check whether the used resource is a CPU. The /cache directory of the CPU
and the code directory share 10 GB. The possible cause is insufficient space.
You can run the following command in code to check the disk size:
os.system('df -hT')
– If disk space is sufficient, go to 5.
– If disk space is insufficient, use GPU resources.

5. If data fails to be copied using MoXing in a notebook instance, run the df -hT
command on the Terminal page to check the space size and check whether
the failure cause is insufficient space. You can use EVS to attach disks when
creating a notebook instance.

If code is correct but the problem persists, submit a service ticket to get
professional technical support.

16.6.2 How Do I Disable the Warmup Function of the Mox?

Symptom
When the TensorFlow version of the training job Mox is running, 50 steps are
executed for four times before the job is formally running.

Warmup indicates a process of using a small learning rate to train several epochs
first. Network parameters are randomly initialized. If a large learning rate is used
at the beginning, the value may be unstable. This is why warmup is used. After the
training process is basically stable, the originally set initial learning rate can be
used for training.

Possible Cause
There are multiple execution modes for distributed TensorFlow. Mox executes 50
steps for four times to record the execution time, and selects the model with the
minimum execution time.

Solution
When creating a training job, add variable_update=parameter_server in
Running Parameter to disable the warmup function of Mox.

16.6.3 Pytorch Mox Logs Are Repeatedly Generated

Symptom
The Pytorch engine of a frequently-used framework is used as an algorithm source
of a ModelArts training job. During the running of the training job, Mox versions

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1091

for each epoch will be printed in the Pytorch Mox log. The log details are as
follows:
INFO:root:Using MoXing-v1.13.0-de803ac9
INFO:root:Using OBS-Python-SDK-3.1.2
INFO:root:Using MoXing-v1.13.0-de803ac9
INFO:root:Using OBS-Python-SDK-3.1.2

Possible Cause
Pytorch creates multiple processes in spawn mode. Each process invokes the Mox
to download data in multi-process mode. In this case, subprocesses are destroyed
and recreated repeatedly, and Mox is imported repeatedly. As a result, a large
amount of Mox version information is printed.

Solution
To avoid repeated output of the Pytorch Mox logs of the training job, you need to
add the following code to the boot file. When MOX_SILENT_MODE = "1", Mox
version information can be blocked in the log.
import os
os.environ["MOX_SILENT_MODE"] = "1"

16.6.4 Does moxing.tensorflow Contain the Entire
TensorFlow? How Do I Perform Local Fine Tune on the
Generated Checkpoint?

Symptom
When MoXing is used to train a model, global_step is placed in the Adam name
range. The non-MoXing code does not contain the Adam name range. See Figure
16-68. In the figure, 1 indicates MoXing code, and 2 indicates non-MoXing code.

Figure 16-68 Sample code

Solution
Fine tune is a process of using a model that is trained by others and your own
data to train a new model. It is equivalent to using the several top layers of a

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1092

model trained by others to extract shallow features, and then making the features
fall into our own classification.

Generally, the accuracy of a newly trained model increases gradually from a very
low value. However, fine tune allows you to obtain a better effect after a relatively
small number of iterations. The advantage of fine tune is that it prevents you from
training a model from scratch and improves training efficiency. Fine tune is a good
choice when the data volume is not large.

All APIs contained in moxing.tensorflow have been optimized for TensorFlow. The
actual APIs inside are the native APIs of TensorFlow.

If non-MoXing code does not contain the Adam name range, add the following
content to non-MoXing code:

with tf.variable_scope("Adam"):

When adding code, you are advised to use tf.train.get_or_create_global_step()
instead of global_step.

16.6.5 Copying Data Using MoXing Is Slow and the Log Is
Repeatedly Printed in a Training Job

Symptom
● Copying data using MoXing is slow in a ModelArts training job.
● The log INFO:root:Listing OBS is repeatedly printed.

Figure 16-69 Repeated log printing

Possible Cause
1. The possible causes for slow data copying are as follows:

– Reading data from OBS will make data reading become a training
bottleneck, resulting in slow iteration.

– Data fails to be read from OBS due to environment or network issues. As
a result, the job fails.

2. The log is printed repeatedly. The log indicates that the file is being read from
the remote end. After the file list is read, data starts to be downloaded. If
there are many files, this process takes a long time.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1093

Solution
When creating a training job, you can save data to OBS. You are advised not to
use the OBS APIs of TensorFlow, MXNet, and PyTorch to directly read data from
OBS.

● If the file is small, you can save data on OBS as a .tar package. When starting
the training, download the package from OBS to the /cache directory and
decompress the package.

● If the file is large, save data as multiple .tar packages and invoke multiple
processes in the entry script to decompress data in parallel. You are advised
not to save discrete files to OBS. Otherwise, data download will be slow.

● In a training job, use the following code to decompress the .tar package:
import moxing as mox
import os
mox.file.copy_parallel("obs://donotdel-modelarts-test/AI/data/PyTorch-1.0.1/tiny-imagenet-200.tar", '/
cache/tiny-imagenet-200.tar')
os.system('cd /cache; tar -xvf tiny-imagenet-200.tar > /dev/null 2>&1')

16.6.6 Failed to Access a Folder Using MoXing and Read the
Folder Size Using get_size

Symptom
● The folder cannot be accessed using MoXing.
● The folder size read by using get_size of MoXing is 0.

Possible Cause
To use MoXing to access a folder, you need to add the recursive=True parameter.
The default value is False.

Solution
Obtain the size of an OBS folder.

mox.file.get_size('obs://bucket_name/sub_dir_0/sub_dir_1', recursive=True)

Obtain the size of an OBS file.

mox.file.get_size('obs://bucket_name/obs_file.txt')

16.7 APIs or SDKs

16.7.1 "ERROR: Could not install packages due to an OSError"
Occurred During ModelArts SDK Installation

Symptom
When ModelArts SDKs are installed, the following error message is displayed:
"ERROR: Could not install packages due to an OSError: [WinError 2] The system
cannot find the file specified: 'c:\python39\Scripts\ephemeral-port-reserve.exe' ->
'c:\python39\Scripts\ephemeral-port-reserve.exe.deleteme".

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1094

Possible Causes

The role of the login user is incorrect.

Solution

Log in to the system as the administrator, press Windows+R, enter cmd, and run
the following command:

python -m pip install --upgrade pip

16.7.2 Error Occurred During Service Deployment After the
Target Path to a File Downloaded Through a ModelArts SDK
Is Set to a File Name

Symptom

A ModelArts SDK was used to download a file from OBS, and the target path was
set to the file name. No error was reported in the local IDE, but an error occurred
when the target AI application was deployed as a real-time service.

Sample code:

session.obs.download_file (obs_path, local_path)

The error message is as follows:

2022-07-06 16:22:36 CST [ThreadPoolEx] - /home/work/predict/model/customize_service.py[line:184] -
WARNING: 4 try: IsADirectoryError(21, 'Is a directory'). update products failed!

Possible Causes

The target path (local_path) was incorrectly set in code.

Solution

Set local_path to a folder and ensure the folder name extension ends with a slash
(/).

16.7.3 A Training Job Created Using an API Is Abnormal

Symptom

When you call an API to create a training job (CPU specifications for the dedicated
resource pool), the training job status changes from Creating to Abnormal, and
specifications information on the training job details page is --.

Possible Causes

A parameter that is not supported by dedicated resource pools of CPU
specifications is used in the API call.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1095

Solution
Make sure that the API request body does not contain flavor_id because this
parameter is not supported by dedicated resource pools of CPU specifications

16.8 Change History
Released On Description

2024-01-18 Added:
● A Training Job Created Using a Custom Image Is

Always in the Running State
● Troubleshooting a Training Job Failure
● A Training Job Created Using an API Is Abnormal
● Running a Job Failed Due to Persistently Rising

Memory Usage
Added An NCCL Error Occurs When a Training Job
Fails to Be Executed.

2023-11-23 Added An NCCL Error Occurs When a Training Job
Fails to Be Executed.

2023-11-08 Added:
● Failed to Create a Notebook Instance and

JupyterProcessKilled Is Displayed in Events
● Storage Volume Failed to Be Mounted to the Pod

During Training Job Creation

2023-09-07 Added The Model or Image Exceeded the Size Limit
for AI Application Import.
Added A Single Model File Exceeded the Size Limit (5
GB) for AI Application Import.
Added What Do I Do If an Image Fails to Be Pulled
When a Service Is Deployed, Started, Upgraded, or
Modified?.
Added What Do I Do If an Image Restarts Repeatedly
When a Service Is Deployed, Started, Upgraded, or
Modified?.
Added What Do I Do If a Container Health Check
Fails When a Service Is Deployed, Started, Upgraded,
or Modified?.
Added What Do I Do If Resources Are Insufficient
When a Service Is Deployed, Started, Upgraded, or
Modified?.

2023-08-31 Deleted "DevEnviron (Notebook of Old Version)".

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1096

Released On Description

2023-08-30 Deleted "OBS Operation Issues" in DevEnviron (New
Notebook) and "Why Error: 403 Forbidden Is Displayed
When I Perform Operations on OBS?" in General Issues.
Moved OBS documentation into General Issues >
Incorrect OBS Path on ModelArts.

2022-11-01 Modified the document structure.
Added cases related to AI application management.
Added service prediction failure cases.

2022-08-31 Added case Error MR.0105 Occurred in Real-Time
Service Prediction.

2022-08-26 Added a general OBS case:
Incorrect OBS Path on ModelArts

2022-08-15 Added cases related to training job suspension.

2022-01-04 Added OBS download permission cases.

2021-12-15 Added case Error ModelArts.2763 Occurred During
Training Job Creation.

2021-09-15 Added training job troubleshooting cases.

2021-07-16 Revised the contents of training job.
Deleted an outdated item of troubleshooting from
training jobs.
Added content of troubleshooting to training jobs.
Training Job Process Exits Unexpectedly
Stopped Training Job Process

2020-12-10 Added the troubleshooting guide for ExeML.
Failed to Publish a Dataset Version
Invalid Dataset Version
Failed to Create an ExeML-powered Training Job
ExeML-powered Training Job Failed
Failed to Submit the Model Publishing Task
Failed to Publish a Model
Failed to Submit the Real-time Service Deployment
Task
Failed to Deploy a Real-time Service

2019-11-25 This is the first official release.

Modelarts
Usermanual 16 Troubleshooting

2024-04-30 1097

17 Change History

Released On Description

2024-04-30 This is the first official release.

Modelarts
Usermanual 17 Change History

2024-04-30 1098

	Contents
	1 Service Overview
	1.1 Infographics
	1.1.1 What Is ModelArts

	1.2 What Is ModelArts?
	1.3 Functions
	1.4 Basic Knowledge
	1.4.1 Introduction to the AI Development Lifecycle
	1.4.2 Basic Concepts of AI Development
	1.4.3 Common Concepts of ModelArts
	1.4.4 Introduction to Development Tools

	1.5 AI frameworks supported by ModelArts
	1.6 Related Services
	1.7 How Do I Access ModelArts?

	2 Preparations
	2.1 Configuring Access Authorization (Global Configuration)
	2.2 Creating an OBS Bucket

	3 ExeML
	3.1 Introduction to ExeML
	3.2 Image Classification
	3.2.1 Preparing Data
	3.2.2 Creating a Project
	3.2.3 Labeling Data
	3.2.4 Training a Model
	3.2.5 Deploying a Model as a Service

	3.3 Object Detection
	3.3.1 Preparing Data
	3.3.2 Creating a Project
	3.3.3 Labeling Data
	3.3.4 Training a Model
	3.3.5 Deploying a Model as a Service

	3.4 Predictive Analytics
	3.4.1 Preparing Data
	3.4.2 Creating a Project
	3.4.3 Training a Model
	3.4.4 Deploying a Model as a Service

	3.5 Tips
	3.5.1 How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?
	3.5.2 Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?

	4 Workflow
	4.1 MLOps Overview
	4.2 What Is Workflow?
	4.3 How to Use a Workflow?
	4.3.1 Using a Workflow Subscribed to From AI Hub
	4.3.2 Configuring a Workflow
	4.3.2.1 Configuration Entries
	4.3.2.2 Runtime Configurations
	4.3.2.3 Resource Configurations
	4.3.2.4 Tab Configuration
	4.3.2.5 Input and Output Configurations
	4.3.2.6 Phase Parameters
	4.3.2.7 Saving Configurations

	4.3.3 Starting, Stopping, Searching for, Copying, or Deleting a Workflow
	4.3.4 Viewing Workflow Execution Records
	4.3.5 Retrying, Stopping, or Proceeding a Phase
	4.3.6 Partial Execution

	5 Data Management
	5.1 Introduction to Data Preparation
	5.2 Getting Started
	5.3 Introduction to Data Preparation
	5.4 Creating a Dataset
	5.4.1 Dataset Overview
	5.4.2 Creating a Dataset
	5.4.3 Modifying a Dataset

	5.5 Importing Data
	5.5.1 Introduction to Data Importing
	5.5.2 Importing Data from OBS
	5.5.2.1 Introduction to Importing Data from OBS
	5.5.2.2 Importing Data from an OBS Path
	5.5.2.3 Specifications for Importing Data from an OBS Directory
	5.5.2.4 Importing a Manifest File
	5.5.2.5 Specifications for Importing a Manifest File

	5.5.3 Importing Data from Local Files

	5.6 Data Analysis and Preview
	5.6.1 Processing Data
	5.6.2 Auto Grouping
	5.6.3 Data Filtering
	5.6.4 Data Feature Analysis

	5.7 Labeling Data
	5.8 Publishing Data
	5.8.1 Introduction to Data Publishing
	5.8.2 Publishing a Data Version
	5.8.3 Managing Data Versions

	5.9 Exporting Data
	5.9.1 Introduction to Exporting Data
	5.9.2 Exporting Data to a New Dataset
	5.9.3 Exporting Data to OBS

	5.10 Introduction to Data Labeling
	5.11 Manual Labeling
	5.11.1 Creating a Labeling Job
	5.11.2 Image Labeling
	5.11.2.1 Image Classification
	5.11.2.2 Object Detection
	5.11.2.3 Image Segmentation

	5.11.3 Text Labeling
	5.11.3.1 Text Classification
	5.11.3.2 Named Entity Recognition
	5.11.3.3 Text Triplet

	5.11.4 Audio Labeling
	5.11.4.1 Sound Classification
	5.11.4.2 Speech Labeling
	5.11.4.3 Speech Paragraph Labeling

	5.11.5 Video Labeling
	5.11.6 Viewing Labeling Jobs
	5.11.6.1 Viewing My Created Labeling Jobs
	5.11.6.2 Viewing My Participated Labeling Jobs

	5.12 Auto Labeling
	5.12.1 Creating an Auto Labeling Job

	5.13 Team Labeling
	5.13.1 Team Labeling Overview
	5.13.2 Creating and Managing Teams
	5.13.2.1 Managing Teams
	5.13.2.2 Managing Team Members

	5.13.3 Creating a Team Labeling Job
	5.13.4 Logging In to ModelArts
	5.13.5 Starting a Team Labeling Job
	5.13.6 Reviewing Team Labeling Results
	5.13.7 Accepting Team Labeling Results

	6 Devenviron
	6.1 Introduction to DevEnviron
	6.2 Application Scenarios
	6.3 Managing Notebook Instances
	6.3.1 Creating a Notebook Instance
	6.3.2 Accessing a Notebook Instance
	6.3.3 Searching for, Starting, Stopping, or Deleting a Notebook Instance
	6.3.4 Changing a Notebook Instance Image
	6.3.5 Changing the Flavor of a Notebook Instance
	6.3.6 Selecting Storage in DevEnviron
	6.3.7 Dynamically Expanding EVS Disk Capacity
	6.3.8 Modifying the SSH Configuration for a Notebook Instance
	6.3.9 Viewing the Notebook Instances of All IAM Users Under One Tenant Account

	6.4 JupyterLab
	6.4.1 Operation Process in JupyterLab
	6.4.2 JupyterLab Overview and Common Operations
	6.4.3 Code Parametrization Plug-in
	6.4.4 Using ModelArts SDK
	6.4.5 Using the Git Plug-in
	6.4.6 Visualized Model Training
	6.4.6.1 Introduction to Training Job Visualization
	6.4.6.2 MindInsight Visualization Jobs
	6.4.6.3 TensorBoard Visualization Jobs

	6.4.7 Uploading and Downloading Data in Notebook
	6.4.7.1 Uploading Files to JupyterLab
	6.4.7.1.1 Scenarios
	6.4.7.1.2 Uploading Files from a Local Path to JupyterLab
	6.4.7.1.3 Cloning an Open-Source Repository in GitHub
	6.4.7.1.4 Uploading OBS Files to JupyterLab
	6.4.7.1.5 Uploading Remote Files to JupyterLab

	6.4.7.2 Downloading a File from JupyterLab to a Local Path

	6.5 Local IDE
	6.5.1 Operation Process in a Local IDE
	6.5.2 Local IDE (PyCharm)
	6.5.2.1 Connecting to a Notebook Instance Through PyCharm Toolkit
	6.5.2.1.1 PyCharm Toolkit
	6.5.2.1.2 Downloading and Installing PyCharm Toolkit
	6.5.2.1.3 Connecting to a Notebook Instance Through PyCharm Toolkit

	6.5.2.2 Manually Connecting to a Notebook Instance Through PyCharm
	6.5.2.3 Submitting a Training Job Using PyCharm Toolkit
	6.5.2.3.1 Submitting a Training Job (New Version)
	6.5.2.3.2 Stopping a Training Job
	6.5.2.3.3 Viewing Training Logs

	6.5.2.4 Uploading Data to a Notebook Instance Using PyCharm

	6.5.3 Local IDE (VS Code)
	6.5.3.1 Connecting to a Notebook Instance Through VS Code
	6.5.3.2 Installing VS Code
	6.5.3.3 Connecting to a Notebook Instance Through VS Code with One Click
	6.5.3.4 Connecting to a Notebook Instance Through VS Code Toolkit
	6.5.3.5 Manually Connecting to a Notebook Instance Through VS Code
	6.5.3.6 Remotely Debugging in VS Code
	6.5.3.7 Uploading and Downloading Files in VS Code

	6.5.4 Local IDE (Accessed Using SSH)

	6.6 Using Notebook to Develop Ascend Operators
	6.7 ModelArts CLI Command Reference
	6.7.1 ModelArts CLI Overview
	6.7.2 (Optional) Installing ma-cli Locally
	6.7.3 Autocompletion for ma-cli Commands
	6.7.4 ma-cli Authentication
	6.7.5 ma-cli Image Building Command
	6.7.5.1 ma-cli Image Building Command
	6.7.5.2 Obtaining an Image Creation Template
	6.7.5.3 Loading an Image Creation Template
	6.7.5.4 Obtaining Registered ModelArts Images
	6.7.5.5 Creating an Image in ModelArts Notebook
	6.7.5.6 Obtaining Image Creation Caches in ModelArts Notebook
	6.7.5.7 Clearing Image Creation Caches in ModelArts Notebook
	6.7.5.8 Registering SWR Images with ModelArts Image Management
	6.7.5.9 Deregistering a Registered Image from ModelArts Image Management
	6.7.5.10 Debugging an SWR Image on an ECS

	6.7.6 Using the ma-cli ma-job Command to Submit a ModelArts Training Job
	6.7.6.1 ma-cli ma-job Command Overview
	6.7.6.2 Obtaining ModelArts Training Jobs
	6.7.6.3 Submitting a ModelArts Training Job
	6.7.6.4 Obtaining ModelArts Training Job Logs
	6.7.6.5 Obtaining ModelArts Training Job Events
	6.7.6.6 Obtaining ModelArts AI Engines for Training
	6.7.6.7 Obtaining ModelArts Resource Specifications for Training
	6.7.6.8 Stopping a ModelArts Training Job

	6.7.7 Using ma-cli to Copy OBS Data

	7 Training Management
	7.1 Introduction to Model Development
	7.2 Preparing Data
	7.3 Preparing Algorithms
	7.3.1 Introduction to Algorithm Preparation
	7.3.2 Using a Preset Image (Custom Script)
	7.3.2.1 Overview
	7.3.2.2 Developing a Custom Script
	7.3.2.3 Creating an Algorithm

	7.3.3 Using Custom Images
	7.3.4 Viewing Algorithm Details
	7.3.5 Searching for an Algorithm
	7.3.6 Deleting an Algorithm

	7.4 Performing a Training
	7.4.1 Creating a Training Job
	7.4.2 Viewing Training Job Details
	7.4.3 Viewing Training Job Events
	7.4.4 Training Job Logs
	7.4.4.1 Introduction to Training Job Logs
	7.4.4.2 Common Logs
	7.4.4.3 Ascend Logs
	7.4.4.4 Viewing Training Job Logs
	7.4.4.5 Locating Faults by Analyzing Training Logs

	7.4.5 Cloud Shell
	7.4.5.1 Logging In to a Training Container Using Cloud Shell
	7.4.5.2 Keeping a Training Job Running
	7.4.5.3 Preventing Cloud Shell Session from Disconnection
	7.4.5.4 Analyzing the Call Stack of the Suspended Process Using the py-spy Tool and Locating the Suspended Problem By Analyzing Code

	7.4.6 Viewing the Resource Usage of a Training Job
	7.4.7 Evaluation Results
	7.4.8 Viewing Fault Recovery Details
	7.4.9 Viewing Environment Variables of a Training Container
	7.4.10 Stopping, Rebuilding, or Searching for a Training Job
	7.4.11 Releasing Training Job Resources

	7.5 Training Experiment
	7.5.1 Introduction to Experiment
	7.5.2 Adding a Training Job to an Experiment
	7.5.3 Viewing an Experiment
	7.5.4 Deleting an Experiment

	7.6 Advanced Training Operations
	7.6.1 Selecting a Training Mode
	7.6.2 Automatic Recovery from a Training Fault
	7.6.2.1 Training Fault Tolerance Check
	7.6.2.2 Fault Dying Gasp

	7.6.3 Resumable Training and Incremental Training
	7.6.4 Detecting Training Job Suspension
	7.6.5 Priority of a Training Job
	7.6.6 Permission to Set the Highest Job Priority

	7.7 Distributed Training
	7.7.1 Distributed Training
	7.7.2 Single-Node Multi-Card Training Using DataParallel
	7.7.3 Multi-Node Multi-Card Training Using DistributedDataParallel
	7.7.4 Distributed Debugging Adaptation and Code Example
	7.7.5 Sample Code of Distributed Training

	8 Inference Deployment
	8.1 Introduction to Inference
	8.2 Managing AI Applications
	8.2.1 Introduction to AI Application Management
	8.2.2 Creating an AI Application
	8.2.2.1 Importing a Meta Model from a Training Job
	8.2.2.2 Importing a Meta Model from OBS
	8.2.2.3 Importing a Meta Model from a Container Image

	8.2.3 Viewing the AI Application List
	8.2.4 Viewing Details About an AI Application
	8.2.5 Managing AI Application Versions
	8.2.6 Viewing Events of an AI Application

	8.3 Deploying an AI Application as a Service
	8.3.1 Deploying AI Applications as Real-Time Services
	8.3.1.1 Deploying as a Real-Time Service
	8.3.1.2 Viewing Service Details
	8.3.1.3 Testing the Deployed Service
	8.3.1.4 Accessing Real-Time Services
	8.3.1.4.1 Accessing a Real-Time Service
	8.3.1.4.2 Authentication Mode
	8.3.1.4.3 Access Mode
	8.3.1.4.4 Accessing a Real-Time Service Through WebSocket
	8.3.1.4.5 Server-Sent Events

	8.3.1.5 Cloud Shell

	8.3.2 Deploying AI Applications as Batch Services
	8.3.2.1 Deploying as a Batch Service
	8.3.2.2 Viewing the Batch Service Prediction Result

	8.3.3 Deploying AI Applications as Edge Services
	8.3.3.1 Deploying an Edge Service
	8.3.3.2 Accessing an Edge Service Deployed on IEF Edge Nodes
	8.3.3.3 Accessing an Edge Service Deployed in a ModelArts Edge Resource Pool
	8.3.3.4 Load Balancing
	8.3.3.5 Installing and Configuring NFS

	8.3.4 Upgrading a Service
	8.3.5 Starting, Stopping, Deleting, or Restarting a Service
	8.3.6 Viewing Service Events

	8.4 Edge Resource Pool
	8.4.1 Overview
	8.4.2 Node
	8.4.3 Resource Pool
	8.4.4 Enabling LTS

	8.5 Inference Specifications
	8.5.1 Model Package Specifications
	8.5.1.1 Introduction to Model Package Specifications
	8.5.1.2 Specifications for Editing a Model Configuration File
	8.5.1.3 Specifications for Writing Model Inference Code

	8.5.2 Examples of Custom Scripts
	8.5.2.1 TensorFlow

	8.6 ModelArts Monitoring on Cloud Eye
	8.6.1 ModelArts Metrics
	8.6.2 Setting Alarm Rules
	8.6.3 Viewing Monitoring Metrics

	9 Resource Management
	9.1 Resource Pool
	9.2 Elastic Cluster
	9.2.1 Comprehensive Upgrades to ModelArts Resource Pool Management Functions
	9.2.2 Creating a Resource Pool
	9.2.3 Viewing Details About a Resource Pool
	9.2.4 Resizing a Resource Pool
	9.2.5 Migrating the Workspace
	9.2.6 Changing Job Types Supported by a Resource Pool
	9.2.7 Upgrading a Resource Pool Driver
	9.2.8 Deleting a Resource Pool
	9.2.9 Abnormal Status of a Dedicated Resource Pool
	9.2.10 ModelArts Network

	9.3 Elastic Server
	9.3.1 Overview
	9.3.2 Preparations
	9.3.3 Getting Started
	9.3.4 Managing an Elastic Server
	9.3.4.1 Creating an Elastic Server
	9.3.4.2 Viewing Instance Details
	9.3.4.3 Using SSH to Remotely Log In to an Instance
	9.3.4.4 Starting or Stopping an Instance
	9.3.4.5 Synchronizing the Status of an Elastic Server
	9.3.4.6 Deleting an Instance

	9.3.5 Configuring the Network as an Administrator

	9.4 Monitoring Resources
	9.4.1 Overview
	9.4.2 Using Grafana to View AOM Monitoring Metrics
	9.4.2.1 Procedure
	9.4.2.2 Installing and Configuring Grafana
	9.4.2.2.1 Installing and Configuring Grafana on Windows
	9.4.2.2.2 Installing and Configuring Grafana on Linux
	9.4.2.2.3 Installing and Configuring Grafana on a Notebook Instance

	9.4.2.3 Configuring a Grafana Data Source
	9.4.2.4 Using Grafana to Configure Dashboards and View Metric Data

	9.4.3 Viewing All ModelArts Monitoring Metrics on the AOM Console

	10 AI Hub
	10.1 AI Hub
	10.2 Registering with AI Hub
	10.3 Management Center
	10.4 Subscription & Use
	10.4.1 Searching for and Adding an Asset to Favorites
	10.4.2 Subscribing to an Algorithm
	10.4.3 Subscribing to a Model
	10.4.4 Downloading Datasets
	10.4.5 Subscribing to a Workflow

	10.5 Publish & Share
	10.5.1 Publishing an Algorithm
	10.5.2 Publishing a Model
	10.5.3 Publishing Data

	11 Custom Images
	11.1 Image Management
	11.2 Introduction to Preset Images (Mainstream Images)
	11.2.1 Preset Images
	11.2.2 Preset MindSpore Images on Arm
	11.2.3 Preset TensorFlow Images on Arm
	11.2.4 Preset PyTorch Images on Arm

	11.3 Using Custom Images in Notebook Instances
	11.3.1 Registering an Image in ModelArts
	11.3.2 Creating a Custom Image
	11.3.3 Saving a Notebook Instance as a Custom Image
	11.3.3.1 Saving a Notebook Environment Image
	11.3.3.2 Using a Custom Image to Create a Notebook Instance

	11.3.4 Creating and Using a Custom Image in Notebook
	11.3.4.1 Application Scenarios and Process
	11.3.4.2 Step 1 Creating a Custom Image
	11.3.4.3 Step 2 Registering a New Image
	11.3.4.4 Step 3 Using a New Image to Create a Development Environment

	11.4 Using a Custom Image to Train Models (Model Training)
	11.4.1 Overview
	11.4.2 Example: Creating a Custom Image for Training
	11.4.2.1 Example: Creating a Custom Image for Development and Training (MindSpore + Ascend)
	11.4.2.1.1 Scenarios
	11.4.2.1.2 Step 1 Creating an OBS Bucket and Folder
	11.4.2.1.3 Step 2 Preparing Script Files and Uploading Them to OBS
	11.4.2.1.4 Step 3 Creating a Custom Image
	11.4.2.1.5 Step 4 Uploading the Image to SWR
	11.4.2.1.6 Step 5 Creating and Debugging a Notebook Instance on ModelArts
	11.4.2.1.7 Step 6 Creating a Training Job on ModelArts

	11.4.3 Preparing a Training Image
	11.4.3.1 Specifications for Custom Images for Training Jobs
	11.4.3.2 Migrating an Image to ModelArts Training
	11.4.3.3 Using a Base Image to Create a Training Image

	11.4.4 Creating an Algorithm Using a Custom Image
	11.4.5 Using a Custom Image to Create a CPU- or GPU-based Training Job
	11.4.6 Using a Custom Image to Create an Ascend-based Training Job
	11.4.7 Troubleshooting Process

	11.5 Using a Custom Image to Create AI applications for Inference Deployment
	11.5.1 Custom Image Specifications for Creating AI Applications
	11.5.2 Creating a Custom Image and Using It to Create an AI Application

	11.6 FAQs
	11.6.1 How Can I Log In to SWR and Upload Images to It?
	11.6.2 How Do I Configure Environment Variables for an Image?
	11.6.3 How Do I Use Docker to Start an Image Saved Using a Notebook Instance?
	11.6.4 How Do I Configure a Conda Source in a Notebook Development Environment?
	11.6.5 What Are Supported Software Versions for a Custom Image?

	12 Permissions Management
	12.1 Basic Concepts
	12.2 Permission Management Mechanisms
	12.2.1 IAM
	12.2.2 Agencies and Dependencies
	12.2.3 Workspace

	12.3 Configuration Practices in Typical Scenarios
	12.3.1 Assigning Permissions to Individual Users for Using ModelArts
	12.3.2 Separately Assigning Permissions to Administrators and Developers
	12.3.3 Viewing the Notebook Instances of All IAM Users Under One Tenant Account
	12.3.4 Logging In to a Training Container Using Cloud Shell
	12.3.5 Prohibiting a User from Using a Public Resource Pool

	12.4 FAQ
	12.4.1 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?

	13 Best Practices
	13.1 Migrating a Locally Developed MindSpore Model to the Cloud for Training
	13.2 Creating an AI Application Using a Custom Engine
	13.3 Using a Large Model to Create an AI Application and Deploying a Real-Time Service
	13.4 Importing a Model from OBS to Create an AI Application and Deploying a Real-Time Service

	14 Full-Process Development of WebSocket Real-Time Services
	15 FAQs
	15.1 General Issues
	15.1.1 What Is ModelArts?
	15.1.2 What Are the Relationships Between ModelArts and Other Services?
	15.1.3 What Are the Differences Between ModelArts and DLS?
	15.1.4 Which Ascend Chips Are Supported?
	15.1.5 How Do I Obtain an Access Key?
	15.1.6 How Do I Upload Data to OBS?
	15.1.7 What Do I Do If the System Displays a Message Indicating that the AK/SK Pair Is Unavailable?
	15.1.8 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?
	15.1.9 How Do I Use ModelArts to Train Models Based on Structured Data?
	15.1.10 How Do I View All Files Stored in OBS on ModelArts?
	15.1.11 Where Are Datasets of ModelArts Stored in a Container?
	15.1.12 Which AI Frameworks Does ModelArts Support?
	15.1.13 What Are the Functions of ModelArts Training and Inference?
	15.1.14 Can AI-assisted Identification of ModelArts Identify a Specific Label?
	15.1.15 Why Is the Job Still Queued When Resources Are Sufficient?

	15.2 Data Management (Old Version)
	15.2.1 Are There Size Limits for Images to be Uploaded?
	15.2.2 What Do I Do If Images in a Dataset Cannot Be Displayed?
	15.2.3 How Do I Integrate Multiple Object Detection Datasets into One Dataset?
	15.2.4 What Do I Do If Importing a Dataset Failed?
	15.2.5 Can a Table Dataset Be Labeled?
	15.2.6 What Do I Do to Import Locally Labeled Data to ModelArts?
	15.2.7 Why Does Data Fail to Be Imported Using the Manifest File?
	15.2.8 Where Are Labeling Results Stored?
	15.2.9 How Do I Download Labeling Results to a Local PC?
	15.2.10 Why Cannot Team Members Receive Emails for a Team Labeling Task?
	15.2.11 Can Two Accounts Concurrently Label One Dataset?
	15.2.12 Can I Delete an Annotator from a Labeling Team with a Labeling Task Assigned? What Is the Impact on the Labeling Result After Deletion? If the Annotator Cannot Be Deleted, Can I Separate the Annotator's Labeling Result?
	15.2.13 How Do I Define a Hard Example in Data Labeling? Which Samples Are Identified as Hard Examples?
	15.2.14 Can I Add Multiple Labeling Boxes to an Object Detection Dataset Image?
	15.2.15 How Do I Merge Two Datasets?
	15.2.16 Does Auto Labeling Support Polygons?
	15.2.17 What Do the Options for Accepting a Team Labeling Task Mean?
	15.2.18 Why Are Images Displayed in Different Angles Under the Same Account?
	15.2.19 Do I Need to Train Data Again If New Data Is Added After Auto Labeling Is Complete?
	15.2.20 Why Does the System Display a Message Indicating My Label Fails to Save on ModelArts?
	15.2.21 Can One Label By Identified Among Multiple Labels?
	15.2.22 Why Are Newly Added Images Not Automatically Labeled After Data Amplification Is Enabled?
	15.2.23 Why Cannot Videos in a Video Dataset Be Displayed or Played?
	15.2.24 Why All the Labeled Samples Stored in an OBS Bucket Are Displayed as Unlabeled in ModelArts After the Data Source Is Synchronized?
	15.2.25 How Do I Use Soft-NMS to Reduce Bounding Box Overlapping?
	15.2.26 Why ModelArts Image Labels Are Lost?
	15.2.27 How Do I Add Images to a Validation or Training Dataset?
	15.2.28 Can I Customize Labels for an Object Detection Dataset?
	15.2.29 What ModelArts Data Management Can Be Used for?
	15.2.30 Will My Old-Version Datasets Be Cleared After the Old Version Is Discontinued? The existing datasets and the ones newly created in the old version will be retained after the old version is discontinued.
	15.2.31 Why Is My New Dataset Version Unavailable in Versions?
	15.2.32 How Do I View the Size of a Dataset?
	15.2.33 How Do I View Labeling Details of a New Dataset?
	15.2.34 How Do I Export Labeled Data?
	15.2.35 Why Cannot I Find My Newly Created Dataset?
	15.2.36 What Do I Do If the Database Quota Is Incorrect?
	15.2.37 How Do I Split a Dataset?
	15.2.38 How Do I Delete a Dataset Image?
	15.2.39 Why Is There No Sample in the ModelArts Dataset Downloaded from AI Gallery and Then an OBS Bucket?

	15.3 Notebook (New Version)
	15.3.1 Constraints
	15.3.1.1 Is sudo Privilege Escalation Supported?
	15.3.1.2 Does ModelArts Support apt-get?
	15.3.1.3 Is the Keras Engine Supported?
	15.3.1.4 Does ModelArts Support the Caffe Engine?
	15.3.1.5 Can I Install MoXing in a Local Environment?
	15.3.1.6 Can Notebook Instances Be Remotely Logged In?

	15.3.2 Data Upload or Download
	15.3.2.1 How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Instance?
	15.3.2.2 How Do I Upload Local Files to a Notebook Instance?
	15.3.2.3 How Do I Import Large Files to a Notebook Instance?
	15.3.2.4 Where Will the Data Be Uploaded to?
	15.3.2.5 How Do I Download Files from a Notebook Instance to a Local Computer?
	15.3.2.6 How Do I Copy Data from Development Environment Notebook A to Notebook B?
	15.3.2.7 What Can I Do If a File Fails to Be Uploaded to a Notebook Instance?
	15.3.2.8 Failed to View the Local Mount Point of a Dynamically Mounted OBS Parallel File System in JupyterLab of a Notebook Instance

	15.3.3 Data Storage
	15.3.3.1 How Do I Rename an OBS File?
	15.3.3.2 Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a Restart?
	15.3.3.3 How Do I Use the pandas Library to Process Data in OBS Buckets?

	15.3.4 Environment Configurations
	15.3.4.1 How Do I Check the CUDA Version Used by a Notebook Instance?
	15.3.4.2 How Do I Enable the Terminal Function in DevEnviron of ModelArts?
	15.3.4.3 How Do I Install External Libraries in a Notebook Instance?
	15.3.4.4 How Do I Obtain the External IP Address of My Local PC?
	15.3.4.5 How Can I Resolve Abnormal Font Display on a ModelArts Notebook Accessed from iOS?
	15.3.4.6 Is There a Proxy for Notebook? How Do I Disable It?

	15.3.5 Notebook Instances
	15.3.5.1 What Do I Do If I Cannot Access My Notebook Instance?
	15.3.5.2 What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?
	15.3.5.3 What Do I Do If "Read timed out" Is Displayed After I Run pip install?
	15.3.5.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message "save error" Is Displayed?
	15.3.5.5 When the SSH Tool Is Used to Connect to a Notebook Instance, Server Processes Are Cleared, but the GPU Usage Is Still 100%

	15.3.6 Code Execution
	15.3.6.1 What Do I Do If a Notebook Instance Won't Run My Code?
	15.3.6.2 Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?
	15.3.6.3 What Do I Do If cudaCheckError Occurs During Training?
	15.3.6.4 What Should I Do If DevEnviron Prompts Insufficient Space?
	15.3.6.5 Why Does the Notebook Instance Break Down When opencv.imshow Is Used?
	15.3.6.6 Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?
	15.3.6.7 What Do I Do If Files Fail to Be Saved in JupyterLab?

	15.3.7 Failures to Access the Development Environment Through VS Code
	15.3.7.1 What Do I Do If the VS Code Window Is Not Displayed?
	15.3.7.2 What Do I Do If a Remote Connection Failed After VS Code Is Opened?
	15.3.7.3 Basic Problems Causing the Failures to Access the Development Environment Through VS Code
	15.3.7.4 What Do I Do If Error Message "Could not establish connection to xxx" Is Displayed During a Remote Connection?
	15.3.7.5 What Do I Do If the Connection to a Remote Development Environment Remains in "Setting up SSH Host xxx: Downloading VS Code Server locally" State for More Than 10 Minutes?
	15.3.7.6 What Do I Do If the Connection to a Remote Development Environment Remains in the State of "Setting up SSH Host xxx: Downloading VS Code Server locally" for More Than 10 Minutes?
	15.3.7.7 What Do I Do If the Connection to a Remote Development Environment Remains in the State of "ModelArts Remote Connect: Connecting to instance xxx..." for More Than 10 Minutes?
	15.3.7.8 What Do I Do If a Remote Connection Is in the Retry State?
	15.3.7.9 What Do I Do If Error Message "The VS Code Server failed to start" Is Displayed?
	15.3.7.10 What Do I Do If Error Message "Permissions for 'x:/xxx.pem' are too open" Is Displayed?
	15.3.7.11 What Do I Do If Error Message "Bad owner or permissions on C:\Users\Administrator/.ssh/config" or "Connection permission denied (publickey)" Is Displayed?
	15.3.7.12 What Do I Do If Error Message "ssh: connect to host xxx.pem port xxxxx: Connection refused" Is Displayed?
	15.3.7.13 What Do I Do If Error Message "ssh: connect to host ModelArts-xxx port xxx: Connection timed out" Is Displayed?
	15.3.7.14 What Do I Do If Error Message "Load key "C:/Users/xx/test1/xxx.pem": invalid format" Is Displayed?
	15.3.7.15 What Do I Do If Error Message "An SSH installation couldn't be found" or "Could not establish connection to instance xxx: 'ssh' ..." Is Displayed?
	15.3.7.16 What Do I Do If Error Message "no such identity: C:/Users/xx /test.pem: No such file or directory" Is Displayed?
	15.3.7.17 What Do I Do If Error Message "Host key verification failed" or "Port forwarding is disabled" Is Displayed?
	15.3.7.18 What Do I Do If Error Message "Failed to install the VS Code Server" or "tar: Error is not recoverable: exiting now" Is Displayed?
	15.3.7.19 What Do I Do If Error Message "XHR failed" Is Displayed When a Remote Notebook Instance Is Accessed Through VS Code?
	15.3.7.20 What Do I Do for an Automatically Disconnected VS Code Connection If No Operation Is Performed for a Long Time?
	15.3.7.21 What Do I Do If It Takes a Long Time to Set Up a Remote Connection After VS Code Is Automatically Upgraded?
	15.3.7.22 What Do I Do If Error Message "Connection reset" Is Displayed During an SSH Connection?
	15.3.7.23 What Can I Do If a Notebook Instance Is Frequently Disconnected or Stuck After I Use MobaXterm to Connect to the Notebook Instance in SSH Mode?

	15.3.8 Others
	15.3.8.1 How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?
	15.3.8.2 Why Is the Training Speed Similar When Different Notebook Flavors Are Used?
	15.3.8.3 How Do I Perform Incremental Training When Using MoXing?
	15.3.8.4 How Do I View GPU Usage on the Notebook?
	15.3.8.5 How Can I Obtain GPU Usage Through Code?
	15.3.8.6 Which Real-Time Performance Indicators of an Ascend Chip Can I View?
	15.3.8.7 What Are the Relationships Between Files Stored in JupyterLab, Terminal, and OBS?
	15.3.8.8 How Do I Migrate Data from an Old-Version Notebook Instance to a New-Version One?
	15.3.8.9 How Do I Use the Datasets Created on ModelArts in a Notebook Instance?
	15.3.8.10 pip and Common Commands
	15.3.8.11 What Are Sizes of the /cache Directories for Different Notebook Specifications in DevEnviron?
	15.3.8.12 What Is the Impact of Resource Overcommitment on Notebook Instances?

	15.4 Training Jobs
	15.4.1 Functional Consulting
	15.4.1.1 What Are the Solutions to Underfitting?
	15.4.1.2 What Are the Precautions for Switching Training Jobs from the Old Version to the New Version?
	15.4.1.3 How Do I Obtain a Trained ModelArts Model?
	15.4.1.4 What Is TensorBoard Used for in Model Visualization Jobs?
	15.4.1.5 How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed Training?
	15.4.1.6 How Do I Obtain the CUDA and cuDNN Versions of a Custom Image?
	15.4.1.7 How Do I Obtain a MoXing Installation File?
	15.4.1.8 In a Multi-Node Training, the TensorFlow PS Node Functioning as a Server Will Be Continuously Suspended. How Does ModelArts Determine Whether the Training Is Complete? Which Node Is a Worker?
	15.4.1.9 How Do I Install MoXing for a Custom Image of a Training Job?

	15.4.2 Reading Data During Training
	15.4.2.1 How Do I Configure the Input and Output Data for Training Models on ModelArts?
	15.4.2.2 How Do I Improve Training Efficiency While Reducing Interaction with OBS?
	15.4.2.3 Why the Data Read Efficiency Is Low When a Large Number of Data Files Are Read During Training?
	15.4.2.4 How Do I Define Path Variables When Using MoXing?

	15.4.3 Compiling the Training Code
	15.4.3.1 How Do I Create a Training Job When a Dependency Package Is Referenced by the Model to Be Trained?
	15.4.3.2 What Is the Common File Path for Training Jobs?
	15.4.3.3 How Do I Install a Library That C++ Depends on?
	15.4.3.4 How Do I Check Whether a Folder Copy Is Complete During Job Training?
	15.4.3.5 How Do I Load Some Well Trained Parameters During Job Training?
	15.4.3.6 How Do I Obtain Training Job Parameters from the Boot File of the Training Job?
	15.4.3.7 Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?
	15.4.3.8 How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?
	15.4.3.9 How Do I Obtain the Dependency File Path to be Used in Training Code?
	15.4.3.10 What Is the File Path If a File in the model Directory Is Referenced in a Custom Python Package?

	15.4.4 Creating a Training Job
	15.4.4.1 What Can I Do If the Message "Object directory size/quantity exceeds the limit" Is Displayed When I Create a Training Job?
	15.4.4.2 What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment?
	15.4.4.3 Is the /cache Directory of a Training Job Secure?
	15.4.4.4 Why Is a Training Job Always Queuing?
	15.4.4.5 What Determines the Hyperparameter Directory (/work or /ma-user) When Creating a Training Job?

	15.4.5 Managing Training Job Versions
	15.4.5.1 Does a Training Job Support Scheduled or Periodic Calling?

	15.4.6 Viewing Job Details
	15.4.6.1 How Do I Check Resource Usage of a Training Job?
	15.4.6.2 How Do I Access the Background of a Training Job?
	15.4.6.3 Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Container?
	15.4.6.4 Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?
	15.4.6.5 Can a Trained Model Be Downloaded or Migrated to Another Account? How Do I Obtain the Download Path?

	15.5 Service Deployment
	15.5.1 Model Management
	15.5.1.1 Importing Models
	15.5.1.1.1 How Do I Import the .h5 Model of Keras to ModelArts?
	15.5.1.1.2 How Do I Edit the Installation Package Dependency Parameters in a Model Configuration File When Importing a Model?
	15.5.1.1.3 What Do I Do If Error ModelArts.0107 Is Reported When I Use MindSpore to Create an AI Application?
	15.5.1.1.4 How Do I Change the Default Port to Create a Real-Time Service Using a Custom Image?
	15.5.1.1.5 Does ModelArts Support Multi-Model Import?
	15.5.1.1.6 Restrictions on the Size of an Image for Importing an AI Application

	15.5.2 Service Deployment
	15.5.2.1 Functional Consulting
	15.5.2.1.1 What Types of Services Can Models Be Deployed as on ModelArts?
	15.5.2.1.2 What Are the Differences Between Real-Time Services and Batch Services?
	15.5.2.1.3 What Is the Maximum Size of a Prediction Request Body?
	15.5.2.1.4 How Do I Select Compute Node Specifications for Deploying a Service?
	15.5.2.1.5 What Is the CUDA Version for Deploying a Service on GPUs?

	15.5.2.2 Real-Time Services
	15.5.2.2.1 What Do I Do If a Conflict Occurs in the Python Dependency Package of a Custom Prediction Script When I Deploy a Real-Time Service?
	15.5.2.2.2 What Is the Format of a Real-Time Service API?
	15.5.2.2.3 Why Did My Service Deployment Fail with Proper Deployment Timeout Configured?

	15.6 API/SDK
	15.6.1 Can ModelArts APIs or SDKs Be Used to Download Models to a Local PC?
	15.6.2 What Installation Environments Do ModelArts SDKs Support?
	15.6.3 Does ModelArts Use the OBS API to Access OBS Files over an Intranet or the Internet?
	15.6.4 How Do I Obtain a Job Resource Usage Curve After I Submit a Training Job by Calling an API?
	15.6.5 How Do I View the Old-Version Dedicated Resource Pool List Using the SDK?

	15.7 Using PyCharm Toolkit
	15.7.1 What Should I Do If an Error Occurs During Toolkit Installation?
	15.7.2 What Should I Do If an Error Occurs When I Edit a Credential in PyCharm Toolkit?
	15.7.3 Why Cannot I Start Training?
	15.7.4 What Should I Do If Error "xxx isn't existed in train_version" Occurs When a Training Job Is Submitted?
	15.7.5 What Should I Do If Error "Invalid OBS path" Occurs When a Training Job Is Submitted?
	15.7.6 What Should I Do If Error "NoSuchKey" Occurs When PyCharm Toolkit Is Used to Submit a Training Job?
	15.7.7 What Should I Do If an Error Occurs During Service Deployment?
	15.7.8 How Do I View Error Logs of PyCharm Toolkit?
	15.7.9 How Do I Use PyCharm ToolKit to Create Multiple Jobs for Simultaneous Training?
	15.7.10 What Should I Do If "Error occurs when accessing to OBS" Is Displayed When PyCharm ToolKit Is Used?

	16 Troubleshooting
	16.1 General Issues
	16.1.1 Incorrect OBS Path on ModelArts

	16.2 ExeML
	16.2.1 Preparing Data
	16.2.1.1 Failed to Publish a Dataset Version
	16.2.1.2 Invalid Dataset Version

	16.2.2 Training a Model
	16.2.2.1 Failed to Create an ExeML-powered Training Job
	16.2.2.2 ExeML-powered Training Job Failed

	16.2.3 Deploying a Model
	16.2.3.1 Failed to Submit the Real-time Service Deployment Task
	16.2.3.2 Failed to Deploy a Real-time Service

	16.2.4 Publishing a Model
	16.2.4.1 Failed to Submit the Model Publishing Task
	16.2.4.2 Failed to Publish a Model

	16.3 DevEnviron
	16.3.1 Environment Configuration Faults
	16.3.1.1 Disk Space Used Up
	16.3.1.2 An Error Is Reported When Conda Is Used to Install Keras 2.3.1 in Notebook
	16.3.1.3 Error "HTTP error 404 while getting xxx" Is Reported During Dependency Installation in a Notebook
	16.3.1.4 The numba Library Has Been Installed in a Notebook Instance and Error "import numba ModuleNotFoundError: No module named 'numba'" Is Reported

	16.3.2 Instance Faults
	16.3.2.1 Failed to Create a Notebook Instance and JupyterProcessKilled Is Displayed in Events
	16.3.2.2 What Do I Do If I Cannot Access My Notebook Instance?
	16.3.2.3 What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?
	16.3.2.4 What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message "save error" Is Displayed?
	16.3.2.5 ModelArts.6333 Error Occurs
	16.3.2.6 What Can I Do If a Message Is Displayed Indicating that the Token Does Not Exist or Is Lost When I Open a Notebook Instance?

	16.3.3 Code Running Failures
	16.3.3.1 Error Occurs When Using a Notebook Instance to Run Code, Indicating That No File Is Found in /tmp
	16.3.3.2 What Do I Do If a Notebook Instance Won't Run My Code?
	16.3.3.3 Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?
	16.3.3.4 What Do I Do If cudaCheckError Occurs During Training?
	16.3.3.5 What Do I Do If Insufficient Space Is Displayed in DevEnviron?
	16.3.3.6 Why Does the Notebook Instance Break Down When opencv.imshow Is Used?
	16.3.3.7 Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?
	16.3.3.8 What Do I Do If No Kernel Is Displayed After a Notebook File Is Created?

	16.3.4 JupyterLab Plug-in Faults
	16.3.4.1 What Do I Do If the Git Plug-in Password Is Invalid?

	16.3.5 Save an Image Failures
	16.3.5.1 What If the Error Message "there are processes in 'D' status, please check process status using'ps -aux' and kill all the 'D' status processes" or "Buildimge,False,Error response from daemon,Cannot pause container xxx" Is Displayed When I Save an Image?
	16.3.5.2 What Do I Do If Error "container size %dG is greater than threshold %dG" Is Displayed When I Save an Image?
	16.3.5.3 What Do I Do If Error "too many layers in your image" Is Displayed When I Save an Image?
	16.3.5.4 What Do I Do If Error "The container size (xG) is greater than the threshold (25G)" Is Reported When I Save an Image?

	16.3.6 Other Faults
	16.3.6.1 Failed to Open the checkpoints Folder in Notebook
	16.3.6.2 Failed to Use a Purchased Dedicated Resource Pool to Create New-Version Notebook Instances
	16.3.6.3 Error Message "Permission denied" Is Displayed When the tensorboard Command Is Used to Open a Log File in a Notebook Instance

	16.4 Training Jobs
	16.4.1 OBS Operation Issues
	16.4.1.1 Error in File Reading
	16.4.1.2 Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job Is Connected to OBS
	16.4.1.3 TensorFlow Stops Writing TensorBoard to OBS When the Size of Written Data Reaches 5 GB
	16.4.1.4 Error "Unable to connect to endpoint" Error Occurs When a Model Is Saved
	16.4.1.5 Error Message "BrokenPipeError: Broken pipe" Displayed When OBS Data Is Copied
	16.4.1.6 Error Message "ValueError: Invalid endpoint: obs.xxxx.com" Displayed in Logs
	16.4.1.7 Error Message "errorMessage:The specified key does not exist" Displayed in Logs

	16.4.2 In-Cloud Migration Adaptation Issues
	16.4.2.1 Failed to Import a Module
	16.4.2.2 Error Message "No module named .*" Displayed in Training Job Logs
	16.4.2.3 Failed to Install a Third-Party Package
	16.4.2.4 Failed to Download the Code Directory
	16.4.2.5 Error Message "No such file or directory" Displayed in Training Job Logs
	16.4.2.6 Failed to Find the .so File During Training
	16.4.2.7 ModelArts Training Job Failed to Parse Parameters and an Error Is Displayed in the Log
	16.4.2.8 Training Output Path Is Used by Another Job
	16.4.2.9 Error Message "RuntimeError: std::exception" Displayed for a PyTorch 1.0 Engine
	16.4.2.10 Error Message "retCode=0x91, [the model stream execute failed]" Displayed in MindSpore Logs
	16.4.2.11 Error Occurred When Pandas Reads Data from an OBS File If MoXing Is Used to Adapt to an OBS Path
	16.4.2.12 Error Message "Please upgrade numpy to >= xxx to use this pandas version" Displayed in Logs
	16.4.2.13 Reinstalled CUDA Version Does Not Match the One in the Target Image
	16.4.2.14 Error ModelArts.2763 Occurred During Training Job Creation
	16.4.2.15 Error Message "AttributeError: module '***' has no attribute '***'" Displayed Training Job Logs
	16.4.2.16 System Container Exits Unexpectedly

	16.4.3 Hard Faults Due to Space Limit
	16.4.3.1 Downloading Files Timed Out or No Space Left for Reading Data
	16.4.3.2 Insufficient Container Space for Copying Data
	16.4.3.3 Error Message "No space left" Displayed When a TensorFlow Multi-node Job Downloads Data to /cache
	16.4.3.4 Size of the Log File Has Reached the Limit
	16.4.3.5 Error Message "write line error" Displayed in Logs
	16.4.3.6 Error Message "No space left on device" Displayed in Logs
	16.4.3.7 Training Job Failed Due to OOM
	16.4.3.8 Common Issues Related to Insufficient Disk Space and Solutions

	16.4.4 Internet Access Issues
	16.4.4.1 Error Message "Network is unreachable" Displayed in Logs
	16.4.4.2 URL Connection Timed Out in a Running Training Job

	16.4.5 Permission Issues
	16.4.5.1 What Should I Do If Error "stat:403 reason:Forbidden" Is Displayed in Logs When a Training Job Accesses OBS
	16.4.5.2 Error Message "Permission denied" Displayed in Logs

	16.4.6 GPU Issues
	16.4.6.1 Error Message "No CUDA-capable device is detected" Displayed in Logs
	16.4.6.2 Error Message "RuntimeError: connect() timed out" Displayed in Logs
	16.4.6.3 Error Message "cuda runtime error (10) : invalid device ordinal at xxx" Displayed in Logs
	16.4.6.4 Error Message "RuntimeError: Cannot re-initialize CUDA in forked subprocess" Displayed in Logs
	16.4.6.5 No GPU Is Found for a Training Job

	16.4.7 Service Code Issues
	16.4.7.1 Error Message "pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields" Displayed in Logs
	16.4.7.2 Error Message "max_pool2d_with_indices_out_cuda_frame failed with error code 0" Displayed in Logs
	16.4.7.3 Training Job Failed with Error Code 139
	16.4.7.4 Debugging Training Code in the Cloud Environment If a Training Job Failed
	16.4.7.5 Error Message "'(slice(0, 13184, None), slice(None, None, None))' is an invalid key" Displayed in Logs
	16.4.7.6 Error Message "DataFrame.dtypes for data must be int, float or bool" Displayed in Logs
	16.4.7.7 Error Message "CUDNN_STATUS_NOT_SUPPORTED" Displayed in Logs
	16.4.7.8 Error Message "Out of bounds nanosecond timestamp" Displayed in Logs
	16.4.7.9 Error Message "Unexpected keyword argument passed to optimizer" Displayed in Logs
	16.4.7.10 Error Message "no socket interface found" Displayed in Logs
	16.4.7.11 Error Message "Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP" Displayed in Logs
	16.4.7.12 Error Message "AttributeError: 'NoneType' object has no attribute 'dtype'" Displayed in Logs
	16.4.7.13 Error Message "No module name 'unidecode'" Displayed in Logs
	16.4.7.14 Distributed Tensorflow Cannot Use tf.variable
	16.4.7.15 When MXNet Creates kvstore, the Program Is Blocked and No Error Is Reported
	16.4.7.16 ECC Error Occurs in the Log, Causing Training Job Failure
	16.4.7.17 Training Job Failed Because the Maximum Recursion Depth Is Exceeded
	16.4.7.18 Training Using a Built-in Algorithm Failed Due to a bndbox Error
	16.4.7.19 Training Job Status Is Reviewing Job Initialization
	16.4.7.20 Training Job Process Exits Unexpectedly
	16.4.7.21 Stopped Training Job Process

	16.4.8 Training Job Suspended
	16.4.8.1 Data Replication Suspension
	16.4.8.2 Suspension Before Training
	16.4.8.3 Suspension During Training
	16.4.8.4 Suspension in the Last Training Epoch

	16.4.9 Running a Training Job Failed
	16.4.9.1 Troubleshooting a Training Job Failure
	16.4.9.2 An NCCL Error Occurs When a Training Job Fails to Be Executed
	16.4.9.3 A Training Job Created Using a Custom Image Is Always in the Running State
	16.4.9.4 Running a Job Failed Due to Persistently Rising Memory Usage

	16.4.10 Training Jobs Created in a Dedicated Resource Pool
	16.4.10.1 No Cloud Storage Name or Mount Path Displayed on the Page for Creating a Training Job
	16.4.10.2 Storage Volume Failed to Be Mounted to the Pod During Training Job Creation

	16.4.11 Training Performance Issues
	16.4.11.1 Training Performance Deteriorated

	16.5 Inference Deployment
	16.5.1 AI Application Management
	16.5.1.1 Creating an AI Application Failed
	16.5.1.2 Failed to Build an Image or Import a File When an IAM user Creates an AI Application
	16.5.1.3 Obtaining the Directory Structure in the Target Image When Importing an AI Application Through OBS
	16.5.1.4 Failed to Obtain Certain Logs on the ModelArts Log Query Page
	16.5.1.5 Failed to Download a pip Package When an AI Application Is Created Using OBS
	16.5.1.6 Failed to Use a Custom Image to Create an AI application
	16.5.1.7 Insufficient Disk Space Is Displayed When a Service Is Deployed After an AI Application Is Imported
	16.5.1.8 Error Occurred When a Created AI Application Is Deployed as a Service
	16.5.1.9 Invalid Runtime Dependency Configured in an Imported Custom Image
	16.5.1.10 Garbled Characters Displayed in an AI Application Name Returned When AI Application Details Are Obtained Through an API
	16.5.1.11 The Model or Image Exceeded the Size Limit for AI Application Import
	16.5.1.12 A Single Model File Exceeded the Size Limit (5 GB) for AI Application Import
	16.5.1.13 Creating an AI Application Failed Due to Image Building Timeout

	16.5.2 Service Deployment
	16.5.2.1 Error Occurred When a Custom Image Model Is Deployed as a Real-Time Service
	16.5.2.2 Alarm Status of a Deployed Real-Time Service
	16.5.2.3 Failed to Start a Service
	16.5.2.4 What Do I Do If an Image Fails to Be Pulled When a Service Is Deployed, Started, Upgraded, or Modified?
	16.5.2.5 What Do I Do If an Image Restarts Repeatedly When a Service Is Deployed, Started, Upgraded, or Modified?
	16.5.2.6 What Do I Do If a Container Health Check Fails When a Service Is Deployed, Started, Upgraded, or Modified?
	16.5.2.7 What Do I Do If Resources Are Insufficient When a Service Is Deployed, Started, Upgraded, or Modified?
	16.5.2.8 Error Occurred When a CV2 Model Package Is Used to Deploy a Real-Time Service
	16.5.2.9 Service Is Consistently Being Deployed
	16.5.2.10 A Started Service Is Intermittently in the Alarm State
	16.5.2.11 Failed to Deploy a Service and Error "No Module named XXX" Occurred
	16.5.2.12 Insufficient Permission to or Unavailable Input/Output OBS Path of a Batch Service
	16.5.2.13 What Can I Do if the Memory Is Insufficient?

	16.5.3 Service Prediction
	16.5.3.1 Service Prediction Failed
	16.5.3.2 Error "APIG.XXXX" Occurred in a Prediction Failure
	16.5.3.3 Error ModelArts.4206 Occurred in Real-Time Service Prediction
	16.5.3.4 Error ModelArts.4302 Occurred in Real-Time Service Prediction
	16.5.3.5 Error ModelArts.4503 Occurred in Real-Time Service Prediction
	16.5.3.6 Error MR.0105 Occurred in Real-Time Service Prediction
	16.5.3.7 Method Not Allowed
	16.5.3.8 Request Timed Out
	16.5.3.9 Error Occurred When an API Is Called for Deploying a Model Created Using a Custom Image

	16.6 MoXing
	16.6.1 Error Occurs When MoXing Is Used to Copy Data
	16.6.2 How Do I Disable the Warmup Function of the Mox?
	16.6.3 Pytorch Mox Logs Are Repeatedly Generated
	16.6.4 Does moxing.tensorflow Contain the Entire TensorFlow? How Do I Perform Local Fine Tune on the Generated Checkpoint?
	16.6.5 Copying Data Using MoXing Is Slow and the Log Is Repeatedly Printed in a Training Job
	16.6.6 Failed to Access a Folder Using MoXing and Read the Folder Size Using get_size

	16.7 APIs or SDKs
	16.7.1 "ERROR: Could not install packages due to an OSError" Occurred During ModelArts SDK Installation
	16.7.2 Error Occurred During Service Deployment After the Target Path to a File Downloaded Through a ModelArts SDK Is Set to a File Name
	16.7.3 A Training Job Created Using an API Is Abnormal

	16.8 Change History

	17 Change History

